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Precise and unbiased biomass
estimation from GEDI data and
the US Forest Inventory

Jamis Bruening*, Paul May, John Armston and Ralph Dubayah

Department of Geographical Science, University of Maryland, College Park, MD, United States

Atmospheric CO2 concentrations are dependent on land-atmosphere carbon

fluxes resultant from forest dynamics and land-use changes. These fluxes are

not well-constrained, in part because reliable baseline estimates of forest carbon

stocks and the associated uncertainties are lacking. NASA’s Global Ecosystem

Dynamics Investigation (GEDI) produces estimates of aboveground biomass

density (AGBD) that are unique because GEDI’s hybrid estimation framework

enables formal uncertainty calculations that accompany the biomass estimates.

However, GEDI’s estimates are not without issue; a recent validation using

design-based AGBD estimates from the US Forest Inventory and Analysis (FIA)

program revealed systematic di�erences between GEDI and FIA estimates within

a hexagon tessellation of the continental United States. Here, we explored

these di�erences and identified two issues impacting GEDI’s estimation process:

incomplete filtering of low quality GEDI observations and regional biases in GEDI’s

footprint-level biomass models. We developed a solution to each, in the form

of improved data filtering and GEDI-FIA fusion AGBD models, developed in a

scale-invariant small area estimation framework, that were compatible with hybrid

estimation. We calibrated 10 regional Fay-Herriot models at the hexagon scale

for application at the unit scale of GEDI footprints, for which we provide a

mathematical justification and empirical testing of the models’ scale-invariance.

These models predicted realistic distributions of unit level AGBD, with equal or

improved performance relative to GEDI’s L4A models for all regions. We then

producedGEDI-FIA fusion estimates that weremore precise than the FIA estimates

and resulted in a bias reduction of 86.7% relative to the original GEDI estimates:

19.3% due to improved data filtering and 67.5% due to the new AGBDmodels. Our

findings indicate that (1) small area estimation models trained in a scale-invariant

framework can produce realistic predictions of AGBD, and (2) there is substantial

spatial variability in the relationship between GEDI forest structure metrics and

AGBD. This work is a step toward achieving reliable baseline forest carbon stocks,

provides a viable methodology for training remote sensing biomass models, and

may serve as a reference for other investigations of GEDI AGBD estimates.

KEYWORDS

GEDI, FIA, biomass estimation, hybrid inference, small area estimation (SAE)

1. Introduction

NASA’s Global EcosystemDynamics Investigation (GEDI) is the first spacebornemission

designed specifically to estimate aboveground biomass (Dubayah R. et al., 2020). GEDI

is a multi-beam waveform lidar mounted on the International Space Station that directly

measures forest structure within footprints 25 m wide along eight reference ground tracks.

GEDI’s sole observable is a reflected waveform, from which forest structure metrics are
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calculated. These waveforms enable above ground biomass density

(AGBD) mapping within a regular spatial grid or jurisdictional

boundaries, as follows. First, GEDI’s level 2A (L2A) signal

processing algorithms are applied to each waveform to calculate

metrics representative of forest structure attributes (Hofton et al.,

2020). Second, GEDI’s level 4A (L4A) footprint level AGBDmodels

use the metrics to predict AGBD within the waveform footprint

(Kellner et al., 2022). Third, hybrid inference estimators are applied

to the footprint level AGBD predictions produce estimates of mean

AGBD and uncertainty in the form of a standard error of the

mean estimate (Healey et al., 2022). Throughout this paper we refer

to these steps collectively as the GEDI’s “estimation process”, to

individual GEDI waveforms as “observations”, and to the derived

mean estimates of AGBD in step three as “estimates”.

Hybrid inference (hereafter “hybrid”) is an established method

to estimate AGBD and its uncertainty from lidar remote sensing

(Healey et al., 2012; Margolis et al., 2015; Nelson et al., 2017).

Hybrid is valuable because it provides a formal estimate of the

mean estimate’s uncertainty, which improves the utility of the

resultant map. GEDI’s AGBD maps are unique relative to most

other global biomass maps (e.g., Saatchi et al., 2011; Avitabile

et al., 2016; Santoro and Cartus, 2021) because the hybrid variance

estimators account for both sampling and model uncertainty in a

transparent manner, compared to ad hoc methods of uncertainty

characterization that do not rely on a statistical framework. GEDI’s

AGBD estimation process was designed to satisfy the assumptions

necessary for hybrid inference; (1) the GEDI sample approximates

a simple random cluster sample within each spatial estimation unit,

in which each laser ground track is a cluster sample, and there are

at least two cluster samples in each spatial unit; (2) the L4A models

are properly specified and unbiased throughout the entire area in

which they are applied; and (3) over large-enough areas the residual

error from the L4A models sums to zero (Patterson et al., 2019).

While the first and third assumptions were addressed by

Patterson et al. (2019) during GEDI’s pre-launch phase, the extent

to which the L4A models are unbiased everywhere is not well-

established (Dubayah et al., 2022b; Duncanson L. et al., 2022).

This possibility is acknowledged by Duncanson L. et al. (2022),

and represents a substantial challenge in developing globally

representative predictionmodels due to geographic gaps in training

data used to calibrate the L4A models that must be transferable

to entire continents. Such an assessment requires validation of

GEDI’s AGBD estimates with independent reference data, however

standardized reference data does not exist to validate a global

biomass map at 1 km resolution (Duncanson L. et al., 2021).

Instead, McRoberts et al. (2019) outline a strategy for local

validation of global biomass maps using design-based estimates of

biomass from a national forest inventory at the same spatial scale

of the global map. Since the true AGBD for an estimation unit is

unknown, the authors suggest validation by comparing population

estimates, characterizing the difference between the reference

estimate and the remote sensing estimate in a probabilistic manner.

Such a validation of GEDI’s AGBD estimates was recently

performed. The United States Forest Inventory and Analysis (FIA)

program maintains a random sample of national forest inventory

plots, from which Menlove and Healey (2020) produced post-

stratified design-based reference estimates of AGBD within an

equal area hexagon tessellation (∼640 km2, n = 12,550) covering

the continental United States. Generated specifically for validating

remote sensing biomass maps, the FIA hexagon reference estimates

were used by Dubayah et al. (2022b) to validate an analogous

set of GEDI hexagon AGBD estimates. The analysis exhibited

strong spatial patterns of both positive and negative systematic

differences between the GEDI and FIA reference estimates that

were unlikely due to chance. Here, we assume the FIA reference

estimates are unbiased, and that systematic differences between

the GEDI and FIA estimates are caused by issues biasing GEDI’s

estimation process. If maps of biomass from remote sensing are

to be used more widely, it is important that differences relative to

well-designed national forest inventory networks be reconciled.

The goal of this paper is to mitigate the primary issues that

adversely affect GEDI’s overall biomass estimation process. We

hypothesize these issues to be (1) incomplete filtering of low-quality

observations not suited for AGBD estimation, and (2) regional

misspecification of the L4A footprint level AGBD prediction

models. Specifically, our objectives are:

1. To identify and remove GEDI observations not suited for

biomass estimation, that are not caught by GEDI’s standard

quality filtering.

2. Develop unbiased footprint level AGBD models that may be

used within GEDI’s hybrid inference framework.

3. Quantify the overall improvement in GEDI AGBD estimation,

relative to the FIA estimates, brought by these advancements to

GEDI’s estimation process.

While our approach is aimed at improving GEDI’s overall

AGBD estimation process, the changes we make in the form of

improved quality filtering and new footprint level AGBD models

only affect the inputs to the population estimation method of

hybrid inference, and not the actual hybrid mean and variance

estimators put forth by Patterson et al. (2019).

2. Materials and methods

First, we repeated Dubayah et al.’s (2022b) validation of

GEDI hexagon estimates to highlight regions of systematic

difference relative to the FIA estimates, which informed our

hypotheses about the two factors adversely impacting GEDI’s

original AGBD hexagon estimates; incomplete quality filtering and

footprint AGBD model misspecification (Figure 1). We designed

and applied additional quality filters to produce a set of GEDI

hexagon AGBD estimates using hybrid inference that excluded

the observations flagged by our additional filters, which we call

“filtered” GEDI estimates. Next, we developed new footprint AGBD

models using GEDI-FIA fusion in a scale-invariant small area

(SISA) estimation framework, which we refer to as the SISA

models. We calibrated Fay-Herriot small area estimation models

at an aggregated scale, regressing the FIA hexagon estimates of

AGBD against hexagon aggregations of GEDI metrics in such

a way that the resultant equations were largely unbiased and

applicable at the footprint level. We also developed a theoretical

justification and validation of these models given the available

data. We then applied the SISA models to the GEDI observations
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FIGURE 1

Methodological overview. We began by comparing the original GEDI and FIA hexagon estimates, and hypothesized that inclusion of GEDI

observations not suited for biomass estimation were causing systematic di�erences relative to the FIA estimates. We developed methods to identify

those observations, removed them from GEDI’s biomass estimation process, and generated an updated set of “filtered” GEDI estimates. A

comparison of the filtered GEDI and FIA hexagon estimates revealed a second source of di�erence between GEDI and FIA estimates, which we

hypothesized were due to regional L4A model biases. In response, we developed a scale-invariant, small area (SISA) estimation framework to

calibrate new GEDI footprint level AGBD models using GEDI-FIA fusion. When applied to the GEDI observations, the SISA models resulted in mostly

unbiased predictions that were more accurate and realistic than the L4A models. We then used the SISA predictions to generate updated “fusion”

GEDI estimates, at both the hexagon and 1 km scale.

resulting in new footprint level AGBD predictions, from which

we generated a new set of GEDI hexagon AGBD estimates

again using hybrid inference, which we refer to as “fusion”

estimates. We also generated “fusion” estimates at the 1 km

scale, based on the flexible nature of GEDI’s hybrid estimation

framework. Lastly, we compared the “filtered” and “fusion” GEDI-

based estimates with the estimates from Dubayah et al. (2022b)

(hereafter the “original” estimates) to quantify the improvements

that our filtering and modeling methods had on GEDI’s AGBD

estimates, relative to the design-based FIA reference estimates.

In the following sections we first outline the GEDI and FIA

data sources used in our work, and our method of comparing

the GEDI and FIA estimates to identify non-random systematic

differences. We then catalog the steps taken to develop, implement,

and assess our solutions to both the data filtering and model

misspecification issues.

2.1. GEDI data and algorithms

The GEDI data used were the L2A footprint level waveform

metrics (Dubayah S. et al., 2020) and the L4A footprint level

AGBD predictions (Dubayah R. et al., 2021), collected between

April 18th 2019 and May 11 2022. We applied the quality filtering

criteria put forth in Dubayah et al. (2022b) to ensure we used

only the highest quality observations for biomass estimation (see

Supplementary material), and generated the set of “original” GEDI

hexagons estimates using the exact same hybrid inference methods

as in Dubayah et al. (2022b). After developing and implementing

both our additional filtering criteria and the SISA footprint level

AGBD models, we again used hybrid inference to generate the

“filtered” and “fusion” GEDI hexagon level biomass estimates. This

was done using the same code base and hybrid estimators used to

produce GEDI’s L4B data products (Dubayah et al., 2022a,b), with

slight modifications to accommodate our changes to the estimation

process. We also used the 1 kmGEDI L4B gridded biomass product

in comparisons with our 1 km gridded fusion estimates (Dubayah

et al., 2022a).

2.2. FIA data

The FIA program conducts systematic sampling of forest

attributes across a network of field plots evenly distributed

throughout the US (Bechtold and Patterson, 2005). The sampling

design has approximately 27 evenly distributed plots per hexagon,

and unbiased estimates of population parameters can be produced

through design-based statistical techniques in the form of a total

(i.e., total biomass) or ratio (i.e., total biomass per unit of forested

land), along with the associated uncertainty in the form of a percent

sampling error. The FIA program estimates forest attributes for

forest land only, and assumes forest attributes to be zero on sampled

plots that do not meet its definition of forested land—land that is at

least 10 percent covered by trees, at least 1 acre (0.405 ha) in size,

and at least 120 feet (0.305 m) wide (Bechtold and Patterson, 2005).

Ratio estimatesmay be adjusted to reflect the entire land area within

a spatial estimation unit by changing the denominator to reflect

total land area rather than just forested land. In this way, Menlove

and Healey (2020) produced estimates of mean AGBD for the total

land area within the hexagon grid, and we converted the reported

percent sampling errors into standard errors of themean, according

to Bechtold and Patterson (2005). These mean and standard error

estimates were the independent reference data we used to validate

the GEDI estimates, as well as the response variable that we used in

calibrating the SISA models.

2.3. Comparison of GEDI and FIA estimates

The comparison of GEDI and FIA hexagon AGBD estimates

underpinned our analysis, aiding our diagnosis of the issues

potentially biasing GEDI’s estimation process, as well as our
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evaluation of the impact that our solutions had on the updated

GEDI estimates. Consider the following difference between two

population estimates

dBji = µ̂jFIA − µ̂jGEDIi
(1)

in which j represents a specific hexagon, µ̂FIA is the FIA mean

AGBD hexagon estimate derived from the FIA’s design-based

statistical estimators (Bechtold and Patterson, 2005; Pugh et al.,

2018; Menlove and Healey, 2020), µ̂GEDIi is the GEDI mean AGBD

estimate (Equation 4 from Patterson et al., 2019), and i denotes

the version of GEDI estimate being evaluated (original, filtered,

or fusion). To characterize the difference between the FIA and

GEDI mean estimates we calculated the following test statistic from

McRoberts et al. (2019),

tji =
dBji

√

ˆMSE(µ̂jFIA )+ ˆMSE(µ̂jGEDI )
(2)

in which ˆMSE(µ̂jFIA ) and ˆMSE(µ̂jGEDIi ) are the respective mean

squared errors associated with µ̂jFIA and µ̂jGEDIi
. Instead of formal

hypothesis testing to determine significance based on an arbitrary

confidence level, we take tji as a heuristic to assess the difference

between the GEDI and FIAmean estimates relative to the respective

estimate uncertainties (Dubayah et al., 2022b). Our goal was

to focus on regions with non-random systematic differences in

the estimates, relative to the magnitude and precision of those

estimates, as a way to identify potential issues somewhere in GEDI’s

estimation process.

The GEDI-FIA comparison analysis was performed

sequentially on the three sets of GEDI-derived mean AGBD

estimates (j = original, filtered, fusion) outlined in Section 2.1.

2.4. Addressing deficiencies in GEDI
observation filtering

GEDI observations in which part of the laser pulse is reflected

from something other than flat bare ground or vegetation may

result in biased predictions of footprint level AGBD, as these

conditions are not represented in the data used to train GEDI’s

L4A footprint AGBD models. Examples include waveforms that

intersect buildings, low clouds, and steep slopes, rough terrain or

other topographic features, both with and without vegetation. The

presence of a steep slope (vegetated or not) or non-vegetated object

within the waveform footprint alters the values of the relative height

metrics and may also cause ground finding errors. If many such

observations are used in hybrid estimation, the resultant estimates

may differ substantially from unbiased independent reference data.

While there are quality flags built into both the L2A and L4A

algorithms that trigger when it is obvious that a waveform does

not represent the ground surface conditions (such as a cloud high

above the land surface), the GEDI algorithms cannot differentiate

between waveforms from forest canopies and those that contain a

building, low cloud, or non-vegetated topographic feature such as a

rock outcropping, canyon wall, or steep slopes.

Ancillary information is necessary to identify such observations

and remove them from the set used in hybrid AGBD estimation.

For the case of buildings, GEDI’s level 4B (L4B) algorithm uses a

custom urban mask to identify observations that are likely to have

intersected a human-built structure (Healey et al., 2022). The L4B

algorithm also identifies likely cloud affected observations—those

with a maximum height larger than 150 m, and also segments of

GEDI orbits where the deviations between GEDI canopy top and

TanDEM-X DEM elevations are systematically larger than those

from other nearby GEDI orbits—although there are instances in

which localized improvements to the cloud filtering process can

be made, such as isolated cloud affected observations. However,

instances of topography affected waveforms are not identified, in

part because removal of all such GEDI observations may violate

the hybrid assumption that the GEDI sample approximates a

random cluster sample within each spatial estimation unit. These

waveforms are not suited for biomass estimation because a steep

slope or other three dimensional topographic features can result in

a waveform with large relative height metrics that look like trees,

even when there is no vegetation within the footprint. GEDI has

not yet implemented a global method to identify and remove these

observations, and instead assumes that the L4A predictions for

these observations are suitable for inclusion in hybrid estimation

in current data products.

To identify GEDI observations impacted by low clouds and

fog, we determined the maximum observed tree height within each

hexagon from the FIA tree-level attribute tables. Since the FIA

samples a small fraction of the forested area within each hexagon,

we assumed the true maximum to be substantially larger than

the observed maximum. We then multiplied the observed height

by an expansion factor to decrease the likelihood of removing

GEDI observations from trees taller than the observed maximum

height. We applied different height expansion factors and visually

compared the GEDI observations with larger maximum heights

to their neighboring observations, as well as satellite imagery

depicting the land cover. We arrived at a final expansion factor

of 1.75 to remove as many cloud affected observations as

possible while maintaining a low probability of removing valid

forested observations.

Our second filtering procedure identifies a small set of GEDI

observations that are highly impacted by steep slopes and rough

terrain, the details of which are provided in the Supplementary

material.We focus on only themost impacted observations because

removing every observation in which the waveform relative height

metrics are impacted by topography would violate the assumptions

of hybrid inference. Slope and topography can impact waveforms

in a variety of ways (Yang et al., 2011; Chen et al., 2014; Park

et al., 2014), and here we are focused on removing those with

the most inflated relative height metrics, as they are the easiest to

identify and have the largest impact on AGBD estimates. To do

so, we compute the 99th percentile of canopy heights from GEDI

waveforms returned from flat ground within five predefined ranges

of canopy cover (Supplementary Table 1). If a GEDI observation

from slopped terrain had a canopy height larger than the 99th

percentile of heights from the flat ground observations in its same

range of canopy cover, we deemed it as too impacted by topography

for the L4Amodel to be applicable and disqualified it for use within

hybrid estimation.
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2.5. Addressing L4A model bias

In this section, we present ourmethods for developing unbiased

footprint level AGBD models. First, we discuss why GEDI’s L4A

modelsmay be biased in some regions of theUS. Second, we explain

how we addressed this issue using a scale-invariant small area

estimation framework to train new footprint level AGBD models,

and the assumptions required to do so. Third, we demonstrate how

the models were scale-invariant and produced relatively unbiased

predictions at the footprint level.

2.5.1. Potential L4A model misspecification
The L4A models were calibrated using one of the most

extensive databases of forest inventory plots (“calibration plots”)

coincident with airborne laser scanning (ALS) retrievals yet

compiled (Duncanson L. et al., 2022). A GEDI waveform was

simulated from ALS data for each plot, and the inventory-

based AGBD values were then related to the simulated waveform

metrics to calibrate the footprint-level AGBD prediction models.

Operationally, at least 50 plots were required to train a model, and

there were not enough plots for localized partitioning below the

continental scale (Kellner et al., 2022). Instead, a combination of

continental region and MODIS plant functional type (PFT) (Friedl

et al., 2019) was used to delineate large regions that approximate

biomes, and a unique L4A model was calibrated for each region

(henceforth called GEDI “prediction strata”) using the calibration

plots located within. In North America there are three L4A models

and associated prediction strata; deciduous broadleaf (DBT, n = 873

calibration plots), needleleaf (NT, n = 1,391 calibration plots), and

grasslands, shrublands, and woodlands (GSW, n = 89 calibration

plots). Evidence suggests that relationships between lidar-derived

forest structure metrics (from both airborne lidar and GEDI) and

AGBD vary spatially within PFT, as models that use these metrics

to predict AGBD over large areas explain more overall variation in

AGBD when a spatial component is included, compared to similar

aspatial models (Babcock et al., 2015; May et al., 2023). However,

the L4A models are not sensitive to within-strata variations in the

structure-biomass relationship, which may result in locally varying

L4A model bias.

2.5.2. SISA model development
To ensure a footprint level AGBD model that is unbiased

for its entire prediction stratum requires (1) calibration data that

represent local conditions equally throughout the stratum, and

(2) an ability to reflect the continuous spatial processes that

result in spatial variations in the structure-biomass relationship.

An ideal model would be calibrated on representative data

evenly distributed throughout the prediction stratum, and would

incorporate a spatially varying component (Babcock et al., 2015,

2016, 2018; Taylor-Rodriguez et al., 2019). However, such methods

require near-continuous, spatially representative calibration data to

adequately capture the spatial processes impacting the relationship

between physically-based predictors and the biophysical response,

which is not available in this case.

Accordingly, we developed a modeling framework that satisfied

the first of these requirements completely, but the second

requirement only partially. Instead of a spatially varying model,

we developed various regional models for different areas in an

attempt to isolate local relationships between the predictor and

response variables and capture spatial impacts on the relationship

between forest structure and biomass. While methodologically

different than spatially varying models, this regional stratification

was a pragmatic solution that also allowed our models to integrate

with GEDI’s hybrid estimation framework. To ensure spatially

balanced and representative calibration data, we used the FIA-

based hexagon AGBD estimates of Menlove and Healey (2020) as

our response variable, and hexagon level averages of various GEDI

waveform-derived canopy height metrics as the predictor variables

(see Supplementary material). The hexagons are of equal area and

cover the entire continental US, so every part of the prediction

region was equally represented in the calibration data.

There were two motivations for training models at the

hexagon scale using averaged predictor variables, instead of

at the native resolution of the GEDI footprint. First, exact

overlays of a GEDI observation and an FIA plot were not

possible because the size and spatial configuration of FIA

plots does not align with the GEDI footprint diameter, and

training models on misaligned data (1) introduces additional,

unwanted uncertainty and (2) decreases the signal captured in

the training data, and is discouraged (Duncanson L. et al.,

2021). Furthermore, the combined geolocation uncertainties of

GEDI observations (approximately 10 horizontal meters) and FIA

plots (approximately 10 horizontal meters) (Hoppus and Lister,

2007) would substantially increase the variability in actual overlap

between GEDI shots and FIA plots.

The second motivation for training on aggregated data is the

inherent scalability of linear relationships. A theoretical linear

relationship at the level of a single GEDI waveform takes the form

yij = µ + xijβ + ǫij (3)

in which yij represents the true AGBD within the waveform

footprint; xij represents a GEDI waveform derived height metric

or a linear transformation thereof; index i = 1...n and represents

a continuous partitioning of the hexagon into discrete GEDI

footprints; j = 1...N and represents all the hexagons within a given

region of the US for which we assume there is a single, constant

linear relationship between y and x. Parameters µ and β are true

regression parameters and ǫij is a randomly distributed error term

for which we assume an expected value of zero and a constant

variance. Averaging yij across all footprints within hexagon j yields

1

n

n
∑

i=1

yij = µ +

(

1

n

n
∑

i=1

xij

)

β +
1

n

n
∑

i=1

ǫij, (4)

which can be simplified to

yj = µ + xjβ + ǫj. (5)

Therefore, assuming a linear regression at the footprint level

directly implies a linear regression at the hexagon (or any area

aggregate) level with the same regression parameters. Importantly,

xij in Equation (3) could be a non-linear transformation of
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a GEDI metric, accounting for a non-linear relationship, but

enabling a model that is linear with respect to parameters β

and ǫij. In this the case, xj in Equation (5) would represent

the same non-linear transformation, applied at the unit level

before averaging to calculate xj. If the true values of yj and xj
were known, we could fit a linear model accordingly. However,

we do not know the true values, and in turn must rely on

estimates. Menlove and Healey (2020) provide estimates of both

AGBD and the associated sampling error, from which we can

estimate yj:

ŷj = yj + δj (6)

in which ŷj is the estimate of AGBD within the hexagon,

and δj is the associated sampling error. Similarly, we can

use the GEDI sample within a hexagon to estimate xj, as

follows:

x̂j = xj + ζj (7)

in which x̂j is the average value of xij across all GEDI shots within

the hexagon and ζj is the GEDI sampling error. If the variance

of ζj is non-trivial in magnitude, it could be accounted for with

a measurement error model (Fuller, 2009). However, we assume

the GEDI sample is large enough within each hexagon (tens of

thousands of observations per intact hexagon) for ζj to be negligible

and thus Equation (7) becomes

x̂j ≈ xj (8)

Rearranging Equation (6), we can rewrite our aggregate model

from Equation (5) as

ŷj = µ + x̂jβ +
(

ǫj + δj
)

(9)

This is known as the Fay-Herriot (FH) model, which yields

reliable inference on β by accounting for the sampling error δj

associated with ŷj (Fay and Herriot, 1979). The FH model belongs

to the family of small area estimation models used to increase

estimation precision, relative to design-based estimates, especially

for small sample sizes (Rao and Molina, 2015).

For implementation within GEDI hybrid estimation

framework, the required unknown quantities are estimates of

the regression parameters µ, β , and the associated variance of

these estimates. Let b = [µ β]T be a vector of the regression

parameters. Let X̄ be a N × p matrix of the N hexagon aggregates

of the p different GEDI predictors, let Z = [1 X̄], appending a

column of ones to X̄, and let ŷ be the vector of N direct estimates.

Let 6 = 6ǫ +D, where 6ǫ is a N ×N covariance matrix such that

[6ǫ]jk = Cov[ǭj, ǭk], and D is a diagonal matrix of the sampling

variances, [D]jj = Var[δj]. The FH estimate of b is

b̂ =

(

ZT
6

−1Z
)−1

ZT
6

−1ŷ. (10)

The FH estimate, b̂, is the best linear unbiased estimate (BLUE)

for b by the Gauss-Markov theorem, meaning out of all linear

unbiased estimates, b̂ has minimum variance:

Var[b̂] =
(

ZT
6

−1Z
)−1

. (11)

However, in practice, matrix 6ǫ is unknown and must be

estimated from the data, call this 6̂ǫ . Substituting this estimate for

6ǫ yields the empirical best linear unbiased estimate (EBLUE) for

b. A common assumption is 6ǫ = σ 2
ǫ I, where I is the identity

matrix, implying identical and independently distributed errors ǭj.

This ignores potential spatial correlation in ǭj, which may lead to

over-confident estimates of b, i.e., estimates of Var[b̂] that are too

small. We instead use a simultaneous autoregressive (SAR) model

for ǭj () to account for dependence between nearby hexagons, so

that

6ǫ = σ 2
ǫ

[

(I − ρW)(I − ρWT)
]−1

, (12)

where W is a proximity matrix such that [W]jk = 1 if hexagons

j and k are neighbors and [W]jk = 0 otherwise, ρ ∈ (−1, 1)

is a correlation parameter, and σ 2
ǫ is the variance parameter. The

unknown parameters are σ 2
ǫ , ρ, so that

6̂ǫ = σ̂ 2
ǫ

[

(I − ρ̂W)(I − ρ̂WT)
]−1

. (13)

We use “R” package “sae” (Molina andMarhuenda, 2015), which

uses restricted maximum likelihood to estimate σ 2
ǫ , ρ in order to

compute EBLUE b̂ and its variance.

Given the assumptions that the relationship between xij and

yij is consistent and linear throughout all N hexagons, the above

is justification that β is the same at both the unit scale of GEDI

footprints (Equation 3) and aggregate scale of hexagons (Equation

9). If these assumptions are satisfied the resultant model form in

Equation (9) is applicable at the unit level (GEDI footprint). This

is what we refer to as the scale-invariant small area AGBD model.

In this context, “scale-invariant” refers to the difference in scale

between SISA model calibration (aggregation at the hexagon scale)

and prediction (unit level of GEDI footprint). This is different from

other scale-invariant remote sensing analyses in which larger scale

variables are not aggregations of unit level variables.

2.5.3. SISA model calibration
In this section, we summarize the SISA model calibration

methodology, a complete description of which can be found

in the Supplementary material. First we delineated 10 SISA

calibration and prediction strata at the hexagon level, based on

the predominant forest type and climate (Figure 2). Next, we used

the GEDI calibration plots to determine which GEDI waveform

variables (combinations of waveform relative height metrics with

and without various transformations) had a linear relationship

with AGBD. We then calculated hexagon level averages of the

variables that were linear with respect to AGBD. We fit candidate

SISA models (66 for the DBT strata and 91 for the MIX and NT

strata) within each of the 10 prediction strata using the hexagon

averaged GEDI variables as predictors and the post-stratified FIA

hexagon AGBD estimates from Menlove and Healey (2020) as the
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FIGURE 2

Map of the 10 forest strata regions used in this analysis. For each hexagon we calculated the most abundant forest PFT according to the NLCD 2019

classification map (DBT, NT, MIX), and then we further segmented these PFTs into regional strata based primarily on the level two EPA ecoregion

classification map.

response. From the candidate models tested for each strata, we

selected six models with the lowest training RSE for assessment

and validation at the unit level. We applied the final six candidate

models for each strata to all GEDI observations within the strata,

and selected each stratum’s final model (Supplementary Table 2 in

Supplementary material) based on how well the distribution of its

footprint-level predicted AGBD values matched the distribution

of AGBD from the FIA plots. Each region’s final SISA model was

the one that produced the most similar unit level distribution

of biomass when compared to that regions’ distribution of FIA

plot-level biomass, based on quantile-quantile plots, side by side

comparisons, and a Kolmogorov-Smirnov test. The predictions and

parameter estimate covariance matrices from the final SISA models

were then used to generate hexagon level AGBD estimates using

GEDI’s hybrid estimation framework. We refer to these estimates

as the fusion estimates.

2.5.4. SISA model validation
Here, we explain our approach to validate the SISA models, in

which validation primarily hinges on whether or not the models

produced realistic footprint level distributions of AGBD. Implicit

in the usage of the models at the unit level for AGBD prediction

is the assumption that the models are spatially invariant—the

models are unbiased at the unit level and realistically predict AGBD

despite being trained at an aggregate scale. Our validation approach

assesses the extent to which this assumption of scale invariance is

met based on the data available. We first examined the applicability

of the β parameter estimates at the unit level by comparing

distributions of SISA predicted AGBD with the distributions of

FIA plot level AGBD. Second, we assessed the internal consistency

of the β parameter estimates and their uncertainty between the

hexagon (aggregate) and footprint (unit) levels. If (1) the unit level

distribution of SISA AGBD predictions matched the unit level

distribution of FIA plot AGBD, and (2) β̂ appeared consistent

across different spatial scales of aggregation, we determined there

was not sufficient evidence to invalidate the assumption of spatial

invariance, thus rendering unit level AGBD prediction via the SISA

models reliable for hybrid estimation of AGBD.

The final SISA model for each forest stratum was selected to

maximize the similarity in unit level AGBD distributions between

the FIA plots and SISA predictions. We assumed the ability of a

given SISA model to reproduce its stratum’s unit level distribution

of FIA plot level biomass was a reliable indicator of model

performance at the unit level. Therefore, if a stratum’s distribution

of SISA predictions was similar to the distribution of FIA plot

level AGBD, we determined the corresponding SISA model was

unbiased and the predictions were realistic. We also included the

L4A predictions in these distribution comparisons, allowing us to

characterize each SISA model’s performance, relative to that of

L4A, within its stratum. For example, if the SISA distribution had

obvious differences relative to the FIA distribution, but less so than

the L4A distribution, we deemed the SISA model as preferable to

the L4A model. We also applied the appropriate SISA model to

each GEDI calibration plot based on its location, to compare model

performance (L4A and SISA) directly, relative to the field estimate

of AGBD (Supplementary Figures 7, 8).

To assess the internal consistency of the β parameter estimates,

and by extension whether the SISA predictions were reliable at

the unit level, we asked the following question: If we re-calibrated

the SISA models at a different spatial scale of aggregation, would

the various β̂ confidence intervals overlap? In other words, does

the spatial scale of calibration impact the statistical consistency of

β̂? To answer this question, we recalibrated each stratum’s final

SISA model (Supplementary Table 2) at three different hexagon

grid resolutions, with approximate areas of 12,400, 1,770, and 250

km2 (Uber, 2018). This required generating versions of our SISA

prediction strata and the response and predictor variables within

each new hexagon grid resolution, as follows. We mapped the

prediction strata into each new hexagon grid based on which strata

was most abundant within each hexagon in the new grids. For the

predictor variables we aggregated the GEDI metrics within each

new hexagon grid as we did for the original FIA hexagon grid.

For the response variable, we recalculated the FIA-based estimates

within each new grid using the Horvitz-Thompson estimator,

Frontiers in Forests andGlobal Change 07 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1149153
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Bruening et al. 10.3389/�gc.2023.1149153

FIGURE 3

Unit level AGBD histograms demonstrate the SISA models generally produce realistic distributions that align with the FIA distributions, more so than

the L4A distributions.

which produced similar estimates to the post-stratified estimates

of Menlove and Healey (2020), and were easier to implement

and reproduce (May et al., 2023). We then refit the final SISA

models for each new resolution, the result of which was a new β

parameter estimate associated with the model fit for each stratum

and resolution combination. The statistical consistency of each

stratum’s SISAmodel formwas assessed by comparing the resultant

β parameter estimates and the associated 95% confidence intervals

across the different spatial scales of model calibration.

3. Results

In the following section, we present the collective SISA

model performance, quantify the impact of our filtering

and SISA modeling procedures on GEDI’s estimation

process, and compare each set of GEDI AGBD hexagon

estimates (original, filtered, and fusion) to the FIA AGBD

hexagon estimates. Additional figures can be found in the

Supplementary material.
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3.1. SISA model validation

The SISA models produced distributions of footprint level

AGBD that were similar to the FIA plot level distributions for all

10 forest strata, but to varying degrees (Figure 3). Relative to the

L4A unit level distributions, the SISA unit level distributions were

equally or more similar to the FIA unit level distributions in all

regions, based on a side-by-side visual comparison and quantile-

quantile plots. When applied to GEDI calibration plots, the L4A

models explained a larger fraction of the overall variance in the

field-based estimate of AGBD and had a lower root mean squared

error (RMSE) than the SISA models (Supplementary Figure 7).

This is expected, as the L4A models were fit on these data

using a least squares approach which mathematically guarantees

a lower squared error compared to the SISA models that

were not calibrated on these data. However, the SISA models

appeared less biased than the L4A models for low (<60 Mg

ha−1 ) and high (>500 Mg ha−1 ) field-based AGBD. The SISA

FIGURE 4

SISA model β parameter estimates consistent to varying degrees when calibrated at four di�erent spatial resolutions. The h3 (∼12,393 km2), h4

(∼1,770 km2), and h5 (∼253 km2) resolutions are di�erent hexagon tessellations from the H3 hierarchical spatial indexing system, and the hx

resolution (∼640 km) is the FIA’s hexagon grid used throughout this analysis. Broadly, the more homogeneous strata with high proportions of forest

cover exhibited a greater degree of stability in the parameter estimates across spatial scales than strata with lower forested proportions and more

forest type heterogeneity.
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models were biased high in the 150–250 Mg ha−1 range of

field-based AGBD.

As a whole, there was moderate overlap in the SISA β

parameter estimate confidence intervals across spatial scales, with

some strata displaying a higher degree of consistency than others

(Figure 4). The DBT_S, DBT_N, NT_N, NT_W strata exhibited

relative consistency across spatial scales; these strata were more

homogeneous and spatially compact relative to the other strata,

individually had above average proportions of forest (Table 1),

and collectively were 44.4% forested. Conversely, the parameter

estimates for the DBT_C,MIX_N, NT_C strata varied across spatial

scales (Figure 4), and in some instances (e.g., NT_C) the variation

was large relative to the point estimates. Relative to the four strata

with more stable parameter estimates, these three strata were more

disjointed and ecotonal, and collectively were only 25.5% forested.

The MIX_S, NT_S, NT_W strata exhibited mixed consistency in β

parameter estimates across scales; these strata had characteristics

in between those with consistent and inconsistent β parameter

estimates and collectively were 42.8% forested.

3.2. Changes to the GEDI hexagon biomass
estimates

The additional filtering criteria that we implemented had

substantial impacts on GEDI’s biomass estimates in certain areas,

and no impact in others (Supplementary Figure 10A). The spatial

pattern of differences between the original and filtered GEDI

estimates shows that filtering was most helpful in the western third

of the country, which is almost entirely due to the removal of

topography impacted observations. The impact of cloud filtering

was not nearly as concentrated nor as large, and was mostly

randomly distributed throughout eastern deciduous forests. Cloud

filtering resulted in the removal of 618,615 GEDI observations,

or 0.11% of all observations that made it through GEDI’s original

quality filters.

The original GEDI estimates contained an average of 43,516

observations per intact hexagon (excludes coastal and partial

hexagons with a land area less than 600 km2, N = 11,631).

Our filtering procedures removed an average of 59 observations

per hexagon, resulting in an average decrease of 1.91 Mg ha−1

between the original and filtered GEDI estimates. However, of the

12,550 total hexagons, our filtering techniques did not remove any

observations in 3,752 hexagons. Further, 14.1% of hexagons had

more than 100 observations removed (resulting in a mean decrease

of 8.8 Mg ha−1 between the original and filtered estimates for these

1,768 hexagons), and 0.58% of hexagons had more than 1,000 shots

removed (resulting in a mean decrease of 21.94 Mg ha−1 between

the original and filtered estimates for these 73 hexagons).

The SISA models resulted in an average decrease of 9.85 Mg

ha−1 between the filtered and fusion estimates (Table 1), although

the magnitude and direction of change varied considerably by

region (Supplementary Figure 10B). The largest absolute mean

change at the region level occurred in the Appalachian Mountains

(DBT_S), where the SISA models resulted in an average decrease

in the mean estimate of 53.68 Mg ha−1 per hexagon. The other

region with a notably large change included the Cascade and Sierra T
A
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FIGURE 5

Hexagon-level comparison of the original GEDI estimates and FIA design-based estimates, which revealed systematic and widespread di�erences

that are unlikely due to chance. (A) Side-by-side histogram comparison, truncated to 300 Mg ha−1 to show detail, (B) estimate di�erence histogram

(FIA-GEDI), (C) scatter plot of FIA vs. GEDI estimates, (D) quantile-quantile plot of hexagon estimates, and maps of (E) estimate di�erences

(FIA-GEDI), and (F) toriginal, with EPA level II ecoregions overlaid.

Mountain ranges (NT_M), with an average increase of 26.45 Mg

ha−1 per hexagon.

3.3. GEDI and FIA hexagon estimate
comparisons

There were widespread and systematic differences between

the original GEDI and FIA estimates (Figure 5). The GEDI map

overestimated relative to FIA throughout much of the eastern

deciduous forests, and underestimated in the PFT-mixed or

predominantly conifer forests in Maine, much of the southwest,

and Sierra and Cascademountain ranges. Themean difference (FIA

minus GEDI) across all hexagons was −10.48 Mg ha−1 (Table 1),

and the RMSD was 27.99 Mg ha−1 . The median of test statistic

toriginal from Equation (2) was −1.13, with first and third quartiles

of−2.81 and 0.24.

The spatial pattern of differences between the filtered GEDI and

FIA estimates was mostly similar to that of the differences between

the original GEDI and FIA estimates (Figure 6), with clustered

areas of improvement in the west. The mean difference improved

by 2.02 to −8.46 Mg ha−1 (Table 1), and the RMSD improved

slightly to 27.04 Mg ha−1 . The median of test statistic tfiltered from

Equation (2) was −0.87, with first and third quartiles of −2.47

and 0.48.

The SISA models resulted in considerable improvement in the

fusion estimates relative to the FIA estimates (Table 1). The spatial

pattern of the differences relative to the FIA’s estimates changed

substantially, and while some localized patterns of systematic

difference remained, the general pattern of overestimation in

eastern deciduous forests and underestimation of western conifer

forests was eliminated (Figure 7). The mean difference across all

hexagons was 1.39 Mg ha−1 , and the RMSD was 18.10 Mg ha−1

. The median of test statistic tfusion from Equation (2) was 0.11, with

first and third quartiles of−0.88 and 0.98.

In total, our improvements to GEDI’s AGBD estimation process

resulted in a bias reduction of 86.7%; 19.3% due to improved

filtering, and the remaining 67.5% due to the SISAmodels. Here, we

define estimate bias as the percent change between mean absolute

differences in the FIA and GEDI estimates. In every strata the

distribution of tfusion was more centered on 0 than for tfiltered or

toriginal (Figure 8). In all strata the interquartile range tfusion was

smaller than for tfiltered or toriginal with the exception of NT_W,

where it was comparable. This is not a surprising result, because

the SISA models were calibrated using the FIA hexagon estimates

(see Section 4).

The standard error associated with the original and filtered

estimates were similar (Figure 9), with respective mean values of

1.94 and 1.85 Mg ha−1 , compared to a mean standard error

of 2.57 Mg ha−1 for the fusion estimates, and 10.88 Mg ha−1
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FIGURE 6

Hexagon-level comparison of the filtered GEDI estimates and FIA design-based estimates, in which the systematic and widespread di�erences

between the estimates were only somewhat reduced, mainly in the west. (A) Side-by-side histogram comparison, truncated to 300 Mg ha−1 to show

detail, (B) estimate di�erence histogram (FIA-GEDI), (C) scatter plot of FIA vs. GEDI estimates, (D) quantile-quantile plot of hexagon estimates, and

maps of (E) estimate di�erences (FIA-GEDI), and (F) tfiltered, with EPA level II ecoregions overlaid.

for the FIA estimates. The respective mean standard errors as a

percentage of the mean estimate were 6.0, 7.1, 12.9, and 38.1%.

These reported values represent hexagons with two or more

forested FIA plots (N = 9,851), because it is not possible to produce

a valid standard error estimate for hexagons with fewer than

2 plots.

3.4. Gridded 1 km resolution fusion
estimates

At the 1 km scale, mean AGBD was 45.6 Mg ha−1 from

the original GEDI estimates, and 37.2 Mg ha−1 from the fusion

estimates (Figure 10). For 1 km cells with mean estimates less

than 100 Mg ha−1 , the respective mean standard errors were 4.5

and 4.8 Mg ha−1 , and for 1 km cells with mean estimates larger

than 100 Mg ha−1 , the average standard error as a percentage

of the mean estimate were 11.4 and 10.9%. Here, the difference

in uncertainty reporting (Mg ha−1 vs. percentage of the mean) is

to coincide with GEDI’s specific precision requirements; estimate

precision for grid cells with a mean estimate below 100 Mg

ha−1 should be reported in units of Mg ha−1 , while estimate

precision for grid cells with a mean estimate greater than or

equal to 100 Mg ha−1 should be reported as a percentage of the

mean estimate.

4. Discussion

The GEDI mission represents an advance in global biomass

mapping, because the ability to characterize estimate uncertainty

and flag deviations from reference estimates that are unlikely due

to chance allows for iterative improvements to GEDI’s overall

estimation process (Dubayah et al., 2022b). We leveraged this

ability to identify and mitigate the filtering and L4A model

misspecification issues that adversely impacted GEDI’s estimation

process. In the discussion that follows we first summarize why

stricter data filtering is important and should be implemented

with care. We present a possible cause of L4A model bias

in certain regions within the US, and explain how the SISA

framework accommodates this phenomena. We then acknowledge

the shortcomings in our SISA modeling approach, specifically

how modeling assumptions may be violated to varying degrees in

certain areas, and the implications for the resultant predictions

and estimates. We conclude with comments on the circularity of

comparing the fusion GEDI and FIA references estimates in a

probabilistic manner.

GEDI’s data filtering procedure applies a set of rules to

identify waveforms not suited for biomass estimation (Healey

et al., 2022). Our findings suggest that additional filtering of a

small number of observations impacted by topography or low

clouds can improve GEDI’s biomass estimates at the hexagon
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FIGURE 7

Hexagon-level comparison of the fusion GEDI estimates and FIA design-based estimates, in which the spatial pattern of di�erences between the

filtered GEDI and FIA estimates were all but eliminated, indicating substantial agreement between the GEDI fusion and FIA AGBD estimates. (A)

Side-by-side histogram comparison, truncated to 300 Mg ha−1 to show detail, (B) estimate di�erence histogram (FIA-GEDI), (C) scatter plot of FIA vs.

GEDI estimates, (D) quantile-quantile plot of hexagon estimates, and maps of (E) estimate di�erences (FIA-GEDI), and (F) tfusion, with EPA level II

ecoregions overlaid.

scale, and by extension, other spatial scales. However, caution

must be exercised when identifying such observations so as not to

violate the hybrid assumption of a random cluster sample. We did

not implement any additions to the AGBD estimation process to

deal with an increased number of non-response samples relative

to GEDI’s original estimates, for two reasons. First, we needed

to implement the exact estimation method used to produce the

original GEDI estimates to ensure a like-comparison of results.

Second, the number of observations designated as non-response

by our added filtering practices was very small relative to the

number of GEDI observations already removed from the sample

by GEDI’s current filtering procedures. Our topographic filtering

approach removes a small number of GEDI observations heavily

impacted by topography, deceasing AGBD estimation bias without

substantially impacting the GEDI sample. Reducing the impact of

clouds and fog within 150 m of the land surface globally is more

challenging, especially when clouds and fog can occur below the

height of the tallest tree in an area. Our cloud filtering approach

is straightforward and only removes affected observations with

heights larger than the tallest trees. In future studies we recommend

development of algorithms to improve detection of low clouds and

fog impacting GEDI waveforms.

Availability of calibration data is a limiting factor to unbiased,

continental scale biomass mapping with GEDI. The spatial pattern

of differences between the filtered GEDI and FIA estimates

(Figures 6E, F) implies a systematic issue somewhere else in the

AGBD estimation process that is not related to data filtering.

Despite the considerable effort spent to ensure a representative L4A

training sample and unbiased models (Duncanson L. et al., 2022),

the attenuation of this spatial pattern in the differences between the

fusion GEDI and FIA estimates (Figures 7E, F) suggests that L4A

model bias is the primary cause.

The results for MIX_N and NT_N are especially informative,

given these strata respectively contained 85.3 and 67.9% of the

calibration plots used to train the L4A DBT and NT models

(Supplementary Table 3). In both strata the L4A models appear

unbiased, as the unit level distributions are similar to those

from the FIA (Figure 3), and there are not widespread systematic

differences between the filtered GEDI and FIA hexagon level AGBD

estimates (Figures 7E, F, 8). Conversely in other strata, there is

substantial disagreement in between the L4A and FIA unit level

distributions and the filtered and FIA hexagon estimates. Two

such strata are DBT_S and NT_M, which respectively contain 0.4

and 4.5% of the GEDI calibration plots for the L4A DBT and

NT models (Supplementary Table 3). As geographic transferability

was prioritized during the L4A model calibration process, these

specific L4A models had the best performance when applied to

validation data outside of the geographic extent of training data,
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FIGURE 8

Boxplots of ti from the original, filtered, and fusion estimates show that for all regions, the fusion estimates are in better agreement with the FIA

estimates than the original or filtered estimates, with smaller interquartile ranges that are more centered on 0.

FIGURE 9

FIA’s design-based hexagon standard error estimates are substantially larger than GEDI’s hybrid standard error estimates from GEDI’s original, filtered,

and fusion mean estimates. The fusion hexagon standard error estimates are more likely than the filtered or original estimates to be <2 Mg ha−1 ,

while also displaying a multimodal response similar to that of the FIA standard errors, but to a lesser degree.

relative to all the candidate models tested during L4A calibration

(Duncanson L. et al., 2022). In other words, the L4A models

are as unbiased as possible given the available training data.

Yet, substantial discrepancies in observed L4A performance exist
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FIGURE 10

Mean 1 km estimates of AGBD (A) and its uncertainty (B). The white areas in both maps are gaps in the GEDI sample at 1 km scale.

across space; the observation that the L4A models appear better

specified in MIX_N and NT_N than in DBT_S and NT_M allows

for the possibility that the relationship between forest structure

and AGBD varies spatially. Variation in the relationship between

forest structure and AGBD between the DBT_S and MIX_N strata,

and between the NT_M and NT_N strata, could explain the

difference in L4A model performance, because the training data

are more representative of the MIX_N and NT_N strata than of

the DBT_S and NT_M strata. That the L4A and FIA unit level

distributions and the filtered GEDI and FIA estimates match at

all in some regions despite spatially varying relationships and

limited training data is a testament to the L4A calibration and

validation process.

The SISA modeling framework accounts for spatial variation

in the relationship between GEDI derived forest structure metrics

and AGBD in two ways. First, model development at the aggregate

(hexagon) scale ensured training data with uniform spatial coverage

throughout each of the 10 prediction strata, appropriately capturing

within-strata variability in the structure to biomass relationship.

Second, the large number of hexagons within the US allowed

for more localized and homogeneous prediction strata relative to

L4A’s two continental scale prediction strata. The SISA prediction

strata contain presumably less variation in the local structure to

biomass relationships than the continental scale DBT and NT L4A

strata, thus decreasing the likelihood of localized model bias within

a SISA stratum. Our comparisons of the SISA, L4A, and FIA

unit level distributions of AGBD demonstrate the importance of

accounting for spatial variability in forest structure and biomass.

For all strata, the SISA distributions were equally or more realistic

than the L4A distributions, which leads us to conclude that as

a whole the SISA models produced more accurate and realistic

predictions than the L4A models. This was most apparent in

the DBT_S and NT_M strata, where the application of the SISA

models resulted in marked improvement over the L4A models,

for both the unit level distributions (Figure 3) and the hexagon

estimate comparisons (Figure 7). The SISA models for DBT_N,

DBT_S, NT_N, NT_M, NT_W appeared definitively unbiased. In

DBT_C and NT_C the SISA and FIA distributions were marginally
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different above approximately 50 Mg ha−1 , with SISA biased

low relative to FIA, implying a low to moderate level of bias

in these strata. In contrast, larger differences between the SISA

and FIA unit level distributions in MIX_N, MIX_S, and NT_S

suggested the SISA models are likely biased to a greater extent in

these strata.

Instances of SISA model bias presupposes that the assumption

of SISA model spatial invariance has not been met in these areas.

The SISA model derivation in Section 2.5.2 provides a theoretical

justification for the assumption of scale invariance necessary for

prediction at the unit level, which we then evaluated using the

available in situ data following our validation scheme in Section

2.5.4. The unit level distributions, used here as a method of

evaluating the extent to which the SISA models may be biased or

not, suggest that the SISA models are mostly unbiased, but that

some areas of moderate to substantial model bias are probable. This

interpretation is supported by the analysis of SISAmodel parameter

estimates across spatial scales. While an overlap of confidence

intervals does not guarantee equality in the parameter estimates by

itself, it is another manner by which we evaluate the assumption

of spatial invariance, in combination with unit level distribution

comparisons. The overlap of confidence intervals in the DBT_N,

DBT_S, NT_M, NT_N, NT_W strata, along with the matching FIA

and SISA unit level distributions, suggests a lack evidence sufficient

for invalidation of the assumption of scale invariance in these strata.

However, parameter estimates for which the confidence intervals

do not overlap across spatial scales within a strata is sufficient

evidence of invalidation of this assumption, especially when sample

sizes are large. Thus the observed scale-dependent variability in the

parameter estimates for DBT_C, NT_C, MIX_N, MIX_S supports

the results from the unit level distributions, that the assumption of

scale invariance in these strata is not met to the same degree as in

other strata.

Degradation of scale invariance leading to SISA model bias in

certain regions leads us to believe that, despite our best efforts,

one or both of the assumptions underpinning our SISA model

derivation were violated to some degree in certain areas. There

are several mechanisms by which these assumptions—a consistent

relationship between predictor and response variables that is linear

at both the aggregate and unit level—could be impacted. The

first is that within strata variations to the relationship between

FIA AGBD estimates and forest structure quantified by GEDI

would violate the assumption of a consistent relationship. This

is likely true to some extent within several strata, as seen in

the remaining differences between the FIA and fusion estimates

within the MIX_N region (Figure 7). Relative to the FIA estimates,

the fusion estimates are systematically larger in the northern

mid-west, and systematically smaller throughout much of the

northeast. The relationship between FIA biomass and GEDI

forest structure variables to may vary longitudinally within this

stratum, and as a result positive model bias in the northern

midwest leads to overestimation of AGBD, while negative model

bias in the northeast leads to underestimation. The decision

of 10 strata was somewhat arbitrary, and future work could

employ a more data driven stratification, such as Scarth et al.

(2019), aimed at maximizing within-strata structural and biomass

characteristics.

Similarly, a non-linear relationship between predictor and

response variables at the unit level would also violate the SISA

model assumption. We used all available plot level data to ensure

only linear, unit level relationships were tested during SISA

model calibration (Section 2.5.3, Supplementary Section 3, and

Supplementary Figures 2–4). However, as the GEDI calibration

plots are spatially clustered and represent some SISA strata far

better than others, we may have chosen SISA relationships for

which the linearity constraint breaks down in certain areas that are

not well-represented by the plot level data.

A third mechanism by which the SISA model assumptions

could be violated relates to a small but important difference in

the population of interest between the FIA and GEDI. While

GEDI does not make a distinction between forested and non-

forested areas in biomass estimation, the FIA only estimates

biomass within forested lands and explicitly ignores vegetation

located on lands that do not meet its definition of forest.

A mismatch between GEDI predictor variables used in SISA

calibration that reflect non-forested vegetation and the FIA AGBD

response variable that ignores such vegetation would at best

add noise to a calibration data set that would not otherwise

be present, and at worse could violate both the linearity and

consistency assumptions within a strata or part of a strata. The

strata where the SISA models appear partially biased (DBT_C,

NT_C, MIX_N, MIX_S) contain some of the lowest proportions

of FIA estimated forest cover of all strata (Table 1) and thus have

more opportunity for non-forested vegetation to be captured by

GEDI.

The comparison of the fusion GEDI hexagon estimates and

the FIA hexagon estimates is circular in that the FIA reference

estimates were used to calibrate the SISA models, which underpin

the fusion estimates. Thus it is not surprising that the fusion

estimates were in far better agreement with the FIA estimates

than either the original or filtered GEDI estimates. The more

interesting result was that the SISA models produced mostly

realistic distributions of unit level AGBD, matching the FIA

unit level distributions of AGBD. Since the SISA models were

mostly unbiased and yielded realistic predictions, it follows that

the fusion and reference estimates are in relative agreement. The

hexagon level comparison of the fusion and reference estimates

was only necessary to demonstrate that the SISA models result in

mostly unbiased estimates when applied within hybrid inference.

The ability to calibrate unit level models at an aggregated scale

is important because it helps overcome challenges in obtaining

representative training data for remote sensing based models of

AGBD. Further, the fusion hexagon estimates are more precise

than the FIA reference estimates (Figure 9), which reduces overall

uncertainty in the US forest carbon stock and may help constrain

future fluxes. This work represents not only a refinement of GEDI’s

biomass estimation process, but also an advance in remote sensing

based methods of biophysical inference.
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