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Nitrogen (N) is an important component of the forest soils and plays a pivotal role

in the ecosystem’s health, also in broadleaf and Moso bamboo (Phyllostachys

edulis) forests. Nitrogen plays numerous functions in the production and

transformation of soil organic matter (SOM) and alterations in the soil’s

physicochemical and biological properties. Despite the extensive research on soil

properties and microorganism diversity in broadleaf and Moso bamboo forests,

we still know very little about N dynamics and its significance in broadleaf and

Moso bamboo forests, or how various physical and environmental variables

influence soil physicochemical, N dynamics, and biological attributes. This article

provides a thorough overview of the role of N dynamics in broadleaf and Moso

bamboo forests and changes in soil physicochemical properties processes by

summarizing recent advances in our knowledge of forest soil microbial diversity,

and carbon (C) and N sink in broadleaf and Moso bamboo forests. As broadleaf

and Moso bamboo forests are very sensitive to little change, even a small

change in these ecosystems can alter the overall N dynamics. Here, we dissect

the soil ecology of broadleaf and Moso bamboo forests to provide insights

into the possibilities and consequences of future studies of N dynamics in

these ecosystems.
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1. Introduction

Due to the function in the production and transformation of soil organic matter and
transformation of forest soil physicochemical and biological attributes, Nitrogen (N) plays
a pivotal role and important component of the forest soil ecosystem’s health, especially
in broadleaf and Moso bamboo (Phyllostachys edulis). Soils contain less than 1% of the
world’s total N, while other is stored in the atmosphere and sedimentary rocks that are
thus unavailable to plants (Follett and Hatfield, 2001), which ultimately affect the forest tree
development. Litterfall, biological N fixation (BNF), recycling of tree leftovers, and microbial
transformations and bodies are all many of the N sources in forests (Sponseller et al., 2016;
Tang et al., 2018), while the N cycle is also governed by these factors in addition to soil organic
matter (SOM) breakdown via climatic conditions and/or forest fires, etc. The mineralization-
immobilization turnover is one process in the N cycle that is directly influenced by the N,
which in turn modifies a variety of other ecosystem processes and functions, such as the soil
nutrient cycles, i.e., N cycle and forests ecosystem functionality of the forests (Cheng et al.,
2019; Kurniawan et al., 2019). The amount of N released during SOM decomposition directly
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influences the amount of N consumed by soil microorganisms,
and then the mineralization rate. In the N cycle of the forest soils,
nitrification/denitrification and ammonification are important
key steps. Ammonia (NH3) is converted to nitrite (NO2

−)
by ammonia-oxidizing archaea and ammonia-oxidizing bacteria,
while nitrite (NO2

−) is converted to nitrate (NO3
−) by nitrite-

oxidizing bacteria (Isobe et al., 2018a).
Many crucial ecological and physiological processes in forest

ecosystems rely on the activities of soil microbial communities,
including N and SOM turnover, the control of mineral nutrient
availability, the fixation of atmospheric N, and the development
of mycorrhiza (Zhou et al., 2020; Matos et al., 2021; Wang
et al., 2022a). Soil microbial populations produce hydrolases to
break down plant litter and other organic materials (Tan et al.,
2020), recycling nutrients and promoting plant growth as part
of the nutrient cycle process in forest environments (Prasad
et al., 2021). Soil microbial communities, through controlling
the rate of microbial decomposition of SOM, may influence soil
attributes including nutrient concentration (Kooch and Noghre,
2020), and hydrolase activity (Wu et al., 2021). Multi-dimensional
soil characteristics such as nutrient content, moisture, and pH also
affect soil microbial populations. In a similar vein, immature Moso
bamboo and broadleaf forest species, a huge woody clonal plant,
relies on regular nutrition delivery through clonal integration to
develop rapidly. Moreover, the release of BNI substances in the
rhizosphere by some forest tree species could also affect N dynamics
(Wang et al., 2021). So, an explanatory document about N fixation
and inhibition in rhizospheric and bulk soils of Moso bamboo
and broadleaf forests is missing in spite of a few short reports in
the last several years on how clonal integration affects nutrient
transport and allocation in Moso bamboo by Shi et al. (2022). But
the N dynamics under different factors and environmental stress
conditions remain unclear. In this review, we have summarized the
N dynamics in rhizospheres of moso bamboo and broadleaf forests
in the presence and absence of BNI substances and environmental
factors with the significance of N dynamics in Moso bamboo and
broadleaf forests.

2. Nitrogen: importance in soil, and
plant lifecycle

Nitrogen is an essential element for plant growth and is a
crucial component of forest ecosystems. It is one of the primary
nutrients that plants need to synthesize proteins, enzymes, and
other essential molecules. It is also a critical limiting factor in many
forest ecosystems, meaning that its availability can significantly
affect the productivity and health of the ecosystem (Lobell et al.,
2004; Kumar et al., 2020; Yan et al., 2020). Nitrogen also plays a
vital role in the cycling of nutrients within forest ecosystems. It
is taken up by plants from the soil and incorporated into their
tissues (Tian et al., 2019). When plants die and decompose, N
is released back into the soil, where it can be taken up by other
plants or processed by microorganisms. It is also essential for
the growth of soil microorganisms, which are critical for nutrient
cycling in forest ecosystems (Perakis and Pett-Ridge, 2019). The N
in forest trees is found in biological substances (up to 60%) and
only a small percentage is found in mineral forms like ammonium

(NH4
+) and nitrate (NO3

−) (Evans and Poorter, 2001; Geisseler
et al., 2010). It benefits the trees in many ways, i.e., it boosts the
soil water-use efficiency (WUE), and soil serves as an anchor for
the expansion and development of tree roots (Shi et al., 2020;
Li Y. et al., 2021). When N is up-taken by roots, it regulates
and enhances tree growth (Guan et al., 2019; Muhammad et al.,
2022). Moreover, N presence in the forest soils accelerates the SOM
storage and concentration due to thorough microbial communities
manipulation. The N in plant and animal dead bodies stimulates
soil microbial activity (Allison et al., 2008). Its concentration also
affects residue decomposition and affects nutrient concentration in
soils (Drost et al., 2020), and increases phosphorus (P) absorption
by the plant by providing acidic compounds in soil and creating an
acidic environment which is favorable for nutrient bioavailability
to plants (Vitousek and Denslow, 1986). The N in broadleaf and
bamboo forests enters via atmospheric deposition, soil minerals,
rock weathering, and BNF (Lilleskov et al., 2019). In both types
of forests, the cycling of N is largely driven by microorganisms,
which play a key role in the decomposition of SOM and the
conversion of N between different forms (Mushinski et al., 2021).
The N can be immobilized by microorganisms and incorporated
into their biomass or can be released back into the soil as inorganic
forms (Dong et al., 2019a). However, there are some notable
differences between nitrogen dynamics in broadleaf forests and
bamboo forests. Moso bamboo is a fast-growing, woody grass
species that has unique physiological characteristics, including a
high demand for N and a unique root system that can rapidly
take up and transport nutrients (Zheng et al., 2021). As a result,
bamboo forests typically have higher rates of N uptake and cycling
compared to broadleaf forest species.

Additionally, N dynamics in bamboo forests can be influenced
by the cultivation practices used for bamboo production. For
example, N fertilizers may be applied to promote bamboo growth,
which can alter N cycling and have negative impacts on soil and
water quality if not managed properly. The detailed importance and
fate of N in the broadleaf and bamboo forest tree life cycle and soil
biogeochemical cycles are summarized in Figure 1.

3. Global scenario of N dynamics in
forest ecosystems

There are over 60,000 tree species in different types of forests
worldwide (United Nation’s Environment Program, 2022). So, one
of the most significant areas of the study is N dynamics and its
enrichment in forest ecosystems owing to its great influence on
the forest ecosystem (Reis et al., 2017). Different biotic and abiotic
components of the forest ecosystems influence N dynamics, i.e.,
mycorrhizae. Mycorrhizae works in soils for the decomposition
of SOM found in tree litter and dead bodies in the form of
different organic complexes, e.g., lignin, and cellulose (Martin et al.,
2022; Ward et al., 2022). Along with fungi, bacteria and forest
restoration also play crucial roles alone and in combination with
fungi in the N cycle as indicated by Wang et al. (2022e). Forests
dominated by Oligotrophic Acidobacteria and Actinobacteria
shifted to be predominated by Copiotrophic Proteobacteria and
Firmicutes after forest restoration (Selmants et al., 2016). Higher C
and N stoichiometry in the litter-soil-microbe continuum is mostly
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FIGURE 1

Importance of nitrogen in the soil and its role in soil and plant health.

FIGURE 2

Mechanisms behind nitrogen dynamics laid change in soil properties in forest ecosystem.

because of soil bacterial diversity, whereas increased plant variety
is due to tree litter decomposition. But the composition of soil
microbes was inversely linked to litter biomass, in addition to N
concentrations. The N dynamics and soil microbial community
structure along with their functions are also influenced by the tree
diversity. Lower plants play a significant role in soil N availability,
N mineralization rate, soil bacterial community build-up, and
biomass in the top 10 cm of soil compared to deeper horizons. As
reported by Xiao et al. (2022), who noted a stronger relationship
between soil microbial biomass and N mineralization than there
was between soil N content and N mineralization. This indicates
that soil N mineralization is affected by forest type and soil
microbial biomass. Moreover, soil bacterial composition was also

found to have a significant effect on soil microbial biomass, i.e.,
Actinobacteria, Patescibacteria, and Chloroflexi (Xiao et al., 2022).

Long-term N addition (10 years) has been also reported to
be having negative effects on N concentrations in bamboo and
other forest ecosystems as indicated by Wang et al. (2022b). In
another study, Neves et al. (2022) reported that season and the
predominance of various functional groups influence the dynamics
of litter and the intake of nutrients in a secondary seasonally
dry tropical forest. There may be phenological synchronization
across various functional groups since litterfall output was much
greater during the two driest months of study. Moreover, trees of
the legume family dominated the greatest diameter class, reaching
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double the basal area of non-legumes. In comparison to non-
legume trees, legume trees doubled the quantity of N storage which
was dropped throughout the winter. Moreover, altered N addition
or mineralization can cause a significant change in soil microbial
communities. Soil microbial communities, dissolved organic N,
and litterfall all were affected by increased soil water content (Yu
et al., 2022). Forest fires also affect the N dynamics in different
forest ecosystems during the recovery period and can cause a
ninefold increase in soil NH4

+-N and a threefold increase in soil
NO3

−-N concentrations in top soils after 2 years (Xu et al., 2022).
Table 1 summarizes the N dynamics in different broadleaf forest
and bamboo forest ecosystems around the world.

4. Nitrogen dynamics in forest soils

In forests, the soil is continuously enriched with plant litter,
dead animal and prey bodies, and plant dead wood (Tang et al.,
2018). Therefore, the N cycle is different from agricultural soils
along with the factors affecting it as it is majorly regulated
by the tree community (Nie et al., 2018; Qin et al., 2019).
Tree species determine the nature of N cycling and dynamics
(Mushinski et al., 2021). Moreover, soil microbial community
and N dynamics change due to several factors like forest fires
and N addition from synthetic sources, i.e., microbial community
structure, precipitation, soil properties, and litterfall (Yokobe et al.,
2018; Tahmasbian et al., 2019; Purwanto and Alam, 2020; Xiao et al.,
2020) (Figure 2). Below are the factors which majorly affect the N
fixation and cycling in forest ecosystems.

4.1. Forest type and N dynamics

As soil under different forest ecosystems inhabitants large
amounts of flora and fauna, they also have associated nutrients
in the form of SOM and minerals (Dhaliwal et al., 2019; Sun Y.
et al., 2021), only a minor alteration in the forest ecosystem can
results in a greater response in forest tree species as different factors
favor different tree species (Xing et al., 2022). In a study, Isobe
et al. (2018b) reported altered N dynamics with the change in tree
species as N transformations were driven by the type of tree species
and their litterfall, as well as its decomposers’ population diversity.
Moreover, some tree species have BNI or BNF characteristics and
they greatly influence N dynamics (Ramm et al., 2022). In the
same way, different forest ecosystems carry the same responses,
i.e., if tree species are replaced with other species, N dynamics
changes accordingly. Su et al. (2021) reported the same phenomena
in the subtropical forests of China where a change in forest tree
ecology resulted in altered nutrient cycles. Table 2 summarizes the
N dynamics and their drivers in the numerous forest ecosystem.
It can be seen that tree species can influence the N dynamics in a
forest ecosystem.

4.2. Factors affecting N dynamics in
forest soils

Soil microorganisms, forest fires, litterfall, nutrient addition,
temperature, and soil characteristics are only a few of the

primary elements influencing N dynamics in a forest ecosystem.
The availability of N is a significant factor limiting the forest’s
primary productivity.

4.2.1. Tree species
Forests are rich in tree diversity (Schiefer et al., 2020; Babur

et al., 2021), and these different kinds of trees have different
ecosystem services, e.g., some act as N fixers (Batterman et al.,
2018), and some act as a source of N when become dead or
both (Thorn et al., 2020), or litter is fallen from them (Lyu
et al., 2018; Smith and Wan, 2019). The N-fixing black locust
(Robinia pseudoacacia) trees work as N fixation. Black pine (Pinus
thunbergii) trees and a mixed stand with black locust trees had
higher N-fixing ability when assessed in a study from 2000 to 2019
time period. Cárdenas et al. (2022) reported that using an N-fixing
legume and one non-legume tree species in a tropical dry forest
results in similar performances across N-fixing and non-fixing
legumes in the study area. Similarly oak and non-oak tree species
also have different plant litter decomposition rates (Babl-Plauche
et al., 2022).

4.2.2. Soil biota
Soil organic matter and humus are produced by the action

of microbes. Its mineralization is also governed by soil fauna
and flora (Komarov et al., 2017). Wang et al. (2022c) reported
more earthworm growth in older forest soil compared to younger
forest soil in response to more SOM concentration in older
forest soil. The abundance of fungi also has similar effects as
indicated by Osono (2015) that fungi pose a prominent role in N
dynamics across a variety of forest ecosystems. The bacteria and
earthworms in the soil also have reactions to the various functional
kinds of plants. Francini et al. (2018) reported that soil microbial
and nematode populations vary in natural and urban forests
depending upon management, with mostly higher biota in a natural
ecosystem, where N is governed by enzymes like arylsulfatase and
phosphodiesterase. Earthworms also regulate N dynamics through
their diversity and number. Groffman et al. (2015) concluded that
N pools in earthworm-colonized plots were more stabilized than in
forests dominated by L. rubellus, indicating earthworms help move
N from litter into stable SOM and boost the soil microbial biomass.
Fugère et al. (2017) reported that N transport in soil was higher with
multi-species earthworm communities.

4.2.3. Forest fires
About 360 to 380 million hectares of forest area are lost

each year due to forest fires, affecting forest soil biogeochemical
cycles (Butler et al., 2020; Rabin et al., 2022), by altering soil pH,
electrical conductivity (EC), microbial populations, and associated
biochemical processes. Forest fires cause the melting of permafrost
and remove the insulating layer of SOM, and raise soil temperatures
(Aaltonen et al., 2019). The decomposition of plant organic
matter is an essential part of the biogeochemical cycle on land
and has a significant impact on both the fire fuel load and the
C balance of forests. Butler et al. (2020) tested whether three
alternative long-term fire regimes (no burning, 4-yearly burning,
and 2-yearly burning) were linked to altered N dynamics during
litter decomposition by conducting a 277-day experiment in an
Australian eucalypt forest. The greatest rates of decomposition and
C loss were seen in the no-burning treatment. Hu et al. (2020)
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concluded after a study in mixed coniferous (Pinus massoniana
Lamb.) and broadleaf (Quercus acutissima Carruth.) forests in
China that after 3 months of forest fire, the soil pH, NO3

−-
N concentration, and microbial biomass carbon (MBC) were
increased. Four weeks following a fire, the total aboveground
biomass in the burnt plots was 39% less than in the unburned
plots. In another study, James et al. (2018) reported that over
45 years after a forest fire, changes were still visible in the organic
horizon and mineral soil characteristics. Albert-Belda et al. (2022)
also reported similar results that burned soils had less microbial
biomass compared to unburned forest sites, and burned soils were
dominated by gram-positive bacteria.

4.2.4. N addition
Nitrogen addition plays an important role in soil

biogeochemical cycles in forest ecosystems depending upon
the forest tree species, amount of N added, and environmental
conditions. Chen et al. (2020) reported that N addition in two
different forests with different tree species did not affect SOM
and soil organic carbon (SOC). Chen et al. (2016) and Lu et al.
(2011) reported similar results that inorganic N, nitrous oxide
(N2O) emissions, and NO3

− leaching all increased noticeably as
a consequence of excessive N addition during 6 years. In another
study, the decomposition constant increased by 46% as a result of
the N addition. N addition reduced the strong association between
litter and decomposers that accelerated the breakdown of home
litter and caused stimulated N release from decomposing litter,
with plant species effects moderating this process (Cui et al., 2017).

4.2.5. Litterfall
Litterfall is one of the most important factors in forest

ecosystems which supply C and N after their decomposition
through soil microbes. Bohara et al. (2020) reported that the

release of P, potassium (K), C, and N rates followed the order
of P > K > C > N from forest trees, suggesting that litter is a
major sink of N. In another study, Kamruzzaman et al. (2019)
reported C and N content of litterfall decomposition up to 1005.9 g
m−2 year−1.

4.2.6. Soil properties
Soil properties were altered with altered N in terms of pH,

EC, N, SOM, and P (Lucas-Borja et al., 2022). Siwach et al.
(2021) reported that mosses alter soil properties by altering the
soil’s capacity to hold nutrients. Xiong et al. (2022) reported
that N availability and fluctuations in the microbial community
cause significant seasonal changes in the composition of the
soil microbiome over an elevation gradient. Molla et al. (2022)
concluded that natural forests had the highest concentrations of
clay, pH, SOM, N, P, exchangeable bases (Ca+, Mg+, K+, Na+),
and cation exchange capacity (CEC). The soil pH, clay, bulk density
(BD), and exchangeable bases all improved/increased with depth
across all land use change categories in forests.

4.2.7. Root structure and activity
Mutualistic relationships between tree roots and the soil are

how trees get access to the water, nutrients, and minerals in the
soil (Authier et al., 2022). Forest ecosystems rely heavily on fine
roots for N cycling. Dead roots have more N compared to other
tree parts (Hu et al., 2022). Fine roots play a crucial role in the
N dynamics of forests, including Moso bamboo forests by uptake
absorbing more N from the soil, which is then used for plant
growth and metabolism (Drake et al., 2011; Bai et al., 2016). Some
tree species have symbiotic relationships with N-fixing bacteria
in their fine roots, which converts atmospheric N into a form
that plants can used (Wang H. et al., 2019; Staccone et al., 2020).
Moreover, decaying fine roots contribute to the forest floor litter

TABLE 1 Global extent of bamboo invasion into the broadleaf forest ecosystem.

Area Forest type Climate Driving force/Major finding(s) References

Zhejiang, China Moso bamboo forest Temp. 15.9◦C Prec.
1420 mm

Soil microbial populations changed as a result of bamboo invasion. Xu et al., 2015

Fujian Province,
China

Subtropical forest Temp. 8.50–18.0◦C Prec.
1486–2100 mm

An increase in the soil potential for fungal breakdown leads to greater
nitrogen mineralization.
The rates of nitrification and net ammonification in soil improved.
Overall, the ammonification rate was 11 times greater than the
nitrification rate.

Chen et al., 2021

Kyoto, Japan Broad-leaved secondary
forest

Temp. 15.3◦C Prec.
1459 mm

P. pubescens dominated the stand and plant biomass was distributed and
affected C and N stocks by its pre-dominance.

Fukushima et al., 2015

Fukuoka, Japan Broadleaved forest Temp. 16◦C Prec.
1790 mm

Soil-water content spatial variance was higher in the bamboo stand than
in the broadleaf stand.

Shinohara and Otsuki,
2015

Tamil Nadu, India Reed Bamboo Temp. 13.5–23◦C Prec.
2000–3000 mm

Controlling Encroaching species is crucial for preserving forest
ecosystems’ diversity, productivity, and stability.

Dutta and Reddy, 2016

Bengal in India and
western Bhutan

Maling bamboo – Species richness and density decreased significantly (p < 0.0001) as the
proportion of bamboo in an area rose.

Gaira et al., 2022

Hiroshima, Japan Temperate forests Temp. 13.5◦C Prec.
1446 mm

The introduction of Moso bamboo altered the makeup of the microbial
communities present in the organic and mineral soil fractions and
caused a decrease in SOM breakdown in the organic layer and an
increase in deep soil C decomposition in the mineral layer, both of
which may have repercussions on plant development.

Wang et al., 2016c

Shanlinshi, Taiwan Subtropical forest Temp. 17◦C Prec.
2600 mm

Chemical composition and humification of soil organic matter are
altered when Moso bamboo invades a Japanese cedar plantation.

Wang et al., 2016b
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TABLE 2 Global scenario of forest types and nitrogen dynamics.

Forest type Area Climate Driver of N dynamics/Main findings References

Coniferous and
broadleaf forest

Fujian, China Subtropical region Soil microbial biodiversity drive N dynamics.
About 82% of soil organic nitrogen is found in soil TN.

Xing et al., 2010

Coniferous and
broadleaf forest

Mohe, China Mean annual
temp. =−5.5◦C mean
annual Precp. = 425 mm

Soil protease activity, NH4
+-N, and total phosphorus are correlated

with soil fungi, while K is correlated with soil fungi and bacteria.
Vuong et al., 2020

Coniferous forest Borneo, Malaysia Mean annual
temp. = 18◦C mean
annual
Precp. = 2714 mm

Plant-soil feedbacks are the main reason for structuring the forest tree
diversity/community and important factors in plant functional feedback
include tannins, soil saprophytic microbes, root-fungal interactions, and
tree functional characteristics.

Ushio et al., 2017

Subtropical forest
(coniferous)

Guangdong, China Mean annual
temp. = 21◦C mean
annual
Precp. = 1927 mm

Long-term C storage is affected by changes in forest tree species mix and
soil texture.
Broadleaf forest has more macro aggregates.
Soil C sequestration capacity is affected by changing tree species due to
effects on macro-aggregate formation, soil chemical characteristics, and
microbial biomass.

Su et al., 2021

Coniferous forest
(urban forest)

Nanchang, China Mean annual
temp. = 17.5◦C mean
annual
Precp. = 1600–1800 mm

N:P was greater in the fall and winter than in the spring and summer.
Atmospheric N deposition and soil P enrichment led to an altered N and
P status in the urban forest compared to natural forests.

Fan et al., 2014

Conifers São Paulo, Brazil Mean annual
temp. = 21◦C mean
annual
Precp. = 1350 mm

No differences in soil C dynamics between vegetation. Cook et al., 2014

Boreal forest Ontario, Canada Mean annual
temp. = 1.90◦C mean
annual Precp. = 824 mm

The impacts of shrub cover on plant communities in the boreal zone are
complex, ranging from facilitative to inhibitory.
Vegetation quantity and variety in the forest are determined by
colonization, light availability and heterogeneity, and substrate
heterogeneity.

Kumar et al., 2018

Nothofagus forest Southern Patagonia,
Argentina

Annual temp.
Range =−0.6 to 10.9◦C
mean annual
Precp. = 545 mm

Cationic exchange capacity (CEC) and pH are affected by Nothofagus
forests.

Toro-Manríquez et al.,
2019

Native broadleaf
forest

Pingxiang, China Annual temp.
Range = 21◦C
Mean annual
Precp. = 1400 mm

Non-N2 fixing native broadleaf trees affect N by supplying N-rich litter.
Soil microbial community composition is decided by the tree
community.

You et al., 2020

Tropical montane
forest

Borneo, Malaysia Annual temp.
Range = 18◦C mean
annual
Precp. = 2714 mm

Dacrydium leaves have a higher concentration of condensed tannins
than Lithocarpus leaves and affect the microbial population, activity,
and trigger plant-soil feedback mechanisms.

Ushio et al., 2013

Moso bamboo forest Nantou County, Taiwan Annual temp.
Range = 16.1–20.3◦C
mean annual
Precp. = 2250–2600 mm

The SOC dynamics are affected by changes in meteorological
circumstances (in particular, temperature).
The amount of SOM humification in these bamboo plantings is
regulated by altitude.

Wang et al., 2016a

Temperate forest Tokyo, Japan Annual temp.
Range = 15.5◦C mean
annual
Precp. = 1718 mm

Excess N deposition led to a replacement of air NO3
− with NO3

−

created by microbes in the organic horizon and the top layer of the
mineral soil.
The rapid incorporation of atmospheric NO3

− into the internal
microbial N cycle may be attributed in part to microbial activity, namely
immobilization and nitrification in organic-rich horizons close to the
surface.

Shi et al., 2014

Oak and pine forest Seoul, Republic of Korea Annual temp.
Range = 11◦C mean
annual
Precp. = 1389 mm

Coniferous pine forests are better able to incorporate fresh C substrates
into existing SOC pools than deciduous oak forests in temperate forests.

Park and Ro, 2018

Sub-tropical broad
leaf forest

Tiantong National forest
park, China

Annual temp.
Range = 16.2◦C mean
annual
Precp. = 1374.7 mm

C to N, P and N to P ratios were decreased with soil depth. Qiao et al., 2020

(Continued)
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TABLE 2 (Continued)

Forest type Area Climate Driver of N dynamics/Main findings References

Spruce and beech
forest

Border of Czechia and
Germany.

Annual temp.
Range = 6.3◦C mean
annual
Precp. = 1000 mm

High-quality litter decomposed irrespective of the acidity and
low-quality litter decomposed easily in low-acidity soil.
Soil pH decreased up to 0.4 times resulting in less decomposability in
both spruce and beech forest.

Růžek et al., 2021

Boreal forest Ontario, Canada Annual temp.
Range = 0.7◦C mean
annual
Precp. = 889.8 mm

Greater nutrient availability on the forest floor is related to a higher
aspen presence, which in turn leads to larger vascular biomass and
production in the understory.

Cavard et al., 2011

Sub-tropical forest
(coniferous fir and
broadleaf)

Fujian, China. Annual temp.
Range = 19.4◦C mean
annual
Precp. = 1731 mm

Soil NH4
+-N and NO3

−-N, notably NO3
−-N, were reduced due to

exogenous C additions.
Regardless of the forest soil type, the rate of C amendment had the
greatest effect on soil N transformation.
Soils with a higher N content may have had a greater decline in N as a
result of the addition of exogenous C.

Ma et al., 2019

Temperate forest Bartin province, Türkiye Annual temp.
Range = 8.9◦C mean
annual
Precp. = 1394 mm

The litter type had the greatest impact on decomposition rates. Fir litter
broke down more quickly than beech litter.
The microbial biomass of litter increased from summer to autumn.

Kara et al., 2014

Sub-tropical forest
(secondary forest)

Sichuan Province, China Annual temp.
Range = 13.9◦C mean
annual
Precp. = 1750 mm

The injection of N enhanced total organic carbon (TOC) in the soil.
If more N is added, TOC in topsoils is decreased due to a change in
litterfall.

Peng et al., 2020

and provide N to the soil and can modify soil microbial activity,
which in turn can affect N availability and transformations in the
soil (Leppälammi-Kujansuu et al., 2014; Solly et al., 2014).

Furthermore, it is well-known fact that roots also play a
significant role in the nutrient cycles in the ecosystem through
interactions between living and dead roots, the amount and quality
of the soil structure and nutrients around the roots, and the impact
of the roots themselves may vary depending on the soil profile
and the quality of the surrounding soil. Ehrenfeld et al. (1997)
examined the various impacts of living and dead roots in forest
soils and reported that live roots only promoted ammonification
rates in mineral soil when an organic surface horizon was present,
while dead roots increased the amount of extractable N, but not
in the organic matter. It suggests that N dynamics in forest soils
are strongly influenced by the presence or absence of an organic
horizon in addition to the root activity.

4.2.8. Humidity
Humidity affects N dynamics in forests by influencing plant

transpiration and microbial activity, both of which play a role in
N cycling through the ecosystem (Dong et al., 2019b). Increased
humidity can lead to increased transpiration and microbial activity,
leading to a faster rate of N uptake and processing by plants
and soil microbes (Luce et al., 2011). However, prolonged higher
humidity can also result in decreased plant growth and N uptake
due to water stress (Deng et al., 2021). Thus, the effect of humidity
on N dynamics in forests is complex and dependent on the
specific environmental conditions and time frame considered. It
is reported that variation in humidity alters the forest’s nutrient
and biogeochemical cycles by altering soil temperature. This rise
in temperature triggers soil N mineralization rates up to 55% in
comparison to the natural forest, with the increase being greatest
in the grassland and lowest in the home garden. The concentration

of SOC, MBC, and NO3
− also decreases in these types of soils in

the forests compared to the natural forest (Pandey et al., 2010).

4.2.9. Soil texture
Soil texture also has significant effects on N dynamics in forests.

It affects water and nutrient uptake, root growth and distribution,
and microbial activity which in turn influences N uptake and
cycling (Ma et al., 2016). Fine-textured soils (e.g., clay) have higher
water and nutrient-holding capacity but also have lower oxygen
levels, which can limit microbial activity and plant root growth
(Chivenge et al., 2011). Coarse-textured soils (e.g., sand) have
better aeration but lower water and nutrient retention, leading to
less efficient N cycling. Soil texture also affects the availability of
different forms of N (e.g., NO3

−, NH4
+) to plants and microbes,

which can influence the rate and efficiency of N cycling as reported
by Chivenge et al. (2011) that more N and C were stored in soil
aggregates in high clay soils.

5. Significance of N dynamics in
forest soils

5.1. Nutrient cycling

Due to higher plant inputs and soil flora and fauna in the
forest ecosystem, nutrient cycles, and dynamics change during
forest growth and regrowth of the forests and largely depend
upon the adequate N supply. In younger forests, mineralization
and nitrification are decoupled, i.e., more mineralization and
low nitrification, suggesting a closed N cycle that simultaneously
preserves N availability for forest renewal (Figueiredo et al., 2019).
Moreover, the dynamics of litter decomposition, N cycling, SOM,
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and plant-soil interactions may all be altered when trees associate
with various mycorrhizas (Eagar et al., 2022).

Sarai et al. (2022) reported that decomposed litter could alter
the soil N transformation which may be further impacted by
the changes in the structure and function of the soil microbial
community. However, this impact is not for all forest types as
N-limited boreal forests due to the substantial contribution of
understory plants to soil N cycling (Xiao et al., 2022). In addition,
soil and plant organic matter breakdowns are crucial to the
biogeochemical cycles even in forest settings where understory
solar irradiation stays relatively low. Wang et al. (2022d) reported
that the litter decomposition in the forest was 64% which increased
up to 75% in adjacent areas with less or no tree cover.

5.2. Carbon storage, turnover, and
long-term sequestration

The storage of C in forest soils is an important factor in
reducing the effects of climate change and global warming through
C sequestration. The N enrichment considerably improves C
dynamics in forests by an average of 24 and 10%, respectively
(Schulte-Uebbing and de Vries, 2018). In subtropical and tropical
forests, both the C pool and inputs increased by 10% in response
to N addition, the effect was more apparent in boreal forests
(+ 17%) than in subtropical forests (−19%). Soil C sequestration
was positively affected by N enrichment in boreal (6%) and
temperate (7%), but negatively impacted in subtropical (−30%)
and tropical (−10%) forests (Ngaba et al., 2022). Similarly,
arbuscular and/or ectomycorrhizal trees can modify soil C and
N dynamics. Fungi can easily decompose SOM and also form
complexes with it. So, the build-up and decomposition of
organic materials can occur (Ward et al., 2022). The essential
rhizosphere processes of fine root formation, turnover, and
breakdown also help in sequestering C in forest soils during
succession. Sarai et al. (2022) reported that the fine root turnover
contributes more to C turnover than the standing fine root
biomass.

The N and C fertilization decreases SOC and N mineralization
which is linked to microbial growth and enzyme activity as
fertilization was associated with bacterial growth in the high-C
larch forest, concluding that N fertilization contributes to soil C
sequestration (Na et al., 2022). Soil C sequestration is significantly
impacted by plant roots and the mycorrhizal fungi that live
in and around them but contributes to SOC build-up. In an
ectomycorrhizae-dominated forest with high N addition (25 kg N
ha−1 year−1), SOC increased from 18.02 to 20.55 mg C g−1 (Zhu
et al., 2022).

5.3. Forest ecosystem, biodiversity, and
soil health maintenance

As an indicator of healthy soil, SOC levels are often used for this
purpose. To better understand soil functioning as a major element
for C sequestration along agricultural production and food and
water security. Substantial SOC accumulation in forest soils was
agreed upon, providing not just a C sink but also its supply, despite

limited data availability and large observed fluctuation in SOC
content (Alavi-Murillo et al., 2022). The high rates of SOM/SOC
formation play a major role in ecosystem stability (Siwach et al.,
2021).

6. Role of forest type in determining
the soil physicochemical and
biological properties

6.1. Physico-chemical properties

After latitude and altitude, the physicochemical and biological
properties of soil may also have a role in forest and tree
species distribution. Alternatively, soil formation and associated
edaphic qualities may also be affected by variations in tree
species composition. The pace at which chemical weathering of
parental material occurs, which affects pH and the composition
of complex organic acids in soil solutions, might vary with
tree species. However, trees mostly influence soil minerals
weathering in the top few inches of soil or close to the
roots (Joshi and Garkoti, 2021). Some tree-soil interactions,
including the interception of airborne contaminants or the
podzolization of soil, may have evolved with just a weak or no
correlation to plant fitness or closeness. In addition, local factors
like litter input, stand species composition, and microclimate
variables can have an impact on the chemical properties of
forest soils, while long-term effects (like permanent vegetation
over a long period) or drastic alterations (like fires, intensive
harvesting) primarily influence soil structure and its physical
properties (Toro-Manríquez et al., 2019; Joshi and Garkoti,
2021).

6.2. Biological properties

One of the most important aspects of the biological health of
the soil is bacterial community (Ao et al., 2022). Changes in the
microbial biomass of soil are a good indication of the ongoing
transformations in the soil nutrients and properties. Knowing how
the microbial biomass in plantation soil fluctuates over time is
crucial for effective plantation management and cultivation.

It is reported that nutrients serve as useful markers of how
forest management methods affect the dynamics of SOC. The
largest C:N levels were seen in the autumn and the smallest values
were observed in the winter for the three different forest types,
although these seasonal patterns were not consistent (Babur et al.,
2021). Sun Y. et al. (2021) reported that the rhizosphere’s microbial
biomass nitrogen (MBN) was more responsive to mulching and
other soil environmental changes. Soil P was shown to correlate
with TN and dissolved N, although other N fractions were
significantly influenced by soil physical qualities (temperature,
water content, bulk density) (Yin et al., 2021). The N content
of both fine roots and organic mulch was reduced by mulching,
although the N content of the soil was more closely connected to
the N content of the leaves (except MBN) (Wang H. et al., 2019;
Table 3).
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TABLE 3 Influence of N dynamics on soil properties of different forest ecosystems.

Area Forest type Climate Major
influencing
factor

Effects on soil properties/Main findings References

Physico-
chemical

Biological

Uttarakhand, India Oak and pine forest Annual temp.
Range = 23–24.22◦C
mean annual
Precp. = 128–
144.10 mm

Forest fires
induced more
carbon resources.

Soil pH was increased
by 0.78 units higher.
EC and TN were
increased but soil
moisture was reduced.

The increase in MBC was 63 and 40%
in the oak and pine forests,
respectively.
DHA activity was enhanced, while
ACP activity was reduced.

Singh et al., 2021

Guiyang City, China Pinus massoniana
forest

Annual temp.
Range = 15.2◦C
mean annual
Precp. = 1199 mm

Temporal
(10–60 years)
effects of pinus
forest soils.

Available N, P, K, C:N,
C:P, N:P, bulk density,
and soil moisture
increased with time.

SOC increased with time but
decreased with soil depth.

Yin et al., 2021

Lvliang City, China Pine forests Annual temp.
Range = 4.2◦C mean
annual
Precp. = 822.6 mm

Higher plant
density.

– qMBC and N increased but decreased
with higher stand density, C:N
showed an opposite trend.

Zhang et al., 2021

Iran Temperate forest Annual temp.
Range = 15.5◦C
mean annual
Precp. = 808 mm

Tree diversity
increases and
changes the
natural cover of
the plantation.

NPK concentrations
decreased.

Acid phosphatase, arylsulphatase, and
invertase activities decreased but
urease activity increased in the
topsoil.
MBN, mineral nitrogen
mineralization increased.

Kooch et al., 2018

Fujian Province,
China

Fir forest Annual temp.
Range = 20◦C mean
annual
Precp. = 1650 mm

Forest conversion. pH, BD and NH4
+–N

increased.
SOC, AP, TN,
NO3

−–N, NH4+−N,
MBC, MBN.

Fungal diversity declined.
C, N, and P-cycling decreased.

Guo et al., 2022

Yunnan, China Tropical forest Annual temp.
Range = 21.5◦C
mean annual
Precp. = 1557 mm

Ant’s nesting
effects on
microbial carbon
and
physicochemical
properties.

Low BD, higher soil
temp. and moisture.

Up to 172.7% MC, TOC 75.5% TOC,
180.6% ROC, 129.5% TN, and 2.8%
increase in NO3

− was observed.

Wang H. et al., 2019

Minnesota,
United States

Hardwood forest – Earthworm
abundance.

Reduced nitrification
in presence of
earthworms.

Bacteria and fungi were found
maximum near the soil surface.
Denitrification and N fixation
increased.

Jang et al., 2022

Daxing’an
Mountains, China

Boreal forest Annual temp.
Range =−4.9◦C
mean annual
Precp. = 430–
550 mm

Forest succession. Increase in soil
moisture at later stages
of succession.
Soil NO3

−-N was
higher later but
NH4

+-N was high at
the early and
intermediate stages.
MBC and MBN were
high at later stages.
CH4 and N2O
emissions were greater
than CO2 .

– Duan et al., 2022

Guangxi Zhuang
Autonomous
Region, China

Karst forest Annual temp.
Range = 19.9◦C
mean annual
Precp. = 1571.1 mm

Restoration of
vegetation.

Soil pH decreased but
SOC and NPK
increased.

Urease activity was enhanced with
microbial diversity.

Lu et al., 2022

Heilongjiang
Province, China

Temperate forest Annual temp.
Range = 2.8◦C mean
annual
Precp. = 700 mm

Comparison of
monoculture and
mixed plantation
effects on soil
properties.

Less or no effects were
noted on C and N
dynamics.

Mixed-species plantations can
significantly enhance soil available N
and exo-glucanase, β-glucosidase, and
N-acetyl-β-glucosaminidase activity
levels.
Microbial community functions were
altered.

Yang et al., 2022
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7. N dynamics in broadleaf and Moso
bamboo forest soils

Soil quality and nutrient storage in forests are interlinked.
Although there are minute differences between the broadleaf
and bamboo forests according to their respective ecosystem
functioning, there are some significant differences that exist
and are highlighted in Figure 3. Feng et al. (2020) reported
that litter decomposition has a profound effect on N dynamics,
and this effect varies greatly with the variety of tree species
present in a given forest. Wang et al. (2018) studied the effects
of litter mixing and altering the stand environment on the
litter decomposition rate and the composition-specific litter
organic C and N loss rate of a mixed-species plantation.
Mixed-species plantations with lower-quality litter reduced
decomposition and resisted N and C loss, whereas higher-quality
litter speeded up litter decomposition, which was caused by
the higher SOM and SON availability in the mixed-species
plantation.

It has been reported that tree C, N, and P stocks all fell when
moso bamboo and broadleaf forests are converted to other types of
forests, with declines of 43.8, 47.9, and 63.1%, respectively, while
C and N stocks throughout the whole soil profile fell by 19.1
and 13.0%, respectively as conversion resulted in a decrease in
soil P stock from 0 to 20 cm. It indicates that tree biomass can
drive the N dynamics and retention of nutrients. In forest soils,
the metabolism of C and N is also influenced by the microbial
communities and enzyme activities present there. Soil pH, MBC,
MBN, C, N, P, NH4

+-N, and NO3
−N levels were all shown to be

strongly impacted by forest type (Ji et al., 2021). Moreover, trees
with arbuscular mycorrhizae vary from ecto- and endomycorrhizal
tree species in their litter quality and N cycle patterns, which
may influence mycorrhizal colonization and the community’s
composition and variety (Zhang et al., 2022). Figure 4 explains the
factors and processes taking place in broadleaf and bamboo forest
ecosystems during N cycling/dynamics. Soil P, calcium (Ca+), K,
and magnesium (Mg+), as well as elemental stoichiometric ratios
also respond differently in broadleaf and bamboo forests (Feng
et al., 2017).

7.1. Significance

The ecology, as well as the N dynamics in forest soil, is
distinct from that of the other soil ecosystems. Nutrient and
biogeochemical cycles are necessary for the proper functioning
of the forest ecosystem like moso bamboo forests. Moreover, for
proper functioning nutrient cycles must work and govern properly.
These cycles are run by input factors, i.e., natural, and human
processes that affect litter formation and decomposition. The
growing influences of different natural and human variables on
the nutrient and biogeochemical cycle of tropical forest ecosystems
highlight the significance of studying C, N dynamics, litter
formation, and its breakdown processes. As the soil microbiome
plays a vital role in the feedback between the nutrient cycle
and the climate, models used to anticipate changes in ecosystem
functioning under changing climatic scenarios must account for
this variation among plant species (Xu et al., 2018). As a result of the

increase in plant resources and the subsequent rise in soil enzyme
activities, soil C, and accessible N, P, and K levels are all enhanced.

8. Factors affecting C and N
dynamics in broadleaf and Moso
bamboo forests

8.1. Soil properties

Moso bamboo and broadleaf forests have a high SOC storage
capacity but also great geographic variation. The SOC in both forest
types was shown to be significantly linked with BD (R2 = 0.373),
pH (R2 = 0.429), GC (R2 = 0.163), and CEC (R2 = 0.263) (Zhang
et al., 2015). Another study revealed that SOC, its fractions, C
mineralization rate, soil pH, and total N in 0–20 and 20–40 cm
soil layers rose dramatically with increasing duration of intensive
management, along with improvements in aggregate stability (Yang
et al., 2021). A study in bamboo plantations revealed that SOC,
labile soil organic C pools, TN, water-soluble organic N, NH4

+-
N, NO3

−-N, total P, organic and inorganic P content in the
rhizosphere are all significantly increased (Ni et al., 2021). In
another study, soil samples from the moso bamboo forest were
collected at depths of 0, 20, and 60 cm at 138 different spots around
the research region. The N, P, and K concentrations varied from
1.01 to 4.11 g kg −1, 0.025 to 0.131 g kg−1, and 0.42 to 5.40 g kg−1,
respectively (Guan et al., 2017; Xiao et al., 2021).

8.2. Litterfall

The effects of N deposition and management practices on leaf
litterfall and N and P return in the moso bamboo (P. edulis)
forest are not yet known. However, Zhang et al. (2017) studied the
variations between no N, low N (N30), medium N (N60), and high
N (N90) levels of simulated N deposition, as well as the control with
no N. It was concluded that between 78% and 82% of annual leaf
litterfall, 86–94% of annual N return, and 85.6–96% of annual P
return occurred during the study period.

8.3. N addition

Same as the other forests ecosystem, N addition in the bamboo
forests also results in more stable N and C concentrations and
efficient biogeochemical cycling. Li Y. et al. (2021) studied the
changes in soil microbial abundance, variety, and community
structure in response to N addition (0, 30, 60, or 90 kg N
ha−1 year−1) in a moso bamboo (P. edulis) forest in subtropical
China. Results showed an increase in microbial biodiversity
(Lv et al., 2022). A 7-year field experiment was conducted in
a subtropical moso bamboo (P. edulis) plantation in Zhejiang
Province, China to examine the effects of varying N addition rates
(0, 30, 60, and 90 kg N ha−1 year−1) on soil respiration rates
with stumps of three ages (1, 3, and 5 years after cutting). Results
indicated that N addition reduced soil respiration by 4.69 to 27.37%
compared to the control treatment (Cai et al., 2021; Li et al., 2022).
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FIGURE 3

Differences in the bamboo and broadleaf forest species.

FIGURE 4

Nitrogen dynamics under the direct influence of trees with and without BNI capacity.

8.4. Stress factors

The C and N cycle of the forest ecosystem, i.e., moso
bamboo forests could be greatly impacted by increases in
environmental stresses, such as drought frequency and severity.
In a simulated study involving drought as a stress factor, three
different litterfall treatments were tested for responses about soil
respiration, temperature sensitivity, and the lagging effect of the
soil. The treatments were ambient litterfall, litter addition, and
litter removal. It was also noted that the annual soil respiration
rate was lower in the unchanged treatment (2.34 mmol m−2s−1)
compared to the control (3.15 mmol m−2s−1) (Ge et al., 2018). Soil
respiration’s temperature sensitivity was lowered by 8.4% due to
drought, 15.4% due to litter addition, and 7.6% due to litter removal

(Ge et al., 2018). It was also reported that drought reduces litter
decomposition rates by up to 30%, thereby affecting N dynamics
(Jin et al., 2020; Tong et al., 2020; Ge et al., 2022).

9. Conclusion and future prospects

Forest ecosystems play a crucial role in global C and N cycles,
as well as temperature and precipitation patterns. Hence, they are
the focus of study by scientists from all over the world. Because of
the worldwide goals of carbon neutrality and carbon sequestration.
They constitute an essential component of the global carbon sink,
i.e., moso bamboo forests. Moso bamboo and broadleaf forests
are crucial elements of the carbon and N cycles since they are so
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prevalent in the subtropics. Because it is essential to have clear
quantification of changes in bamboo forest soil to understand the
N dynamics of bamboo forests, soil C sequestration, N dynamics,
and the biomass of the entire broadleaf and moso bamboo forest
ecosystem. Moreover, C and N dynamics are greatly influenced
by biotic and abiotic factors. Even small changes in these factors
can cause severe negative impacts on soil biogeochemical cycles
and disturbance in soil ecology, ultimately destroying balance in
an ecosystem. More and improved research on soil microbes and
microbial residues is needed to understand the mechanisms of
soil microbial responses to different settings and the carbon and
nitrogen cycle and sequestration process for C and N accumulation
by microbial residues in broadleaf and moso bamboo forests.
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