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Anthropogenic disturbances and climate change affect abiotic and biotic

environmental drivers in forest ecosystems. Global warming impacts the soil

moisture content, thus influencing the diversity, abundance and functioning

of soil microfauna. However, limited studies have been conducted to evaluate

the impact of long-term variation in precipitation on soil microfauna. A better

understanding of soil microfauna functioning under various precipitation regimes

can aid in formulating better prediction models for assessing future climate

change impacts. The present study uses a multi-omics approach to capture the

variability in the total organic carbon (TOC), total nitrogen (TN), pH, metabolites,

microbial biomass and function due to the difference in soil water content

mediated by long-term precipitation (30 years) and soil texture differences in two

Norway spruce seed orchards. Results showed a positive correlation between

TOC, TN, extracellular enzyme activities (EEAs) and phospholipid fatty acids

(PLFA) content with higher precipitation, whereas microbial diversity showed

an opposite trend. A distinct metabolic profile was observed between the two

forest soils. Furthermore, variance partitioning canonical correspondence analysis

(VPA) revealed a higher contribution of TOC and TN in shaping the microbial

communities than soil pH and conductivity in Norway spruce seed orchards. Our

study generates field data for modeling the impact of long-term precipitation

variance supplemented by soil texture on soil microbial assemblage and function

in Norway spruce stands.
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Highlights

- Limited studies have been conducted to evaluate the impact of
long-term variation in precipitation on forest soil microfauna.

- Multi-omics approach to capture the variability in forest soil
quality parameters and microbial community composition due
to long-term precipitation differences over three decades.

- A positive correlation existed between TOC, TN, extracellular
enzyme activities (EEAs), and phospholipid fatty acids (PLFA)
content with higher precipitation.

- Microbial diversity showed a negative correlation with
precipitation.

- Long-term precipitation difference alters soil metabolomic
profile towards more acid and alcohol derivatives.

1. Introduction

Soil is an integral component of the forest ecosystem, which
presently comprises an estimated 38–40 million square kilometers
on Earth or 30% of the total global land area (Baldrian, 2017; Lladó
et al., 2017). Forest soils, in particular, are spatially and temporally
heterogeneous. They are characterized by strong physicochemical
gradients (Huhta and Setälä, 1990), offering mosaic microhabitats
for a diverse spectrum of microorganisms, such as bacteria,
archaea, and fungi. Diverse soil microbial communities influence
forest health and productivity and thus help maintain its long-
term sustainability (Micallef et al., 2009; Chernov et al., 2021;
Mishra et al., 2022). Precisely, microbes contribute to soil organic
matter (SOM) processing, organic C turnover and sequestration,
orchestration of the biogeochemical cycling of various essential
elements (i.e., nitrogen, phosphorus, sulfur), and contribute to
soil structure formation and stabilization (Banerjee and Chapman,
1996; Li et al., 2015; Fang et al., 2016; De Feudis et al., 2017; He
et al., 2017; Martinoviæ et al., 2022). Besides, microbes also improve
plant growth, fitness, and resistance by facilitating nutrient uptake
and thus contribute to forest ecosystem productivity and fertility
(Uroz et al., 2013; Li et al., 2015; Chodak et al., 2016; Chang et al.,
2017; Haas et al., 2018). Soil microbes bridge the gap between above
and belowground processes in forests and significantly shape the
structure of the whole ecosystem (Chang et al., 2017).

The size, composition, and activity of soil microbial
communities rely on biotic and abiotic factors. Several studies have
revealed a strong correlation between the structural and functional
diversity of soil microbial communities based on specific tree
species composition (Li et al., 2014; Chodak et al., 2016), amount
of litter, and soil substrate quality (el Zahar Haichar et al., 2008;
Krashevska et al., 2015; He et al., 2017). Soil texture, moisture, and
temperature are among the most crucial environmental drivers
impacting microbial biomass (De Feudis et al., 2017). Soil texture
plays a vital role in carbon storage and strongly affects nutrient
retention and availability in forest ecosystems (Silver et al., 2000).
Clay-rich soil tends to accumulate organic carbon more rapidly
than sandy soil and delays the decomposition of the organic matter
(Six et al., 2000, 2002). In addition, soil texture also influences
soil moisture, which impacts organic carbon accumulation by
manipulating the quantity of carbon input from plants and their

decomposition rate in soil (Zhou et al., 2008; O’brien et al., 2010).
Similarly, soil pH may have the most decisive influence in the
case of bacteria due to the higher sensitivity of bacterial cells to
narrow pH alterations (Fierer and Jackson, 2006; Rousk et al., 2010;
Chaparro et al., 2012; Lladó et al., 2017). Soil pH presumably also
influences the bacterial/fungal ratio as soil acidification can reduce
the bacterial abundance and favor fungal predominance (Coûteaux
et al., 1998; Kennedy and Maillard, 2022). This phenomenon
can be observed in acidic coniferous soils, where fungal biomass
tends to exceed the bacterial. Alternatively, elevated deposition
of atmospheric N causes a shift from fungal predominance to
bacterial (Berg et al., 1998; Coûteaux et al., 1998; Gao et al.,
2016; Frey et al., 2020). Alterations in soil microbial community
composition may affect the degradation of soil organic matter
and other physiological processes in soil by secreting a diverse
set or number of enzymes based on varied microbial abundance
(Sinsabaugh, 2010; Fang et al., 2016; Borowik et al., 2022; Wu et al.,
2022). Hence, amendments in the soil microbial equilibrium affect
the energy and nutrients flow within the forest ecosystem and
impact the aboveground life.

Although the importance of soil microbiome within forest
ecosystems is widely recognized (Lladó et al., 2017; Naylor et al.,
2020; Li et al., 2022), limited studies are conducted using state-of-
the-art omics approaches. Soil microbial diversity and assemblages
are understated in most of the studies in the field so far (Huang
et al., 2015; Zhou et al., 2017; Maxwell et al., 2020). Even the existing
omics-based studies mainly dealt with bacteria or fungi (Yuste et al.,
2011; Zhang et al., 2013; Wang et al., 2014; Li et al., 2016; Zhang
et al., 2017; Anthony et al., 2022). Furthermore, the multi-omics
approach to gaining in-depth insight is still rare in soil microbial
studies (Hultman et al., 2015; Bastida et al., 2017; Overy et al., 2021;
Yang et al., 2021). Hence, the current knowledge about the true
response of the soil microbial community to edaphic and climatic
factors is not adequate and somewhat inconsistent, i.e., the impact
of drought on soil microbial biomass is contradictory between
independent study outcomes (Manzoni et al., 2012; Barnard et al.,
2013; De Vries and Shade, 2013; Rousk et al., 2013; Canarini et al.,
2016).

Nonetheless, alterations in climate conditions and disturbances
will affect both abiotic and biotic environmental drivers (Bowd
et al., 2022; Meena et al., 2022). Perhaps water availability is crucial
in governing soil microbial respiration and their feedback response
to climate change (Liu et al., 2016; Bowd et al., 2022). Global
warming induces a shift in the global precipitation regime that
substantially influences the microbial community function and
their services to the ecosystem (Knapp et al., 2017; Wilcox et al.,
2017). To be precise, changes in precipitation and warming of the
soil are expected to alter the microbial community composition, the
ratio of bacteria and fungi, and their functions. For instance, studies
showed that microbial activity is directly influenced by osmotic
stress or limited substrate diffusion during short-term drought
(Schimel, 2018).

In contrast, long-term droughts modify soil microbial
community composition and subsequently alter the nutrient
flow and strategies for C utilization (Fang et al., 2016; Su et al.,
2020; Sridhar et al., 2022). Alternatively, higher precipitation can
influence microbial activity via increasing diffusion of soluble C
substrates (Hungate et al., 2007; Yan et al., 2011), enhancing plant
growth and C allocation (Zak et al., 1993; Zak et al., 1994). It is
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worth mentioning that the positive correlation between water
availability and microbial activity is valid until a threshold level,
but above that, higher water availability affects microbial activity by
reducing oxygen concentration (Linn and Doran, 1984; Horz et al.,
2004). Hence, accurate assessment and future prediction of the C
budget demand a better understanding of the impact of diverse
precipitation levels on microbe-mediated belowground processes
(Nielsen and Ball, 2015; Schimel, 2016).

Over the last decades, experiments based on altered
precipitation have risen substantially (Zhou et al., 2017). Although
meta-analysis studies successfully linked the impact of altered
precipitation with belowground microbial community structure
and function but failed to provide a comprehensive understanding
of the magnitude and direction of the effect varied based on
other climatic factors (Zhou et al., 2017). Unfortunately, most
of the studies were conducted for a brief period of precipitation
alteration, which failed to capture the effect of the long-term
difference in seasonal precipitation on the forest soil microbial
community structure and function. Hence, studies on the impact of
long-term precipitation on soil physiology, microbial community
structure, and function are of the utmost importance in fulfilling
the existing knowledge gap and formulating better prediction
models for assessing climate change impacts (Zhang et al., 2017).
Furthermore, due to the recent boom in omics technology, it is
now possible to apply a multi-omics approach within a single
experimental study (Hultman et al., 2015; Bastida et al., 2016; Yang
et al., 2021) and get an overview of the belowground bacterial and
fungal species composition and function, which is rare in most of
the previously conducted studies.

Hence, the present study aims to expand the current knowledge
on the impact of the long-term influence of high precipitation on
Norway spruce forest soil physiology and microbiome using the
multi-omics approach. This study is conducted in the experimental
forest locations that are just 25 km apart (air-distance) with
remarkably different precipitation levels for a long time (over
30 years) with a temperature difference of approximately 1.6◦C,
probably due to altitude difference (∼400 m). We compared soil
physiology (including soil texture), microbial biomass and enzyme
activity, metabolic profile, and microbial diversity between forest
sites to capture the long-term precipitation-mediated alterations
in soil physiology, microbial structure, and function in an
unbiased manner. Our findings exposed the long-term impact
of precipitation differences complemented by soil texture and
pH on belowground microbial communities and processes within
Norway spruce forest and delivered field data for modeling the soil
microbial retort towards future global climate change scenarios.

2. Materials and methods

2.1. Sampling site and soil sampling

The soil samples were collected from two Norway spruce clonal
seed orchards located about 25 kms apart in the south-west of
Czech Republic, namely Prenet (P) (49.2354172N, 13.2112808E,
970 m above sea level) and Lipova Lhota (L) (49.2816108N,
13.5515606E, 560 m above sea level) in Oct–Nov 2019. The Prenet
site had a north-southern facing slope of 14% with 6×6 m spacing

of trees, while the Lipova site had tree spacing of 5 × 5 m and
a 9% slope facing north-south. Over three decades, the average
annual temperature and precipitation recorded were 7.04◦C and
1306.48 mm for P- site and 8.64◦C and 633 mm for L- site. The
soil samples were collected at a depth of 10 cm from the soil
surface using a root corer (Eijkelkamp, Netherlands). A total of
six randomly selected soil samples from Prenet seed orchard (P-
site) and nine replicates from Lipova seed orchard (L-site) were
sampled to negate the differences in the land area (L-site>P-
site) between the two seed orchards. Altogether 15 soil samples
were collected in sterile plastic ziplock bags and brought to the
laboratory for the downstream studies. The soil samples were sieved
through a 2.0 mm screen sieve, and some of the soil samples
were stored at 4◦C until the soil physicochemical and biochemical
properties were measured. The remaining soil samples were stored
at −80◦C for PLFA analysis, soil metabolite profiling, and DNA
extraction to determine microbial community composition using
the next-generation sequencing method. The determination of the
physicochemical properties of the samples was performed with air-
dried soils, while soil enzyme activities were performed with the
field moist soil samples. The results were expressed based on the
dry weight of the soil.

2.2. Soil texture and soil water content
determination

The soil particle size distribution was determined by laser
granulometer (CILAS 1190 LD) to measure the particle size ranging
from 0.04 to 2,500 µm in wet mode. The soil samples were pre-
treated, as described earlier (Lisá et al., 2017). The soil texture is
reported based on three fractions, clay (>2 µm), silt (2–63 µm),
and sand (63–2,000 µm) (Wentworth, 1922). The soil water content
(SWC, %) was determined by oven drying 5 g of soil at 105◦C for
24 h. The results were expressed based on the dry weight of the soil.

2.3. Soil physicochemical properties

The soil physicochemical properties, such as soil pH, electrical
conductivity (EC), total organic carbon (TOC), and total nitrogen
(TN), were measured using standard procedures. The soil pH
(1:5 H2O, w/v) was measured using an ISFET electrode (Sentron,
Netherlands). The total organic carbon (TOC) was determined
by the dry oxidative combustion method at 1,250◦C using
a TOC analyzer (SSM-5000A; Shimadzu Corp., Kyoto, Japan)
(Nelson and Sommers, 1983). The Kjeldahl method determined
the total nitrogen content (TN) in the soil samples (Bremner,
1996). Statistical analysis for significance was performed by the
Kruskal–Wallis test.

2.4. Soil enzyme activities

A total of seven hydrolytic soil extracellular enzymes
were measured using microplate-based fluorometric and
photometric assays described by Baldrian (2009). The enzymes
cellobiohydrolase, β-galactosidase, α- glucosidase, β- glucosidase,
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β-xylosidase are involved in the degradation of organic carbon,
while chitinase and acid phosphatase catalyze nitrogen and
phosphorous transformation in the soil, respectively (Bell et al.,
2013). The moist field soil (1 g) was suspended in 100 ml of distilled
water and sonicated for 4 min. The soil suspensions (200 µl) were
added to methylumbelliferyl (MUF, pH 7.0) substrate solution
(50 µl) in a 96-well plate and incubated at 40◦C. After 5 min
and 125 min, the fluorescence was recorded using a fluorescence
reader (Infinite, TECAN, Austria) with the excitation wavelength
355 nm and emission wavelength 460 nm (Baldrian, 2009).
The standard curve was prepared using serial dilutions of the
4-methylumbelliferone (MUF) (Vepsäläinen et al., 2001). Each
enzyme activity was determined from the fluorescent values and
the standard curve and expressed as nmol g−1 soil h−1 after dry
weight correction.

2.5. Phospholipid fatty acids (PLFA)

Phospholipid fatty acids analysis determined the spatial soil
microbial community structure (Zelles, 1999) at the two different
sites. The PLFAs were extracted from 1 g of freeze-dried soil using
a mixture of chloroform-methanol-phosphate buffer (1:2:0.8), as
previously described (Stella et al., 2015). The extracted PLFAs were
purified using an extraction cartridge (LiChrolut Si-60, Merck,
White House Station, NJ, USA) and subjected to mild alkaline
methanolysis as mentioned in the earlier report (Šnajdr et al.,
2008). The free methyl esters of PLFAs were then analyzed by
gas chromatography-mass spectrometry (450-GC, 240-MS ion
trap detector, Varian, Walnut Creek, CA, USA) and processed
as described earlier (Stella et al., 2015). The fungal biomass in
the soil samples was determined based on 18:2ω6,9 fatty acid
content, while the bacterial biomass was estimated as the sum
i14:0, i15:0, a15:0, 16:1ω5, 16:1ω7; 16:1ω9, 10Me-16:0, i16:0,
i17:0, a17:0, cy17:0, 17:0, 10Me-17:0, 18:1ω7, 10Me-18:0, 15:0, and
cy19:0. Actinobacteria biomass was quantified according to 10Me-
16:0, 10Me-17:0, and 10-Me18:0. The total microbial biomass
was determined from the sum of all PLFAs molecules. Different
microbial ratios such as fungal: bacteria biomass, actinobacteria:
bacteria, and gram-positive bacteria: gram-negative bacteria were
also calculated (Moore-Kucera and Dick, 2008).

2.6. Soil metabolite profiling

The extraction of soil metabolites was performed as described
previously (Song et al., 2020). The freeze-dried soil samples were
homogenized using mortar and pestle and stored at −80◦C until
extraction. Homogenized soil (500 mg) was added to 600 µl of
methanol: H2O, 3:1 (v/v) mixture, and 600 µl ethyl acetate along
with 10 µl of adonitol [0.5 mg/ml, internal standard A (IS_A)]. The
samples were then sonicated using an ultrasonic rod homogenizer
(30 s, 50%, 30 kHz) (Sonoplus mini20, Bandelin). The mixture was
incubated in a thermoshaker for 15 min at 10◦C and 2,000 rpm,
followed by centrifugation at 16,000 g for 15 min at 4◦C. The
supernatant was transferred into a new tube, and the steps were
repeated with the soil pellet. All the supernatants were combined
and vacuum dried without heating using a vacuum concentrator

(Modul 4080C, Hanil Science Industrial). The samples were
then resuspended in 50 µl of anhydrous pyridine and 50 µl
of methoxyamine hydrochloride in pyridine (25 mg/ml) and
incubated in a thermoshaker at 40◦C for 90 min at 1,700 rpm). To
this solution, 100 µl of N,O-Bis(trimethylsilyl)trifluoroacetamide
with trimethylchlorosilane (BSTFA+TMSC) was added, and the
content was incubated in the Thermomixer at 40◦C for 30 min.
Finally, 10 µl of 1-bromoeicosane [internal standard B (IS_B)]
(0.52 mg/ml in hexane) was added, vortexed to mix, and
centrifuged (3,000 rpm, 5 min). Finally, the supernatant was
carefully transferred and injected into the GCxGC-MS.

The samples were analyzed using a two-dimensional
comprehensive gas chromatography with mass detection
(GCxGC-MS; Pegasus 4D, Leco Corporation) controlled by
ChromaTOF v4.5. The gas chromatograph is coupled with a
time-of-flight mass spectrometer (GC-TOF-MS, Pegasus 4D, Leco
corporation). A combination of non-polar and polar separation
columns was used for the GCxGC analyses: Primary column;
Rxi-5SilMS (29.5 m × 0.25 mm, Restek); Secondary column
BPX-50 (1.44 m × 0.1 mm, SGE). Other parameters were set as
follows: inlet temperature 300◦C, injection volume 1 µl in split
10 mode, constant He flow 1 ml/min, modulation time 3 s (hot
pulse 1 s), modulation temperature offset to the secondary oven
15◦C, transfer line temperature 280◦C, ion source temperature
220◦C, mass range m/z 85–1,000. Temperature program applied
to the primary oven: 50◦C (hold 1 min) with a gradual increase
to 190◦C (8◦C/min) followed by an increase to 220◦C (4◦C/min)
and then to 320◦C (8◦C/min) with 12 min hold. The same
program was applied to the secondary oven with a temperature
offset of +5◦C. Two-dimensional chromatograms of the analyses
were aligned and processed in Statistical Compare, an in-build
module of ChromaTOF v4.5 software. Metabolites were analyzed
as trimethylsilyl derivatives and normalized according to the
weight taken to the extraction and internal standards IS_A and
IS_B. The metabolites were identified by comparing their mass
spectra with those available in NIST Library, Fiehn Library, and
the in-house-built mass library. If available in the mass databases,
retention indices were determined using linear hydrocarbons with
the retention indexes (based on linear hydrocarbons). A sparse
PLS discriminant plot was generated based on the sPLS-DA
algorithm (Lê Cao et al., 2011). The statistical evaluation of the
normalized data was performed using a web-designed platform,
MetaboAnalyst 5.01, following Chong et al. (2019). The Euclidean
distance measure was applied to cluster the soil samples, and a
Ward Clustering Algorithm was used to group the metabolites.
The test for significance for all the metabolites present in the soils
was performed using a T-test and analysis of variance (ANOVA).

2.7. DNA extraction, amplification, and
sequencing

The soil DNA was extracted from the different biological
replicates from the two sites and stored at −80◦C. About 250 mg
of soil samples were used for DNA extraction using the Nucleospin

1 www.metaboanalyst.ca
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soil DNA purification kit (Macherey Nagel, Germany), following
the manufacturer’s protocol. The extracted soil DNA was quantified
on Qubit 2.0 Fluorometer using a Qubit 2.0 High sensitivity
dsDNA assay kit and electrophoresed on 1% agarose gel to check
the DNA integrity. Finally, the isolated soil DNA samples were
sent to the Novogene company (China) for high-throughput
amplicon sequencing.

The amplicon sequencing was performed using the
standardized protocol at the Novogene company. The purified
DNA (1 ng/µl) was used for amplification with a specific set of
universal primers with unique barcodes targeting the bacterial 16S
region (341F/806R) (Klindworth et al., 2013) and the fungal ITS2
domain (ITS3, ITS4) (White et al., 1990). The PCR reactions were
performed using Phusion High-Fidelity PCR Master Mix (New
England Biolabs). The negative control (no template DNA control)
was also included in the reaction. Before the library preparation,
the equi-density of PCR amplicons was pooled and gel purified
(Qiagen Gel Extraction Kit, Germany). The sequencing library
with index codes was prepared using NEBNext Ultra DNA Library
Pre-Kit from Illumina. After library preparation, it was quantified
in Qubit 2.0 Fluorometer (Thermo Scientific), and the quality
of the prepared sequencing library was determined in Agilent
Bioanalyser 2100 system. Additionally, a no-template sequencing
control was included in the experiment in which the reagents were
sequenced without adding the template DNA. The sequencing
was performed using Illumina Novaseq 6000 platform to generate
250 bp paired-end reads.

2.8. Sequencing data analysis

2.8.1. Data filtering
The paired-end reads generated from Illumina sequencing were

assembled using FLASH (V1.2.7)2 (Magoè and Salzberg, 2011) after
the removal of the barcode and primer sequence. High-quality
clean tags were obtained after quality filtering of the assembled
reads based on pre-set parameters (Bokulich et al., 2013) in QIIME
(V1.7.0)3 (Caporaso et al., 2010). Finally, the chimaera sequences
were detected using UCHIME algorithm4 (Edgar et al., 2011)
by comparing with the respective reference databases, i.e., SILVA
database for bacterial 16S sequences5 (Wang et al., 2007), and
UNITE database for fungal ITS sequences (Nilsson et al., 2019). The
effective Tags were obtained after removing the chimeric sequences
(Haas et al., 2011).

2.8.2. Operational taxonomic unit (OTU) analysis
Operational taxonomic unit clustering was performed using

UPARSE software (UPARSE v7.0.1001)6 (Edgar, 2013). All
sequences with a threshold ≥97% similarity were assigned to the
same OTU. Each OTU was then searched for the representative
species annotation against the respective reference databases.
Bacterial species annotation was done against the SILVA database

2 http://ccb.jhu.edu/software/FLASH/

3 http://qiime.org/index.html

4 http://www.drive5.com/usearch/manual/uchime_algo.html

5 http://www.arb-silva.de/

6 http://drive5.com/uparse/

(Release v138.1) (see text footnote 5) (Wang et al., 2007), while
the UNITE database was used for the annotation of fungal species
(Nilsson et al., 2019). The phylogenetic relationship of different
OTUs was explored by the Multiple sequence alignment using
MUSCLE software (Version 3.8.31)7 (Edgar, 2004). Additionally,
the singletons obtained during the analysis were removed, and the
normalized OTU abundance table was calculated using the number
of sequences corresponding to the sample with the lowest reads.

2.8.3. Alpha diversity
The alpha diversity of bacterial and fungal species was

calculated based on the normalized OTU abundance. The alpha
diversity indices such as microbial diversity (Shannon, Simpson)
and community richness (Chao1, ACE) (Magurran, 1988) along
with observed-species and sequence depth (Good’s coverage) (Chao
et al., 1988) for the soil samples from two different sites were
estimated in QIIME (Version 1.7.0) (Caporaso et al., 2010) and
represented using R software (Version 2.15.3; R Core Team, 2013,
Vienna, Austria) (R Core Team, 2013).

2.8.4. Beta diversity
The beta diversity representing the variation in microbial

diversity (Lozupone et al., 2007) between the soil samples
collected from the two different sites was measured in QIIME
software (Version 1.7.0) (Caporaso et al., 2010). The dissimilarity
coefficient between pairwise samples was estimated using
weighted and unweighted UniFrac distance matrices. Non-metric
multidimensional scaling (NMDS) analysis was carried out to
visualize the complex multidimensional data (Oksanen et al.,
2010). The hierarchical clustering, such as Unweighted Pair-group
Method with Arithmetic Means (UPGMA) (Lozupone et al., 2011),
was performed in QIIME software (Version 1.7.0) (Caporaso et al.,
2010) to understand the distance matrix using average linkage.
Statistical methodologies such as Multi-response permutation
procedure (MRPP) analysis (Cai, 2006), Analysis of Similarity
(ANOSIM) (Clarke, 1993), and ADONIS (Anderson, 2001) were
used to determine the significant variation of the microbial
communities in the soils of two different sites. Furthermore,
differences in the microbial species abundance in the soil samples
between the two sites were analysed by T-test (D’Argenio et al.,
2014) and MetaStats (Paulson et al., 2011). The significance level
represented by the p-value and q-value was determined by the
permutation method and Benjamini and Hochberg False Discovery
Rate (FDR) method, respectively (White et al., 2009). The presence
of microbial communities with a significant intra-group variation
among the soil samples was determined by linear discriminant
analysis Effect Size (LEfSe) using LEfSe software (Segata et al.,
2011). The linear discriminant analysis scores (LDA score [log10])
>4 was set as a threshold. The functional prediction using
PICRUSt analysis (Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States, version 1.0.0) (Douglas et al.,
2018) was performed on the bacterial 16S OTU table generated
by QIIME (Version 1.7.0) (Caporaso et al., 2010) using Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2012) to predict the abundance of different gene families.

7 http://www.drive5.com/muscle/
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2.9. Environmental association analysis

The relationship between the environmental factors (pH, TOC,
TN, conductivity) and the species abundance (alpha diversity)
was estimated using the Spearman rank correlation (Algina and
Keselman, 1999) and Mantel test (Yang et al., 2007). Additionally,
the Canonical correspondence analysis (CCA) was performed in
R using the Vegan package (Sheik et al., 2012), an ordination
approach based on correspondence analysis combined with
multivariate regression analysis. The Canonical correspondence
analysis is based on unimodal species-environment relationships
to determine the major driving environmental forces that influence
the development of certain microbial communities. Furthermore,
Variance partitioning canonical correspondence analysis (VPA)
is performed to determine the relative contribution of selected
environmental variables in explaining the microbial community
structure (Peres-Neto et al., 2006). The variation partitioning
analysis allows the partition of the beta diversity variation among
the environmental and spatial variables and determines whether
the drivers controlling the spatial organisation are the same for
different organisms (Legendre, 2008). The VPA was performed in
R using the “varpart” function in the vegan package. The different
components of variance were estimated as described previously
(Borcard et al., 1992).

3. Results

3.1. Soil texture, physicochemical
properties, and extracellular enzyme
activities

The granulometric study to determine the particle size
distribution revealed that the Prenet (P) site soil was sandy
loam (0.8% clay, 28.3% silt, 70.8% sand), while the Lipova (L)
site soil had loamy sand texture (0.6% clay, 24.9% silt, 74.3%
sand). The P-site soil had high water content (32%) compared
to the L-site soil (9%), which could be explained by the soil
texture and increased precipitation (long-term) at the P-site
(Table 1). The soil pH (1:5 H2O, w/v) ranged from extremely
acidic (P-site soil pH 4.45 ± 0.06) to strongly acidic (L-site
soil pH 5.06 ± 0.24) between the two seed orchards (Burt,
2014). However, both the soil samples were non-saline with
low soil conductivity (P- site soil EC 0.04 ± 0.001 mS/cm;
L-site soil EC 0.03 ± 0.005 mS/cm) (Table 1). Furthermore,
substantial differences in the total organic carbon (TOC) and
nitrogen (TN) content were observed in the soil samples from
these two sites. The P-site with relatively high average annual
precipitation (1,306 mm) recorded over the last three decades
(Supplementary Figure 1) showed higher amounts of total
organic carbon (TOC- 6.79% ± 0.14) and total nitrogen (TN-
0.51% ± 0.01) compared to the L-site soils (TOC-3.27% ± 0.13;
TN- 0.25% ± 0.01) (p < 0.05) that experienced significantly
low annual precipitation (633 mm) (Table 1 and Supplementary
Figure 1). The extracellular enzyme activities in soil documented
significant variation between the two sites (Table 1). P-site soil
showed significantly higher activity of extracellular enzymes such

as cellobiohydrolase (234 ± 0.72 nmol g−1h−1), β-galactosidase
(337 ± 0.52 nmol g−1h−1), β-glucosidase (1833 ± 5.00 nmol
g−1h−1), α- glucosidase (148 ± 0.57 nmol g−1h−1), β-xylosidase
(1853 ± 3.37 nmol g−1h−1), chitinase (499 ± 1.38 nmol g−1h−1),
and acid phosphatase (2988 ± 5.10 nmol g−1h−1) compared
to L-site (p < 0.05, Kruskal-Wallis test) (Table 1). The higher
precipitation in the P-site corresponds to higher amounts of
available nutrients (TOC, TN) and influences the soil enzyme
activities.

3.2. Soil metabolomics

The high-resolution analysis of the dissolved organic carbon
was achieved by soil metabolomics (Swenson and Northen,
2019). The two different soil samples contained 183 metabolites
consisting of alcohols, carbohydrates, amino acids, fatty acids and
organic acids. Among the total metabolites observed in the soil
samples, fatty acids (26.2%) were highly represented, followed by
carbohydrates (25.6%), alcohols (12.5%), and organic acids (6.5%)
(Supplementary Excel 1). The component analysis revealed that
the soil metabolite profile from the two sites was distinct and
hence clustered separately (Figure 1A). The top 70 metabolites
that were differentially present in the soil samples from two
different seed orchards (P and L) are represented in the heatmap
(Figure 1B). Prenet soil (P) showed a high abundance of fatty
acids, carbohydrates, and alcohols compared to Lipova soil (L).
The decomposition of soil organic matter, plant exudates, and
microbial metabolites primarily contributed to the overall soil
metabolites. The presence of high organic carbon in the Prenet
soil corresponds to high amounts of soil metabolites. However,
it is worth mentioning here that the contribution of microbial
metabolites in the soil is difficult to differentiate between other
driving factors (White et al., 2017).

3.3. Phospholipid fatty acids (PLFAs)
analysis

The phospholipid fatty acids (PLFAs) analysis documents
the differences in the microbial cell membrane composition
to determine the presence of functionally active microbial
communities in the soil (Cavigelli et al., 1995; Torsvik and Øvreås,
2002). Pernet (P) soil (71.7 ± 1.74 µg PLFA g−1 soil, p < 0.05)
showed significantly higher viable microbial biomass compared to
Lipova soil (22.7 ± 2.01 µg PLFA g−1 soil) (Table 2), indicating
a high abundance of functionally active microbial communities in
the soil with relatively higher amounts of TOC and TN. Although
the bacterial (59.5 ± 1.34 µg PLFA g−1 soil, p < 0.05) and fungal
(1.1 ± 0.09 µg PLFA g−1 soil, p < 0.05) biomass was higher in P
soil compared to L soil, their ratio, i.e., bacteria: fungi ratio did not
differ significantly between the two sites (P- site- 51.5 ± 3.77 µg
PLFA g−1 soil, L-site- 57.3 ± 4.21 µg PLFA g−1 soil; p > 0.05).
The PLFA estimates for gram-positive (7.83 ± 0.32 µg PLFA g−1

soil, p < 0.05), gram-negative bacteria (37.8 ± 1.08 µg PLFA g−1

soil, p < 0.05), and actinobacteria (13.4 ± 0.28 µg PLFA g−1 soil,
p < 0.05) were significantly higher in P soil (Table 2).
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TABLE 1 Selected physical, physicochemical properties and extracellular enzyme activities in soils from two seed orchards, Lipova (L-site) and Prenet
(P-site).

Soil properties L-site P-site P-value

Soil texture Loamy sand (clay-0.6%, silt-24.9%, sand-74.3%) Sandy loam (clay-0.8%, silt-28.3%, sand 70.8%) NA

Soil water content (%) 9 32 <0.0001

EC (mS/cm) 0.03± 0.005 0.04± 0.001 0.198

pH (1:5 H2O, v/v) 5.06± 0.24 4.45± 0.06 0.069

TN (%) 0.25± 0.01 0.51± 0.01 0

TOC (%) 3.27± 0.13 6.79± 0.14 <0.0001

β-glucosidase (nmol g−1h−1) 563.5± 1.44 1833± 5.00 0.001

α−glucosidase (nmol g−1 h−1) 40.3± 0.17 148.8± 0.57 0.008

β−galactosidase (nmol g−1 h−1) 55.2± 0.18 337.5± 0.52 0.001

β−xylosidase (nmol g−1 h−1) 141.9± 0.41 1853± 3.37 0

Cellobiohydrolase (nmol g−1 h−1) 28.7± 0.12 234.6± 0.72 0

Acid phosphatase (nmol g−1 h−1) 1056.8± 2.49 2988.6± 5.10 0.001

Chitinase (nmol g−1 h−1) 116.3± 0.27 499.5± 1.38 0.001

The results are expressed as the dry weight of the soil. The average of the replicates±SEM. The p-value denotes the significance level between the two sites (p < 0.05, Kruskal-Wallis test). SEM,
standard error of the mean; NA, not available.

FIGURE 1

Soil Metabolite Profile. (A) Sparse partial least square discriminant analysis (sPLS-DA) plot representing the differences in the metabolite profiles in
soil samples from two different sites, Lipova site (LS) with nine soil replicates and Prenet site (PS) with six replicates (B) Heatmap showing 50 most
significant metabolites between the two soil samples (LS, PS) in replicates based on T-test and ANOVA.

3.4. Soil microbial community
composition and diversity

3.4.1. Quality control
The soil microbial community structure was characterized

using Illumina paired-end amplicon sequencing targeting the
bacterial 16S and the fungal ITS region. The soil samples from
two sites (Lipova and Prenet) yielded 2,026,594 reads representing
bacterial diversity, while 1,932,039 fungal reads were obtained.

The initial quality check was performed with a set threshold of
Phred Quality score >30. The reads with a Quality score <30
were discarded, and the clean reads obtained per soil samples
for bacterial 16S and fungal ITS were further processed using
bioinformatic data analysis pipelines (Supplementary Excel 2, 3).

3.4.2. Microbial communities in soil
The rarefaction curves and Good’s coverage index (>99%)

represented the comprehensiveness of the sampling, indicating
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TABLE 2 Phospholipid fatty acid Analysis (PLFA) in two seed orchards,
Lipova (L-site) and Prenet (P-site).

PLFA analysis (µg
PLFA g−1 soil)

L-site P-site P-value

PLFAtotal 22.7± 2.01 71.7± 1.74 0

PLFAbacteria 19.2± 1.75 59.5± 1.34 0

PLFAfungi 0.35± 0.04 1.2± 0.09 0

PLFAG+ 2.09± 0.29 7.8± 0.32 0

PLFAG− 12.0± 1.30 37.8± 1.08 0

PLFAactinobacteria 5.0± 0.40 13.4± 0.28 0

PLFAbacteria : fungi 57.3± 4.21 51.5± 3.77 0.346

PLFAfungi :bacteria 0.02± 0.001 0.02± 0.001 0.346

The table shows the average value ±SEM between the replicates expressed as µg PLFA g−1

soil (dry mass). G+ , gram-positive bacteria; G− , gram-negative bacteria. The significant
difference between the two sites is denoted by p-value (p < 0.05) (Mann-Whitney test of
significance). SEM, standard error of the mean.

that the whole microbial diversity present in the soil samples was
captured by sequencing (Supplementary Figure 2 and Table 3).

3.4.2.1. OTU (operational taxonomic unit) abundance

The Illumina sequencing of soil samples from two different
sites resulted in a total of 6,389 bacterial and 2,288 fungal OTU
clusters with a similarity threshold of 97% (Supplementary
Excel 4, 5). Among the total OTUs detected in this study, 2,426
unique bacterial OTUs were present in Lipova soil, while only
382 unique OTUs were detected in Prenet soil (Figure 2A and
Supplementary Excel 6). The top 10 bacterial order detected in the
soil samples include Rhizobiales, Acidobacteriales, Gaiellales,
Chthoniobacterales, Solirubrobacterales, Rhodospirillales,
Solibacterales, Ktedonobacterales, Frankiales, Xanthomonadales
(Figure 2B andSupplementary Excel 4). P soil showed a high
relative abundance of Rhizobiales (36.2%), Acidobacteriales
(10.9%), Chthoniobacterales (7.3%), Rhodospirillales (6.8%),
Ktedonobacterales (4.2%), Frankiales (4.1%) while L soil
documented a prevalence of Gaiellales (6.6%), Solirubrobacterales
(5.3%), Solibacterales (4.9%), and Xanthomonadales (3.7%)
(Figure 2B and Supplementary Excel 4).

Similarly, a high number of unique fungal OTUs (1313) were
observed in Lipova soil compared to Prenet soil (256 OTUs)
(Figure 2C and Supplementary Excel 7). Among the top 10
fungal orders observed in the soil samples, Mortierellales (39.2%),
Incertae-sedis-Leotiomycetes (7.7%), and Entorrhizales (5.1%)
were dominant in P soil. However, Russulales (12.9%), Tremellales
(13.3%), Thelephorales (9.8%), Atheliales (10.9%), Hypocreales
(6.3%), Hysteriales (4.5%) and Eurotiales (4.7%) were prevalent
in L soil (Figure 2D and Supplementary Excel 5). Furthermore,
comparing the biological replicates, Lipova (L) soil shared 1,511
core bacterial OTUs and 127 fungal OTUs (Supplementary
Figures 3A, C and Supplementary Excel 8, 9). While the Prenet
soil documented a consortium of 944 bacterial and 160 fungal
core OTUs shared among the soil replicates (Supplementary
Figures 3B, D and Supplementary Excel 10, 11).

The soil microbial communities were assigned to 41 bacterial
and six fungal phyla. The Graphlan representation of the bacterial
communities in Lipova soil showed the predominance of five phyla

such as Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria,
and Bacteroidetes. However, apart from Proteobacteria, Firmicutes,
Acidobacteria, and Actinobacteria, the Prenet soil documented the
prevalence of Chloroflexi and Verrucomicrobia (Supplementary
Figure 4). Similarly, the OTU tree representation using Graphlan
showed the dominance of three fungal phyla, namely, Ascomycota,
Basidiomycota, and Zygomycota, in both Lipova (L) and Prenet (P)
soils (Supplementary Figure 5).

The evolutionary tree illustrated the relative abundance of the
top 100 bacterial and fungal genera observed in the two soils
(Supplementary Figure 6). The heatmap represents the relative
abundance of 35 predominant bacterial and fungal genera observed
in Lipova (L) and Prenet (P) forest soils (Figure 3).

3.4.2.2. Alpha diversity (α)

The alpha diversity indices represented the soil microbial
diversity (richness and evenness) and community richness
(Table 3). Bacterial diversity indicated by Shannon and Simpson
index showed significantly higher diversity in L soil (Shannon
index- 9.14; Simpson index- 0.99) compared to P soil (Shannon
index- 7.12; Simpson index- 0.97) (Wilcox test, p < 0.01). The
soil bacterial community richness showed a similar trend with
high bacterial richness in L soil (ACE – 3778.06; Chao1- 3926.54)
compared to P soil (ACE – 2421.56; Chao1- 2375.46) (Wilcox test,
p < 0.01). Interestingly, the fungal diversity did not show any
significant variation between the Lipova (L) (Shannon index- 4.79;
Simpson index- 0.85) and Prenet (P) soil (Shannon index- 4.40;
Simpson index- 0.88). However, the fungal community richness
was considerably different between the two soils, where L soil
documented high fungal richness (ACE- 933.28; Chao1- 916.10)
(Wilcox test, p < 0.01) (Table 3).

3.4.2.3. Beta diversity (β)

The overall microbial diversity represented by the beta diversity
based on Unweighted and Weighted UniFrac distances showed
significant differences between the soil samples (Figure 4 and
Supplementary Figure 7). The UPGMA hierarchical clustering
illustrated the similarity among the different samples and grouped
the soil samples in two distinct clusters suggesting the substantial
difference in the soil microbial communities from two different
sites (Figures 4B, D and Supplementary Figure 7). However,
the UPGMA clustering of fungal communities based on weighted
UniFrac clustered the biological replicates from Lipova soil
into two clades, indicating soil heterogeneity (Supplementary
Figure 7). Furthermore, the Non-Metric Multidimensional Scaling
(NMDS) analysis documented the differences in soil microbiome
from the two sites. The soil samples collected from two sites
showed significant variation in their bacterial community structure,
representing two distinct clusters (Figure 5A). Similarly, the
fungal diversity between the two sites was substantially different
(Figure 5B), suggesting the impact of site-specific environmental
factors. However, such observation depicting the environmental
influence on soil microbiota needs further validation.

The differentially abundant microbes in the two different soil
samples determined using T-test and Metastat analysis showed
a predominance of different microbial communities between
the sites (Figures 6, 7, Supplementary Figure 8). Furthermore,
Analysis of Similarity (ANOSIM) determined significant variation
in the microbial community structure between the two soils
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TABLE 3 Alpha diversity indices representing bacterial and fungal communities between two seed orchards, Lipova (L-site) and Prenet (P-site).

Bacterial diversity Fungal diversity

Indices L-site P-site P-value L-site P-site P-value

Goods_coverage (%) 99.3 99.5 – 99.7 99.8 –

Observed_species 3375± 89.23 2117± 62.61 <0.001 743± 45.70 429± 45.70 <0.01

Shannon 9.14± 0.14 7.12± 0.04 <0.001 4.79± 0.41 4.40± 0.18 0.45

Simpson 0.99 0.97 <0.01 0.85± 0.05 0.88± 0.02 0.9

Chao1 3926± 304.89 2375± 78.42 <0.001 916± 32.17 499± 60.38 <0.001

ACE 3778± 127.30 2421± 75.58 <0.001 933± 30.77 508± 62.64 <0.001

The data denotes the mean value of the soil replicates the±standard error of the mean. The p-value denotes the significance level using a Wilcox test (p < 0.01).

FIGURE 2

(A) Venn diagram showing the distribution of unique and common bacterial OTUs shared between two different soil samples (Lipova and Prenet
soil). (B) Relative abundance of the top 10 bacterial orders observed in Lipova and Prenet soil. “Others” denote the relative abundance of the rest of
the bacterial orders present in the soil. (C) Venn diagram showing the distribution of unique and common fungal OTUs shared between the two
different soils. (D) Relative abundance of the top 10 fungal orders observed in Lipova and Prenet soil. “Others” denote the relative abundance of the
rest of the fungal orders present in the soil.

compared to the differences within the biological replicates
(Supplementary Table 1). Likewise, MRPP analysis showed a
substantial difference in microbial communities present in the

two soils (Supplementary Table 2). Other statistical analyses,
such as ADONIS and AMOVA, documented similar results
(Supplementary Tables 3, 4). The study also revealed the
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FIGURE 3

Heatmap illustrating (A) the relative abundance of 35 predominant bacterial genera in Lipova (L) and Prenet (P) soil samples with six replicates.
(B) The relative abundance of 35 prevalent fungal genera in the soil samples with nine replicates. The color gradient indicates the relative OTU
abundance for each soil sample, where the darker color denotes higher abundance, and the light colour represents low abundance.

soil microbial biomarkers that are significantly abundant and
consistently present. The Linear discriminant analysis effect size
(LEfSe) determined the different bacterial and fungal biomarkers
present in the samples soil with a LDA score [log10] > 4
(Figure 8 and Supplementary Figure 9). The differentially
abundant bacterial biomarkers in Prenet soil include members
from Acidobacteria (class- subgroup 2; order- Acidobacteriales;
family- Acidobacteriaceae_subgroup 1), Proteobacteria (class-
Alphaproteobacteria; order- Rhizobiales, Rhodospirillales;
family- Bradyrhizobiaceae, Roseiarcaceae, Xanthobacteraceae),
Chloroflexi (class- Ktedonobacteria; order- Ktedonobacterales;
family- HSB_OF53_F07), Verrucomicrobia (class- Spartobacteria;
order- Chthonlobacterales; family- Xiphinematobacteraceae).
However, Lipova soil was documented by the presence
of bacterial biomarkers belonging to Bacteroidetes (class-
Sphingobacteriia; order- Sphingobacteriales), Actinobacteria
(class, Thermoleophilla; order- Gaiellales; Soilrubrobacterales),
Acidobacteria (class- subgroup 6), Proteobacteria (class-
Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria)
(Figure 8A). Similarly, the differentially abundant fungal
biomarkers in Prenet soil belonged to Zygomycota members
(class- Incertae_sedis_Zygomycota; order- Mortierellales; family-
Mortierellaceae) and Basidiomycota (class- Entorrhizommycetes).

In contrast, the biomarkers in Lipova soil consisted of fungal
species belonging to Dothideomycetes, Eurotiomycetes
(Herpotrichlellaceae, Chaetothyriales, Trichocomaceae,
Eurotiales), Hypocreales (Nectriaceae), Russulales (Russulaceae)
(Figure 8B).

3.4.2.4. Functional composition
PICRUSt analysis based on the relative abundance of the

bacterial 16S gene sequences suggests the putative functional profile
of the soil bacterial communities where each OTU is related to
a function (Figure 9). The PCA plot based on the PICRUSt data
revealed that the predicted functional gene composition between
the two soil samples was different and clustered in two distinct
groups (Figure 9C). The predicted gene functions include amino
acid metabolism, lipid metabolism, terpenoids and polyketides,
carbohydrate metabolism, membrane transport, DNA replication
and repair, nucleotide metabolism, xenobiotics biodegradation, and
metabolism of cofactors and vitamins were higher in L-site. In
comparison, P-site showed a high abundance of putative functions
mapped to signal transduction, genetic information processing,
biosynthesis of secondary metabolites, glycan metabolism, energy
metabolism, and transcription (Figure 9A). However, comparing
the most abundant gene functions (top 10) in the soil samples
did not significantly differ. The top 10 putative functions involve
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FIGURE 4

(A) Box plot based on the Unweighted Unifrac distance representing the variation in the bacterial communities present in soil samples from Lipova
and Prenet. (B) Unweighted pair group method with arithmetic mean (UPGMA) tree clustering based on Unweighted Unifrac distance showing
differences in the bacterial communities between the two soil samples in replicates. The relative abundance of the bacterial phyla is displayed along
with the UPGMA tree. (C) Box plot based on the Unweighted Unifrac distance shows the difference in the fungal communities in Lipova and Prenet
soils. (D) UPGMA tree based on Unweighted Unifrac distance illustrating the variation in the fungal communities between the two soil samples in
replicates.

membrane transport, amino acid metabolism, carbohydrate
metabolism, replication and repair, energy metabolism, xenobiotic
metabolism, lipid metabolism, translation, and metabolism of
cofactors and vitamins (Figure 9B).

3.5. Correlation between edaphic drivers
and soil microbiota

The Spearman rank correlation analysis showed a significant
relationship between the microbial species abundance and
environmental factors such as pH (often acts as a key driver),
conductivity, total organic carbon (TOC), and total nitrogen
(TN) (p < 0.05). The pH, TOC, and TN substantially influence
the abundance of bacterial communities compared to the
fungal species (Figure 10). The bacterial genera such as
Streptomyces, Kitasatospora, Devosia, Reyranella, Pseudonocardia,
Gemmatimonas, Arthrobacter, Nocardioides, Solirubacter,
Rhizomicrobium, Acidibacter, Haliangium, RB41, Sporosarcina,
Bacillus, Sphingomonas, Bryobacter, and Gaiella were negatively
correlated with TOC and TN. While Blastocholris, Pedomicrobium,
Candidatus Koribacter, Granulicella, Roseiarcus, Candidatus
Xiphinematobacter, and Bradyrhizobium showed a positive
correlation (Figure 10A). On the contrary, soil pH showed

a significant positive correlation with Streptomyces, Devosia,
Pseudonocardia, Gemmatimonas, Nocardioides, Solirubacter,
Haliangium, RB41, Sphingomonas, Gaiella. The bacterial genera
such as Granulicella, Acidothermus, Roseiarcus, Candidatus
Xiphinematobacter, and Bradyrhizobium were negatively
correlated. Soil conductivity did not significantly influence
the bacterial communities except for Variibacter and Candidatus
Solibacter (Figure 10A). Furthermore, the mantel test analysis
showed a significant correlation between the environmental
variables (pH, TOC, TN, Conductivity) and the bacterial
communities (r = 0.7497, p = 0.001).

Similarly, the abundance of fungal species such as Paraphoma,
Phalas, Preussia, Trichoderma, Oidiodendron, Hymenogaster,
Cladosporium, Gibberella, Halokirschsteiniothelia, Fusarium,
Cadophora, Entorrhiza, Russula was significantly correlated with
soil pH (p < 0.05) (Figure 10B). Furthermore, the TOC and
TN content in soil showed a substantial effect on the abundance
of Clitopilus, Hygrocybe, Thelebolus, Preussia, Hymenogaster,
Metarhizium, Cladosporium, Gibberella, Xerocomellus, Amanita,
Fusarium, Mortierella, Russula, and Cenococcum (Figure 10B).
The fungal genus, Tylospora was only influenced by soil
conductivity. Like bacterial communities, the mantel test analysis
also demonstrated a significant correlation between the soil
fungal abundance and the environmental variables (pH, TOC,
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FIGURE 5

Non-metric multi-dimensional scaling analysis (NMDS) displaying
(A) the difference in the bacterial communities in Lipova and
Present soil. (B) The extent of variation in the fungal communities
present in the soil samples. The data points in the same color
represent soil samples from the same site. Different symbols
designate the soil samples from different locations.

TN, Conductivity) (r = 0.4115, p = 0.002) in two different
seed orchards.

Additionally, the Canonical correspondence analysis (CCA)
revealed the species-environment relationship illustrating four
parameters, including soil pH, conductivity, total organic carbon
(TOC), and total nitrogen (TN), that influence the development
of specific microbial communities (Figure 11). The results indicate
91% of the bacterial community variance that could be explained
by the mentioned edaphic factors (Figure 11A). The Lipova and
Prenet soils were clustered in separate groups. Our data suggest
that the first canonical axis (CCA1) was positively correlated with
TOC and TN, whereas the second canonical axis (CCA2) was
negatively correlated with soil pH and conductivity. Similarly,
the soil parameters contributed to 64.87% of fungal community
variation (Figure 11B). The Prenet soil was grouped separately, but
Lipova soil was scattered. CCA1 axis was positively correlated with
soil pH and conductivity, and the CCA2 was negatively correlated
with TOC and TN (Figure 11). Furthermore, soil pH, TOC, and

TN, represented by longer arrows, were the major edaphic variables
that played a critical role in shaping the soil microbial community
structure (Figure 11).

The Variation Partition Analysis (VPA) determines the relative
contribution of edaphic factors (pH, conductivity. TOC, and TN)
on soil microbial diversity (Figure 12). The data revealed that
the soil physical characteristics (pH and conductivity) explained
6.5% of the total variation of the bacterial community structure.
In comparison, the total organic carbon (TOC) and nitrogen (TN)
contributed to 37.6% of the total variation of the soil bacterial
communities, leaving 20.7% of the total variance unexplained
(Figure 12A). Similarly, pH and conductivity contributed to 6.6%
of the total variance of the soil fungal community, and TOC
and TN explained 32.8% of the total variance of the fungal
community structure. However, around 52% of the total fungal
community variance was unaccounted (Figure 12B). The explained
and unexplained variances in VPA were calculated as reported
earlier (Legendre, 2008).

4. Discussion

Anthropogenic disturbances and global climate change broadly
impact the proper functioning of the forest ecosystem. Variation
in precipitation amounts and patterns is one of the foremost
effects of global climate change (Stocker, 2014). The alteration
in the soil moisture content due to soil texture and precipitation
directly or indirectly affects the ecosystem functions and processes
(Sorensen et al., 2013; Patel et al., 2021). Soil moisture content
is one of the main constraints influencing the soil microbial
community structure-function (Li et al., 2016) and affects the
nutrient availability in soil (Xu et al., 2014). In the present study,
we explored the effect of precipitation and higher soil water content
on various edaphic factors and the soil microbial community
structure in two Norway spruce seed orchards. The average annual
precipitation recorded over three decades is nearly double in Prenet
(P) site compared to Lipova (L) site (Supplementary Figure 1).
Interestingly, soil texture significantly influences the soil water-
holding capacity and availability (Aina and Periaswamy, 1985;
Vereecken et al., 1989). The low water content in L-site soil is
correlated with the high sand percent in the L- site soil compared
to the P- site (Li et al., 2009). The increase in clay and silt content
in soil decreases the water permeability, thereby increasing the
water-holding capacity (Wang et al., 2022). On the contrary, the
water retention capacity decreases with the increased sand content
in the soil. Nevertheless, our study demonstrates the relationship
between various edaphic factors and the soil microbial community
composition in two sites with significant differences in their
precipitation rate.

4.1. Effect of precipitation on the soil
factors

The present study documented substantial variation in the
total organic carbon (TOC) and nitrogen (TN) content with
the difference in the annual precipitation rate between the
two sites. The higher amounts of TOC and TN measured in
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FIGURE 6

Metastats analysis shows significantly abundant bacterial species in Lipova and Prenet soil. The significant differences in the relative abundance are
evaluated by the FDR test where the “*” represents significant variation at q value <0.05 while “**” denotes high significance at q value <0.01.

Prenet (P) soil were attributed to increased precipitation at this
site (Borken and Matzner, 2009; Bell et al., 2014). Moreover, soil
texture, more specifically the clay content in the soil, also plays
a crucial role in the accumulation of the soil organic carbon
(Franzluebbers et al., 1996; Dexter, 2004) and moisture content in
the soil. Hence, higher clay and silt percent and high water content
in P site soil influence the total organic carbon content compared to
L site soil. Increasing soil moisture content is expected to increase
litter turnover, thereby increasing soil C sequestration. Many
studies reported that a decrease in water availability negatively
impacts soil C sequestration (Burke et al., 1989; Zhou et al., 2002).
However, such assumptions are recently questioned (Bowden et al.,
2014; Fekete et al., 2016). Water availability promotes plant growth
and increases biomass and litter production. Increasing litter
turnover can enhance microbial activity, promoting decomposition
and soil respiration and decreasing soil C sequestration (Fontaine
et al., 2007; Kuzyakov, 2010) and vice versa (Fekete et al., 2014,
2017). For instance, studies reported reduced soil C accumulation
in the forests receiving higher annual precipitation (Meier and
Leuschner, 2010; Chen et al., 2016).

Nevertheless, the increase in water availability promotes soil
microbial growth and impacts their activity (Liu et al., 2009),
thereby enhancing soil carbon release (Huang et al., 2015). Due
to global warming, changes in the precipitation pattern have
decreased the soil moisture content (Zhou et al., 2011). Soil
moisture is a crucial factor in controlling the organic carbon
turnover in soil (Zhou et al., 2005). Therefore, it is vital to

understand the effect of precipitation on the soil C dynamics.
Studies showed that increased precipitation releases more dissolved
organic carbon from the soil aggregates as accessible substrates
resulting in increased microbial activity and higher CO2 emissions
(Wu et al., 2011; Wang et al., 2021). Although precipitation change
can control variations in soil pH at the global scale (Slessarev et al.,
2016), our results showed a marginal difference in the soil pH
between the two sites that are not far apart.

4.2. Effect of precipitation on soil
metabolite profile and soil microbial
activity

The soil moisture, pH, and organic matter content are crucial
factors controlling the microbial community structure and carbon
cycling in soil (Judd et al., 2006; Collins et al., 2014; Xu et al., 2020).
Several studies reported a positive correlation between microbial
diversity and soil organic matter across different ecosystems
(Berthrong et al., 2013; Maestre et al., 2015). Soil pH also influences
the metabolite profile in soil. For example, higher soil pH showed
high citrate and low malate concentrations in soil and vice
versa (Veneklaas et al., 2003). Similarly, precipitation change also
influences microbial community structure (Barnard et al., 2013) by
impacting the soil moisture and organic matter content (Maestre
et al., 2016). Such a strong link between soil moisture, organic
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FIGURE 7

Metastats analysis represents significantly abundant fungal species in Lipova and Prenet soil. The significant variation in the relative abundance is
estimated by the FDR test where the “*” represents a significant difference at q value <0.05 while “**” denotes high significance at q value <0.01.

matter content, and the microbial community structure is critical
in nutrient cycling (Elbert et al., 2012).

Soil microbes utilize the dissolved organic carbon in the soil,
including root exudates, which also influence the soil microbial
community structure (Swenson et al., 2015) and plant functions
(Pétriacq et al., 2017). These soil metabolites are often used as
biomarkers to reflect the responses of soil microbes to various
conditions (Lankadurai et al., 2013; Jones et al., 2014). For instance,
anaerobic soil disinfestation altered the soil metabolite profile
and shifted the soil microbial communities (Johns et al., 2017).
Our study documents distinct metabolite profiles in soil from
two Norway spruce seed orchards with long-term precipitation
differences over three decades. A distinct difference in the
metabolite composition resulted in the clustering of soil samples
according to location (Figure 1). Johns et al. (2017) suggested
that soil metabolomics links organic/inorganic compounds and
microbes in the soil. Hence, our results indicate varied microbial
functions between the soils collected from Prenet and Lipova.

Lipova (L) site received less annual precipitation and showed
lower soil moisture content than the Prenet (P) site. Lower
moisture content in soil affects the decomposition rates of the plant
materials such as litterfall and roots (Martin et al., 2004; Ostertag
et al., 2008). Such slow decomposition of the plant materials
could be due to decreased microbial biomass and insufficient
microbial activity. The PLFA analysis determining the spatial
soil microbial community structure (Zelles, 1999) showed lower
microbial biomass indicating a low abundance of functionally
active microbial communities in the Lipova soil. On the contrary,

increased precipitation in Prenet soil documented higher microbial
biomass based on the total PLFA estimate. The soil water content
significantly influenced the microbial biomass and its activity.
Such observation corroborates previous studies where higher water
availability in soil increased microbial biomass (Williams and Rice,
2007; Huang et al., 2015). Alternatively, water scarcity during
drought often reduces the microbial PFLA (Hueso et al., 2012)
due to decreased microbial growth by allotting more resources
to avoid dehydration, reduced mobility, diffusion of solutes, and
availability of nutrients (Harris, 1981; Kieft, 1987; Schimel et al.,
2007). The PLFA content (total and the signature PLFAs) in soil
was positively correlated with the TOC and TN. The availability of
organic nutrients is a crucial factor influencing the soil microbial
biomass (Wagai et al., 2011; De Vries et al., 2012).

Furthermore, the PLFA (fungi/bacteria) ratio indicates the
change in soil microbial community structure (Zeglin et al., 2013).
Although increased precipitation enhanced the microbial PLFA,
i.e., bacterial and fungal PLFA content in P soil, it did not
significantly influence their ratio (PLFA fungi/bacteria) between
the two sites (Table 2). Similarly, the PLFA ratio between the
gram-negative and gram-positive bacterial biomass is considered
a stress indicator (Klamer and Bååth, 1998). The thicker cell
wall of gram-positive bacteria makes them more resistant to
water scarcity than gram-negative bacteria. However, our results
showed no considerable influence of increased precipitation on
the PLFA (G+/G-) ratio between the sites. Such observation might
suggest that the soil microbes readily adapt to their environment
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FIGURE 8

LEfSe [linear discriminant analysis (LDA) Effect Size] analysis indicating the differentially represented microbial biomarkers in Lipova and Prenet soil.
(A) The cladogram illustrates the presence of bacterial communities that are significantly different between the two soil samples. (B) The cladogram
represents the soil’s fungal biomarkers. The circles radiating from inside to outside denote the taxonomic level from phylum to genus. Each circle
represents a distinct taxon at the corresponding taxonomic level. The size of each circle is proportional to the relative abundance of each taxon.
Bacterial and fungal biomarkers with significant differences are colored according to the color of the corresponding soil samples, whereas
yellowish-green circles resemble non-significant species. Red and green nodes denote that these species contribute highly to the group. The letters
above the circles describe the different biomarkers.
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FIGURE 9

(A) Heatmap illustrating the functional profile predicted at level 2 KEGGs Orthologs using PICRUSt analysis represents the overall functional
contribution of bacterial communities present in two soil samples with replicates. (B) The Barplot representing the relative OTU abundance
contributing to the top 10 gene functions in soil shows no significant differences. “Others” represents the relative OTU abundance for the rest of the
gene functions. (C) PCA plot shows differences in the predicted functional contribution of soil bacteriome in two sites (Lipova and Prenet) based on
PICRUSt analysis.

and sustain a stable community structure (Huang et al., 2015;
Yang et al., 2017).

One way the microbial communities in the soil contribute
to nutrient cycling is by producing extracellular enzymes
(Bowles et al., 2014). These extracellular enzymes facilitate the
degradation, transformation, and mineralization of soil organic
matter (Sinsabaugh, 2010; Xiao et al., 2018) and influence
soil quality and ecosystem productivity (Sayer et al., 2013).
Our data showed a significant increase in extracellular enzyme
activities (EEAs) with increased microbial biomass under elevated
precipitation. Precipitation alleviates microbial physiological stress
and promotes microbial activity by increasing nutrient availability
(Austin et al., 2004; Tiemann and Billings, 2011; Manzoni
et al., 2012). Consequently, higher organic carbon and nitrogen
content levels were positively correlated with the EEAs in soil.
The selected extracellular enzymes in this study were involved
in the decomposition of soil organic carbon (α -glucosidase,
β-glucosidase, β-galactosidase, β-xylosidase, cellobiohydrolase),
nitrogen (chitinase), and phosphorous (acid phosphatase) to their
assimilable forms (Bell et al., 2013). Prenet soil with higher organic
carbon content documented higher activity of these enzymes,
consistent with the earlier studies (Sinsabaugh et al., 1991).
Increased precipitation enhances the responses of soil microbial
functional genes involved in biogeocycling (Li et al., 2017). Hence,
precipitation is a critical factor that influences enzyme production
and turnover that impacts the responses of soil enzymes and
ecosystem productivity (Yang et al., 2017).

Microbes primarily produce extracellular enzymes in soil,
but certain enzymes are limited to particular microbial taxa.

For instance, lignocellulose degrading enzymes and chitinases
are commonly produced by fungi (Baldrian and Valášková,
2008; Sinsabaugh et al., 2008). Fungi can process recalcitrant
nutrient-limiting substrates, while bacteria readily decompose
labile substrates (Xu et al., 2015; Treseder et al., 2016). Fungi
secrete extracellular enzymes that can readily decompose complex
plant organic matter and provide bacteria with the labile substrate
(Romaní et al., 2006). However, the correlation between the
microbial communities and the enzyme activities is underexplored.

In the present study, the soil microbial composition showed
significant variation between the two sites, with higher bacterial
and fungal diversity in L-site soil. In contrast, significantly higher
soil extracellular enzyme activities (EEAs) and the total PLFA
were observed in P-site soil, indicating the high abundance of
metabolically active microbes that might play an essential role
in organic matter recycling (Coolen and Overmann, 2000). Such
observation could be correlated with the high water content in
P-site soil, which positively impacts microbial activity and increases
extracellular enzyme activities (Borowik and Wyszkowska, 2016).

4.3. Effect of precipitation on soil
microbial community structure

The present study demonstrates the variation in soil microbial
communities across two seed orchards receiving different
precipitation amounts. Lipova site receiving less precipitation
documented higher microbial diversity, low microbial biomass
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FIGURE 10

Heatmap illustrating the Spearman correlation between the environmental factors such as pH, Conductivity, Total organic carbon (TOC), Total
nitrogen (TN) and (A) the bacterial species abundance (alpha diversity), (B) the fungal species abundance to obtain the correlation and significance
between the two variables. The columns denote environmental factors, and the rows indicate the species. Colored tiles correspond to the
Spearman rank correlation coefficient r value, that range from −1 to 1. r < 0 indicates a negative correlation; r > 0 is a positive correlation; ‘*
denotes significance at p < 0.05.
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FIGURE 11

Canonical correspondence analysis (CCA) plot representing the relationship between the environmental factors such as pH, Conductivity, Total
organic carbon (TOC), Total nitrogen (TN) and (A) the bacterial community distribution in soil samples (Lipova soil and Prenet soil) (B) the fungal
distribution in Lipova and Prenet soil. The arrows indicate the association between environmental factors and microbial community distribution. The
longer the arrows, the greater the association and vice versa. The angle between the arrow and ordination axes responds to the association between
an environmental factor and the ordination axes. The less the angle, the greater the association and vice versa. The relationship between two
environmental factors is positive when their included angle is acute and negative correlation when they are at an obtuse angle.
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FIGURE 12

Variance partitioning canonical correspondence analysis (VPA)
displaying the total variance of (A) the bacterial community, (B) the
fungal community distribution into the respective contributions and
covariations of each set of environmental variables. The outside
value indicates the percentage of variance that cannot be explained.

and soil organic carbon. The soil microbial diversity and biomass
are the major drivers of ecosystem processes, such as nutrient
cycling, organic matter decomposition, etc., (Crowther et al.,
2016). Although several studies have shown the influence of biotic
and abiotic factors in controlling soil microbial diversity and
biomass (Tedersoo et al., 2014; Fierer, 2017; Delgado-Baquerizo
et al., 2018), the correlation between the microbial diversity and
biomass and the factors controlling them is still limited. One of
the important abiotic factors influencing the retention of organic
matter, microbial biomass and microbial activity is the soil texture
(Bechtold and Naiman, 2006). The presence of finer soil particles
(high clay and low sand percentages) constitutes more stable
aggregates in soil and tends to accumulate higher amounts of
organic C and total nitrogen contents, thereby strongly influencing
nutrient availability (Raiesi, 2006). Additionally, soil texture
significantly impacts the abundance of the microbial (bacteria
and fungi) population. It was suggested that as the soil organic
content increases, the abundance of dominant taxa is promoted,
thereby increasing the microbial biomass (Bastida et al., 2021).
However, such an increase in the microbial biomass reduces the
diversity of the subordinate taxa resulting in an overall reduction
in species richness by competitive exclusion (Bastida et al., 2021).
Such evidence is also found in plants where dominant plant species
suppress the diversity by preventing the establishment of other
plants (Loreau and Hector, 2001; Rajaniemi, 2003; Paquette and
Messier, 2011). Hence, such observation corroborates our findings,
where low carbon content and reduced microbial biomass in
L-site soil showed increased microbial diversity. Moreover, the
elevated temperature due to global warming directly impacts soil

microbial respiration and microbial activity, thereby altering soil
carbon content (Frey et al., 2013; Xu et al., 2021). Precisely, the
rise in temperature increases microbial activity and promotes
the decomposition of soil organic matter, which depletes the
labile carbon substrates (Karhu et al., 2014). In response to such
environmental conditions, the microbial communities in soil either
acclimate or alter in composition, increasing the microbial biomass
(Allison and Martiny, 2008; Bradford, 2013). Hence, the observed
difference in the microbial structure and activities between the
two studied sites (L and P) can also be partially attributed to the
temperature difference.

4.4. Relationship between the edaphic
variables and the soil microbial
communities

The soil organic matter represented by the TOC and TN
content plays a vital role in shaping the soil microbiome
(Drenovsky et al., 2004; Burns et al., 2015). Several studies reported
that the amendment of organic carbon and nitrogen into the soil
significantly influenced the microbial composition (Drenovsky
et al., 2004; Ng et al., 2014; Zhou et al., 2017). Our data revealed that
the contribution of the edaphic factors such as TOC and TN to the
soil microbial communities was significantly higher compared to
soil pH and conductivity (Figure 12). The relative abundance of the
bacterial genera belonging to class- Rhizobiales, Acidobacteriales,
Chthoniobacterales, Rhodospirillales, Ktedonobacterales, and
Planctomycetales showed a significant positive correlation with the
TOC and TN content. These bacterial orders mediate carbon and
nitrogen cycling in soil (Barton et al., 2014; Jones, 2015; Köberl
et al., 2020). Planctomycetales are facultative chemoorganotrophs
specializing in carbohydrate metabolism (Fuerst, 1995), while
Rhodospirillales and Rhizobiales fix nitrogen in the soil and
maintain the carbon-to-nitrogen ratio (Hayat et al., 2010; Jones,
2015). The relative abundance of such bacterial species is also
strongly correlated with the potential carbon mineralization
rates (Jones, 2015). Chthoniobacterales contribute to carbon
cycling by degrading complex carbohydrates, such as cellulose
and xylan (Köberl et al., 2020), while Ktedonobacterales encode
ureases and utilize nitrite and nitrate (Barton et al., 2014).
Furthermore, the present study reveals a correlation between
bacterial species and soil pH (Figure 10A). These bacterial species
were also involved in nutrient cycling through the decomposition
of organic matter and nitrogen fixation in soil (Wang et al.,
2016).

Similarly, the relative abundance of fungal communities was
positively correlated to the TOC, TN content and soil pH
(Figure 10B). These fungal communities primarily contribute to
carbohydrate degradation, thereby influencing the soil organic
matter content and maintaining the nitrogen: phosphorus (N:P)
ratio in soil (Kottke et al., 1998; Deacon et al., 2006; Avis, 2012;
Ohm et al., 2012). Hence, our study revealed the impact of long-
term precipitation variation complemented by soil texture and pH
on the soil microfauna and their function in the Norway spruce
forest. However, further studies at the metatranscriptomics and
metaproteomics levels can validate our current findings at the
functional level.
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5. Conclusion

The present study evaluated the impact of long-term
precipitation change over three decades on multiple edaphic
variables and the microbial community structure in the soil. The
combined effect of multiple edaphic factors strongly influences
the soil microbial community composition and diversity. The
bacterial and fungal communities in soil showed a significant
relationship with soil pH, total organic carbon (TOC), and nitrogen
(TN). Moreover, the soil metabolites, the extracellular enzyme
activities, and PLFA content were primarily influenced by nutrient
availability, indicating precipitation as a key driving factor. The
variation in the soil microbial communities between the two seed
orchards was also due to precipitation changes and a combination
of several abiotic factors such as total organic carbon (TOC),
total nitrogen (TN), and pH. Our study showed that increased
precipitation complemented by soil texture enhances water and
nutrient availability in soil, thereby increasing extracellular enzyme
activities. Further, we observed that the microbial biomass and
their activity are enhanced due to increased soil moisture content
but showed low microbial diversity suggesting that soil microbial
communities readily adapt to their environment.
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SUPPLEMENTARY FIGURE 1

Box plot representing (A) the average precipitation (B) the average
temperature recorded over three decades (1991–2019) at two different
sites (Lipova and Prenet).

SUPPLEMENTARY FIGURE 2

Rarefaction Curves for (A) bacterial 16S amplicon sequencing (B) fungal ITS
sequencing of soil samples from two different locations, Lipova (L) and
Prenet (P). Different colors and symbols denote different samples.

SUPPLEMENTARY FIGURE 3

Flower diagram representing (A) the presence of 1511 core bacterial OTUs
shared among the different soil samples collected from Lipova (L) site (B)
944 bacterial OTUs present in Prenet (P) soil samples (C) the occurrence of
127 fungal OTUs that were common in the soil samples from L site and (D)
160 core fungal OTUs shared among the soils collected from P site.

SUPPLEMENTARY FIGURE 4

The OTU tree representation of the bacterial abundance in (A) Lipova soil
(B) Prenet soil using GraPhlAn. The predominance of Proteobacteria
followed by Firmicutes, Actinobacteria and Acidobacteria was observed in
both soil samples. Bacteroidetes were documented in Lipova soil, while
Verrucomicrobia and Chloroflexi were observed in Prenet soil. The different
taxonomic levels are indicated by the circle ranging from inside out, and
the size of the circles denotes the species abundance. Different phyla are
displayed in different colors. The solid circles denote the high abundance of
the top 40 species.

SUPPLEMENTARY FIGURE 5

The OTU tree representation of the fungal abundance in (A) Lipova soil (B)
Prenet soil by using GraPhlAn. The predominance of Ascomycota,
Basidiomycota and Zygomycota is observed in the soil samples. The circle
from the inside out indicates the different taxonomic levels, and the size of
the circles denotes the species abundance. Different phyla are displayed in
different colors. The solid circles denote the high abundance of
the top 40 species.

SUPPLEMENTARY FIGURE 6

The evolutionary tree representing (A) the top 100 bacterial genera (B) the
top 100 fungal genera present in soils from two different sites (Lipova and
Prenet). Different colors of the branches indicate different phyla. The
relative abundance of each genus in each soil is displayed outside the circle
with different colors denoting different soil samples.
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SUPPLEMENTARY FIGURE 7

Heatmap representation of Weighted and Unweighted Unifrac distance
matrices indicating the pairwise dissimilarity coefficient of (A) bacterial and
(D) fungal communities between Lipova (L) and Prenet (P) soils where
Weighted Unifrac distance is displayed above, and Unweighted Unifrac
distance denoted below. Boxplot illustrates the beta diversity variation
based on Weighted Unifrac distance matrices between soil (B) bacterial and
(E) fungal communities Lipova and Prenet sites. The significance of the
difference between the soil was analysed by Wilcox signed ranged test.
Unweighted pair group method with arithmetic mean (UPGMA) tree cluster
based on Weighted Unifrac distance indicating the similarity in (C) bacterial
and (F) fungal communities in the soil samples collected from the same site
in replicates. The relative abundance of soil bacterial and fungal
communities at the phylum level is represented along with the UPGMA tree.

SUPPLEMENTARY FIGURE 8

T-test analysis to determine the significant variation of (A) bacterial and (B)
fungal communities at the phylum level in Lipova and Prenet soils. The last
panel denotes the abundance of the phyla that significantly differs between
the two soils. Each bar represents the mean value of the abundance at the
phylum level in soil that is significantly different. The right panel denotes the
confidential interval between the soils. The left-most part of each circle
stands for the lower 95% confidential interval limit, while the right-most part
is the upper limit. The centre of the circle stands for the difference in the
mean value. The color of the circle resembles the soil sample, whose mean
value is higher. The right-most value is the p-value of the significance test.

SUPPLEMENTARY FIGURE 9

LEfSe analysis representing histogram of the LDA scores illustrating the
presence of (A) bacterial and (B) fungal species (biomarker) whose
abundance differs significantly between the soils from Lipova and Prenet.
The length of each bin, i.e., LDA score, represents the effect size (the extent
to which a biomarker can explain the differentiating phenotypes among
groups) at the LDA score cutoff threshold >4.

SUPPLEMENTARY TABLE 1

Analysis of Similarity (ANOSIM) representing the magnitude of variation in
the bacterial and fungal communities between the two different forest soil
samples. The positive R values indicate significant differences in the
microbial communities in two different soils. P-value < 0.05 represents
significant differences.

SUPPLEMENTARY TABLE 2

MRPP Analysis representing the difference in the microbial communities
(bacterial and fungal) in Lipova and Prenet soil samples. The less
observed-delta value indicates low variation in bacterial and fungal
communities within the biological replicates of each soil sample, while
higher expected-delta values indicate larger differences between the soil

samples. A positive A-value denotes that the difference between the two
soil samples is larger than the difference within replicates. The significance
value <0.05 indicates significant differences in the soil microbiota between
the two samples.

SUPPLEMENTARY TABLE 3

ADONIS Analysis based on the Bray-Curtis method indicates the significant
difference between the bacterial and fungal communities between the two
different forest soils. (Df - degree of freedom, MeanSqs- SS/Df, F. Model-
F-test value, R2- the ratio of grouping variance and total variance). Values in
parentheses denote Residual Error. The Pr value represents the significant
variation in the microbial community structure.

SUPPLEMENTARY TABLE 4

AMOVA Analysis determining differences in microbial community
structure between the two forest soils. Df - denotes the degree of
freedom, MeanSqs- SS/Df, F.Model- F-test value. Values in parentheses
stand for Residual Error. The P-value determines the significant
variation.

SUPPLEMENTARY EXCEL 1

Soil metabolite profiling.

SUPPLEMENTARY EXCEL 2

Bacterial_Raw_Clean_QC.

SUPPLEMENTARY EXCEL 3

Fungal_Raw_Clean_QC.

SUPPLEMENTARY EXCEL 4

Relative abundance of bacterial communities.

SUPPLEMENTARY EXCEL 5

Relative abundance of fungal communities.

SUPPLEMENTARY EXCEL 6

Core and unique soil bacterial communities_Lipova_Prenet.

SUPPLEMENTARY EXCEL 7

Core and unique soil fungal communities_Lipova_Prenet.

SUPPLEMENTARY EXCEL 8

Core and unique bacterial communities_Lipova soil.

SUPPLEMENTARY EXCEL 9

Core and unique fungal communities_Lipova soil.

SUPPLEMENTARY EXCEL 10

Core and unique bacterial communities_Prenet soil.

SUPPLEMENTARY EXCEL 11

Core and unique fungal communities_Prenet soil.
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