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Recent advances in satellite-borne optical sensors led to important developments

in the monitoring of tropical ecosystems in Asia, which have been strongly

affected by recent anthropogenic activities and climate change. Based on our

feasibility analyses conducted in Indonesia in Sumatra and Sarawak, Malaysia in

Borneo, we discuss the current situation, problems, recent improvements, and

future tasks regarding plant phenology observations and land-cover and land-

use detection. We found that the Multispectral Instrument (MSI) on board the

Sentinel-2A/2B satellites with a 10-m spatial resolution and 5-day observational

intervals could be used to monitor phenology among tree species. For the

Advanced Himawari Imager (AHI) on board the Himawari-8 geostationary

satellite with a 1,000-m spatial resolution and 10-min observational intervals,

we found that the time-series in vegetation indices without gaps due to cloud

contamination may be used to accurately detect the timing and patterns of

phenology among tree species, although the spatial resolution of the sensor

requires further improvement. We also found and validated that text and pictures

with geolocation information published on the Internet, and historical field notes
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could be used for ground-truthing land cover and land use in the past and present

time. The future development of both high frequency (≤ 10 min) and high spatial

resolution (≤ 10 m) optical sensors aboard satellites is expected to dramatically

improve our understanding of ecosystems in the tropical Asia.

KEYWORDS

deforestation, general flowering event, geostationary satellite (GEO), optical sensor,
cloud contamination, Sarawak (Malaysia), Sumatra

1. Introduction

In the tropics, where biodiversity is the highest (FAO,
and UNEP, 2020; Secretariat of the Convention on Biological
Diversity, 2020), there is an urgent need to accurately evaluate
the spatiotemporal variation of ecosystem functions, ecosystem
services which have recently been called “nature’s contributions
to people” (Díaz et al., 2018), 1and biodiversity under the
rapid anthropogenic impacts and climate change occurring there
(Estoque et al., 2019). Toward this aim, we require accurate and
continuous observations of plant phenology (e.g., flowering, leaf
flush, leaf coloring, and leaf fall), which serve as proxies of the
responses of organisms and ecosystems to the environment (Tang
et al., 2016; Piao et al., 2019), and of land-cover and land-use
change. Data on plant phenology, and land-cover and land-use
change help to explain the spatiotemporal variability of ecosystem
properties (e.g., photosynthesis and evapotranspiration, carbon
stocks and flows, the land surface’s albedo, and energy balances;
Penþuelas et al., 2009; Kumagai et al., 2013; Richardson et al.,
2013; Wu et al., 2016), emission of biogenic volatile organic
compounds (BVOCs; Penþuelas et al., 2009; Richardson et al.,
2013; IPCC, 2021), cultural ecosystem services (e.g., festivals
and recreation opportunities; Sakurai et al., 2011; Sparks, 2014;
Nagai et al., 2019), regulating ecosystem services (e.g., pollinator
abundances and pollination; Lautenbach et al., 2012; Rohde
and Pilliod, 2021), environmental changes in various habitats
(Muraoka et al., 2012; Gray and Ewers, 2021), and biodiversity
conservation (Morisette et al., 2009; Secades et al., 2014; Morellato
et al., 2016). Phenological mismatch between plants and their
animal pollinators and consumers caused by the changes of
the timing of each phenology due to climate change, reduces
the biodiversity (Visser and Gienapp, 2019; Secretariat of the
Convention on Biological Diversity, 2020). The evaluation of
spatial-temporal variability of the interaction between landscape,
which is mainly explained by land cover and land use, and
anthropogenic activities, also provides fundamental knowledge to
deeply understand the spatial-temporal variability of ecosystem
functions, ecosystem services and biodiversity under climate and
societal changes.

Satellite remote-sensing by optical sensors is useful for
evaluating the spatiotemporal variation of plant phenology, land
cover, and land use over a broad scale (Muraoka et al., 2012;

1 https://ipbes.net/news/natures-contributions-people-ncp-article-
ipbes-experts-science

Nagai et al., 2020a; Shin et al., 2023). Since 1972 when Landsat-
1 was launched, 2satellite optical sensors that observe visible
and near-infrared regions of the electro-magnetic spectrum have
continuously monitored the state of the ground surface from plot
to global scales (Table 1 shows a summary of the specification of
optical sensors on board satellites shown in this perspective paper).
However, these optical sensors are affected by atmospheric noise
and cloud contamination, which is the biggest disadvantage of
optical sensors. The opportunity for observation under clear sky
conditions in the tropics is much rarer than in other regions (Nagai
et al., 2011, 2014a).

In contrast, synthetic aperture radar (SAR) on board satellites
is not affected by atmospheric noise and cloud contamination
and allows for nighttime observation (e.g., Phased-Array type
L-band Synthetic Aperture Radar 2 on board the Advanced
Land Observing Satellite [ALOS]-2) and measurement of the
spatiotemporal variation of ecosystem structures. SAR transmits
microwaves and then actively receives the returned microwave
off the ground surface, allowing the detection of forest/non-forest
domains, land use and land cover, and aboveground biomass of
forests (Miettinen and Liew, 2011; Avtar et al., 2014; Shimada et al.,
2014; Kou et al., 2015; Li L. et al., 2015; Stelmaszczuk-Górska et al.,
2018). However, SAR cannot observe plant phenology, which is
mainly shown as a characteristic of color change of canopy surface
on satellite remote-sensing in optical signals. Thus, advancement in
SAR technology and/or the integration of SAR and optical sensors
will be needed for the accurate detection of land cover and land use
(Najib et al., 2020).

To improve the accuracy of phenology observations (e.g.,
detection of accurate timing of flowering, leaf-flush, and leaf-fall
in each ecosystem and/or tree species) and land-cover and land-
use detection (e.g., categorization of various land use type and
immediate detection of land cover change with a high spatial
resolution), we ideally require an optical sensor with high spatial
(e.g., 10 m), temporal (e.g., daily interval), and wavelength (many
narrow spectral bands) resolutions. However, these three properties
have not yet been attained simultaneously with a single sensor due
to trade-offs especially between spatial and temporal resolutions
(Nagai et al., 2020a). This limitation has made it difficult to
accurately monitor the ground surface in the tropics, where the
plant phenology and its synchrony among tree species are much
less clear than in temperate and boreal vegetation (Harrison, 2001;
Nakaji et al., 2014; Nagai et al., 2016a; Osada, 2018; Nakagawa et al.,

2 https://landsat.gsfc.nasa.gov/
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2019). Higher diversity and heterogeneity of tree species in the
Asian tropics (Lee et al., 2002) make satellite-based phenological
observations difficult. Marked land-cover and land-use changes
have accelerated in the tropics due to anthropogenic activities (e.g.,
deforestation) and climate change (e.g., forest fires triggered by the
El Niño–Southern Oscillation; Ichikawa, 2007; Segah et al., 2010;
Wooster et al., 2012; Hansen et al., 2013; Nagai et al., 2014a; Marlier
et al., 2015; Spessa et al., 2015).

For phenology observations and detection of the interannual
variation of land cover and land use, researchers have frequently
used data observed by optical sensors on board public satellites with
high frequency but a coarse spatial resolution, such as the Advanced
Very High Resolution Radiometer (AVHRR) on board the National
Oceanic and Atmospheric Administration satellite (NOAA; 1100-
m spatial resolution at a daily interval; e.g., Erasmi et al., 2014;
Garonna et al., 2014; Buitenwerf et al., 2015; Gao et al., 2019),
the Moderate Resolution Imaging Spectroradiometer (MODIS)
on board the Terra and Aqua satellites (250- to 500-m spatial
resolution at a daily interval; e.g., Zhang et al., 2003; Miettinen et al.,
2011; Pennec et al., 2011; Jin et al., 2019), and the VEGETATION
optical sensor on board the Satellite Pour l’Observation de la Terre
(SPOT; 1000-m spatial resolution at a daily interval, 3e.g., Delbart
et al., 2006, 2015; Segah et al., 2010; Kobayashi et al., 2016). Also
for this purpose, researchers have frequently used data observed by
optical sensors on board public satellites with low frequency (16-
day intervals) but a moderately high spatial resolution (30 m) such
as the Landsat series of satellites (Segah et al., 2010; Kou et al.,
2015; Li P. et al., 2015; Ishihara and Tadano, 2017; Morozumi et al.,
2019). In contrast, for the detection of land cover and land use
with a fine-scale, they have frequently used data observed by optical
sensors on board commercial satellites (e.g., the RapidEye: Imukova
et al., 2015; Pfeifer et al., 2016; the WorldView series satellites: 4

Nomura and Mitchard, 2018; Rahmandhana et al., 2022) with a
high spatial resolution (e.g., 50 cm) but quite low frequency (e.g.,
46-day intervals).

Some advantages of optical sensors on board public satellites
are the uniformity of observed data coverage, stable long-term
continuous observations from the long-term missions (e.g., the
Landsat series of satellites: See text footnote 2), and free usage
on the Internet. In contrast, the data observed by optical sensors
on board commercial satellites tend to be low-frequency data
distributed in urban areas, meaning that we cannot easily access
satellite data in remote regions. Although researchers could request
satellite image acquisitions of remote regions to these companies,
it is an impractical idea to request periodic broad-scale satellite
observations in remote regions over a long period due to the cost
of obtaining such commercial data.

In the latter half of the 2010s, the spatiotemporal resolution
of optical sensors on board public satellites remarkably progressed
with the launch of the Multispectral Instrument (MSI) on board
the Sentinel-2A/2B satellites, with a 10-m spatial resolution at 5-
day intervals (; e.g., Nomura and Mitchard, 2018; Persson et al.,
2018; Vrieling et al., 2018; Chang et al., 2021), 5and the Advanced
Himawari Imager (AHI) on board the Himawari-8 geostationary

3 https://spot-vegetation.com/en

4 https://earth.esa.int/eogateway/missions/worldview

5 https://sentinel.esa.int/web/sentinel/missions/sentinel-2

satellite, with a 1,000-m spatial resolution at 10-min intervals (at
2.5-min intervals around Japan; Miura et al., 2019; Yan et al.,
2019; Miura and Nagai, 2020). 6Although these optical sensors
do not satisfy the need for simultaneous high spatial, temporal,
and wavelength resolutions, these optical sensors will be expected
to provide much more accurate and precise satellite observations,
along with a reduction of uncertainties and systematic noise in
land-cover and land-use detection and phenology observations
(Shin et al., 2023). Continuous and extensive satellite observations
by these optical sensors will be also expected to develop
spatiotemporally interpolating and extrapolating in situ observed
data on ecosystem functions and biodiversity in each tropical
observation field.

In this perspective paper, based on this recent progress in
the optical sensors on board satellites and the development of
observation systems in the latter half of the 2010s, we focus on
satellite optical sensors and discuss the current situation, problems,
and recent improvements, as well as future tasks regarding
phenology observations and land-cover and land-use detection in
the Asian tropics. Here, we focus on island or maritime Southeast
Asia. In order to discuss concretely, we review our feasibility
analyses in Sarawak, Malaysia in Borneo, where our research group
has conducted field studies to validate satellite remote-sensing
since the 2010s, and Indonesia in Sumatra by using data from
the Sentinel-2A/2B–MSI and the Himawari-8–AHI satellites. In
Section 2, we describe how the accuracy of satellite phenology
observations can be improved from the viewpoints of advanced
resolution sensors and frequency of satellite observations. Next, in
Section 3, we describe how to improve the accuracy of land-cover
and land-use detection from the viewpoints of detection of year-
to-year variability and collection of past and present ground-truth
information. Then, in Section 4, we discuss the future tasks to help
improve our understanding of Asian tropical ecosystems. Finally,
in Section 5, we conclude our discussions in this perspective paper.

2. Improvements in the accuracy of
satellite phenology observations

2.1. Monitoring of plant phenology by
using advanced resolution sensors

Figure 1 shows the time-series of vegetation indices of Lambir
Hills National Park (primary tropical rain forest; 4◦12’04"N,
114◦02’21"E; Nakagawa et al., 2019) and the Lambir oil palm
plantation (4◦09’07"N, 113◦57’58"E) in Sarawak, Malaysia in
Borneo observed by the Sentinel-2A/2B–MSI (atmosphere
corrected data) and Himawari-8–AHI satellites. Primary tropical
rain forests, oil palm plantation forests, and secondary forests
are typical landscape features in this area (Ichikawa, 2007). In
addition, typical canopy surface images of Lambir Hills National
Park are shown in Figure 2. We show only NDVI values for the
Himawari-8–AHI satellite because we used the reflectance data at
the top of the atmosphere (i.e., atmosphere uncorrected data). For
the Sentinel-2A/2B–MSI satellites, we selected observation scenes

6 https://www.data.jma.go.jp/mscweb/en/index.html
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TABLE 1 Summary of the optical sensors on board public satellite.

Sensor Satellite Spatial
resolution

Temporal
resolution

Spectral
bands

Swath Period URL of
specification

Multispectral Scannar (MSS),
Thematic Mapper (TM),
Enhanced Thematic Mapper
Plus (ETM +), Operational
Land Imager (OLI), and
OLI-2

Landsat series 68 × 83 m (MSS);
30, 120 m (TM); 15,
30, 60 m (ETM +,
OLI); 15, 30, 100 m
(OLI-2)

18-days (MSS);
16-days

0.5-1.1µm (4 or 5
bands; MSS), 0.45-
12.5µm (7 bands,
TM); 0.45-12.5µm (8
bands, ETM +);
0.435-12.51 µm (11
bands, ETM +);
0.433-12.5 µm (11
bands, OLI-2)

185 km (MSS, TM,
OLI, OLI-2); 183 km
(ETM +)

Since 1972 https://landsat.gsfc.
nasa.gov/

Advanced Very High
Resolution Radiometer
(AVHRR)

NOAA Polar
Orbiting
Environmental
Satellites (POES),
Meteorological
Operational
Satellite (MetOp)

1,100 m daily 0.58-12.5 µm (4 or 5
bands)

2399 km Since 1981 https://www.avl.class.
noaa.gov/release/data_
available/avhrr/index.
htm;
https://www.eumetsat.
int/oursatellites/
metop-series

Moderate Resolution
Imaging Spectroradiometer
(MODIS)

Terra and Aqua 250, 500, 1,000 m daily 0.405-14.385 µm (36
bands)

2330 km Since 1999 and
2002,
respectively

https:
//modis.gsfc.nasa.gov/

Vegetation-1/2 Satellite Pour
l’Observation de
la Terre
(SPOT)-4/5

1,000 m daily 0.43-1.75 µm (4
bands)

2200 km Since 1998 https://earth.esa.int/
eogateway/missions/
spot

Advanced Visible and Near
Infrared Radiometer type 2
(AVNIR-2)

Advanced Land
Observing
Satellite (ALOS)

10 m 46-days 0.42-0.89 µm (4
bands)

70 km 2006-2011 https:
//www.eorc.jaxa.jp/
ALOS/en/index_e.htm

MultiSpectral Instrument
(MSI)

Sentinel-2A/2B 10, 20, 60 m 5-days 0.4924-21.857 µm
(13 bands)

290 km Since 2015 and
2017,
respectively

https://sentinel.esa.int/
web/sentinel/
missions/sentinel-2

Advanced Himawari Imager
(AHI)

Himawari-8 1000 m 10 min.
(2.5 min. around
Japan)

0.47-13.3µm (16
bands)

Geostationary
position: 140.7◦E

Since 2015 https://www.data.jma.
go.jp/mscweb/en/
index.html

Revised in this table in Shin et al. (2023).

with cloud cover ≤ 10%, but we plotted all values observed by the
Himawari-8–AHI satellites. For the Himawari-8–AHI satellite,
we plotted values observed at 3 h around the culmination time
because there was no property in the data regarding the cloud
contamination. Despite the occurrence of general flowering in
Lambir Hills National Park in May 2019, which occurs every
1–4 years, and the color of the canopy surface changing from
dark green to whitish green (Sakai et al., 2006; Azmy et al., 2016;
Chechina and Hamann, 2019; Ushio et al., 2020), every vegetation
index showed no clear seasonal change (low values may be affected
by cloud contamination). During the general flowering period, no
data were observed by the Sentinel-2A/2B–MSI satellites under
clear sky conditions (Figure 1). MSI Green-Red Vegetation Index
(GRVI; Motohka et al., 2010) values observed at Lambir Hills
National Park were about 0.05 smaller than those at the Lambir
oil palm plantation, reflecting the difference in color of the canopy
surface between tropical rain forest (dark green) and the oil palm
plantation (light green). Nagai et al. (2016a) reported that NDVI
and GRVI values observed by the photodiode sensors installed
at the top of a crane tower in Lambir Hills National Park were
almost constant throughout the year. In contrast, the time-series
of the ratio of R, G, and B digital numbers to the total RGB digital
numbers extracted from daily canopy surface images taken at

Lambir Hills National Park showed characteristics of leaf flush and
flowering among individual trees (Nagai et al., 2016a). These results
indicate the possibility that long-term continuous observations
by future advanced optical sensors on board satellites with a high
spatial resolution and high temporal resolution (high frequent)
may detect characteristics of phenology for each tree species in a
tropical rain forest. In fact, the RGB composite images observed
by the PlanetScope constellation of satellites, which consist of
approximately 180 microsatellites (as of 16 November 2022;
a commercial endeavor),78 with an approximately 3-m spatial
resolution at a daily interval could detect the characteristics of
flowering phenology among tree species in Lambir Hills National
Park during the general flowering event in May 2019 (Miura
et al., 2023). The swath range that can be observed at one time
by each PlanetScope microsatellite is narrow (25 km), but the
entire observation system of approximately 180 microsatellites
resolved the trade-off between spatial and temporal resolutions.
Some previous studies indicated this advantage of PlanetScope
constellation of satellites observations in alpine, temperate, and

7 https://earth.esa.int/eogateway/missions/planetscope

8 https://www.planet.com/products/planet-imagery/
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FIGURE 1

Time-series of vegetation indices observed by (A,B) the Sentinel-2A/2B–MSI and (C,D) the Himawari-8–AHI satellites in Lambir Hills National Park
(primitive tropical rain forests; 4◦12’04"N, 114◦02’21"E) and the Lambir oil palm plantation (4◦09’07"N, 113◦57’58"E) in northwestern Borneo. The thick
vertical solid lines in (A,C) indicate the dates of canopy surface images in Figure 2. Cloud contamination appeared in Lambir Hills National Park and
the Lambir oil palm plantation images on 5 March, 10 March (only in the Lambir oil palm plantation), 25 March, 4 April, and 20 November (only in the
Lambir oil palm plantation). A cloud shadow appeared in Lambir Hills National Park image on 20 November.

FIGURE 2

Typical canopy surface images taken at the top of a crane tower in Lambir Hills National Park (http://www.pheno-eye.org/). The day of year (DOY) is
shown in the bottom-right corners of each image. General flowering was shown on DOY 123.

tropical regions (Leach et al., 2019; John et al., 2020; Wang et al.,
2020, 2023; Moon et al., 2021; Wu et al., 2021).

How can we detect the characteristics of phenology in tropical
rain forests consisting of evergreen broad-leaved trees, with
seasonality much less clear than that of deciduous trees, with
optical sensors on board satellites? Previous studies reported that
the RGB composite images observed by the Sentinel-2A/2B–MSI
satellites, with the highest spatial resolution among the optical
sensors on board public satellites, detected the color change on
the canopy surface of Castanopsis sieboldii, Castanopsis cuspidate,
and Lithocarpus edulis (evergreen oak tree species) caused by leaf

flush (light green) and successive flowering (cream) in Japan (Nagai
et al., 2020b; Shinohara and Nasahara, 2022; Shin et al., 2023). These
plants are insect-pollinated flowers of Fagaceae and their flowers
bloom across the whole canopy surface. The timing of flowering
is different among these tree species (L. edulis is approximately
one month later than C. sieboldii and C. cuspidate). In a tropical
rainforest in Borneo (Lambir Hills National Park), Miura et al.
(2023) reported that the spectral reflectance observed by the
PlanetScope constellation satellites detected the characteristic of
color change on the canopy surface of Dryobalanops aromatica,
Shorea ochracea, Swintonia foxworthyi, and Pentace borneensis
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FIGURE 3

Relationship between NDVI values observed by the Himawari-8–AHI satellite and state of cloud cover based on in situ observed sky images in
Lambir Hills National Park during 8:05 and 16:45 LST (UTC + 8) from (A) 2015 and (B) 2016 (sky images from Nagai et al., 2018).

during a general flowering in 2019. These results indicate the
possibility that satellite-based observations may be used to track the
phenological timing and patterns of various tree species in tropical
rain forests in tandem with ground-truth information.

Remote-sensing can detect the color of the canopy surface
of various tree species, which indicate the characteristics of leaf
traits (leaf size, leaf biomass, leaf thickness, amount of pigments
in a leaf, and angle of leaves) and structures (tree structure and
height) (Sims and Gamon, 2002; Luke et al., 2013; Noda et al.,
2014; Asner et al., 2015; Noda et al., 2021; Rahmandhana et al.,
2022). The characteristics of leaf longevity, which is explained by
leaf-flush and leaf-fall phenology, were correlated with the type of
photosynthesis, leaf traits and structures, and climate (Wright et al.,
2004; Kikuzawa, 2005; Onoda et al., 2011; Kikuzawa et al., 2013).
These facts indicate the importance of discriminating each tree
species by referring to the characteristics of phenology and canopy
structures and mapping the geographic distributions for each tree
species at a broad scale. In Lambir Hills National Park, however, the

geographic distribution of each tree species is heterogeneous due to
microtopography (Lee et al., 2002). The collection of ground-truth
information for various tree species, thus, is both an important and
challenging task. Integrating in situ and satellite-based phenological
observations should also result in the tree discrimination of forests
in the Asian tropics.

2.2. Improvement of the frequency of
satellite observations

As mentioned above, the Sentinel-2A/2B–MSI satellites have
the potential to remarkably improve phenology observations in the
tropics. The MSI observations occur at 5-day intervals, however,
and in 2019, we only obtained seven scenes with cloud cover ≤ 10%
(Figure 1). In addition, we confirmed that cloud contamination
appeared in Lambir Hills National Park and the Lambir oil palm
plantation images on 5 March, 10 March (only in the Lambir oil
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FIGURE 4

Spatiotemporal variation of deforestation in Indonesia in Sumatra from 2001 to 2020 detected by analyzing the time-series of daily GRVI observed
by the Terra/Aqua–MODIS satellites (adapted from Nagai et al., 2014b). Each color indicates the latest deforested year. The dashed squares in (A) are
enlarged in (B) and (C). Boundary and river data come from the “1:10 m cultural vectors” published by Natural Earth
(https://www.naturalearthdata.com).

palm plantation), 25 March, 4 April, and 20 November (only in
the Lambir oil palm plantation) by visually checking the RGB
composite images. In addition, we confirmed that a cloud shadow
appeared in Lambir Hills National Park image on 20 November.
Therefore, it appears that the Sentinel-2A/2B–MSI satellites cannot
observe the characteristics of phenology for each tree species in
the suitable period under clear sky conditions. In contrast, the
observation frequency of the Himawari-8–AHI satellite under clear
sky conditions is much higher than that of the Sentinel-2A/2B–
MSI (Figure 1). In fact, even though the sky image taken at 10:30
(LST) in Lambir Hills National Park, which was the time of the
Sentinel-2A/2B–MSI satellites passage, showed cloudy skies, many
other images showed clear skies at other times (Nagai et al., 2018).

In previous phenology studies that analyzed time-series of
satellite-observed vegetation indices, the researchers used the 8-
day, 10-day, and bimonthly composite data in order to eliminate
noise and missing data caused by atmospheric noise and cloud
contamination and smoothed the composite time-series data by
applying some fitting functions (Zhang et al., 2003; Delbart et al.,
2006, 2015; Erasmi et al., 2009, 2014; Pennec et al., 2011; Wu
et al., 2014; Garonna et al., 2014; Buitenwerf et al., 2015; Kobayashi
et al., 2016; Park et al., 2016; Gao et al., 2019; Jin et al., 2019).
These analyses were based on the hypothesis that vegetation indices
observed under clear sky conditions, which might show the most
accurate value, were higher than those under cloudy and rainy
conditions. Therefore, the smoothed values are estimated values
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FIGURE 5

RGB composite images of Indonesia in Sumatra observed by the
Sentinel-2A/2B–MSI satellites in 2020. The RGB composite images
for the Sentinel-2A/2B–MSI satellites were composed of 73 days of
data observed under clear sky conditions. For the
Sentinels-2A/2B–MSI satellites, we estimated the atmospheric
corrected ground surface reflectance data by using the SNAP
application (Sentinel Toolboxes:
https://step.esa.int/main/download/snap-download/). The dashed
squares in (A) are enlarged in (B,C). The colored symbols mark the
locations of rice paddy, banana, cassava, and rubber recorded in
field notes in 1978 (https://fieldnote.archiving.jp/). Boundary and
river data come from the “1:10 m cultural vectors” published by
Natural Earth (https://www.naturalearthdata.com).

but not true values. The values smoothed by applying the fitting
functions may include two types of systematic errors: (1) an actual
value was eventually eliminated, or (2) an actual missing value was
eventually misread as a true value. For instance, in the case of
an abrupt decrease of vegetation caused by a landslide, vegetation
indices after the landslide may be eliminated as noise by applying

some fitting functions. In addition, in the case of successive cloudy
and rainy conditions in a certain period, smoothed vegetation
indices may be misinterpreted as a decrease of vegetation. Thus,
from a statistical viewpoint, we should avoid smoothing as much as
possible.

The frequency of the observations of vegetation indices in East
Asia by the Himawari-8–AHI satellite is 10-min intervals. If we only
select the vegetation indices observed during the daytime that were
little affected by the solar elevation angle (e.g., 3 h around noon), we
can obtain many data observed under clear sky conditions (Miura
et al., 2019). Figure 3 shows the relationship between NDVI values
observed by the Himawari-8–AHI satellite and state of cloud cover
based on in situ observed sky images in Lambir Hills National Park
during 8:05 and 16:45 LST (UTC + 8) from 2015 to 2016. The
occurrences of higher NDVI values (> 0.8) coincided well with the
timings of in situ “very sunny” or “sunny” sky conditions, despite
including missing data of sky images. The analysis of Figure 3
indicated that the number of days with clear sky conditions ranged
from 57 to 96, which was much more than vegetation index
observed by the Terra/Aqua–MODIS satellites (1–5 days per month
in the southwest monsoon period [May–October] and 0–2 days
per month in the northeast monsoon period [November–April] in
Borneo; at a daily interval; Nagai et al., 2014a). In addition, the
confidence in the change in vegetation indices, which was detected
by the actual change of vegetation or not (i.e., systematic noise
caused by atmospheric noise and cloud contamination), may also
increase by checking high-frequency continuously observed data
under clear sky conditions. So, if we can extract data observed only
under clear sky conditions, we scarcely need to smooth by applying
fitting functions. Despite a coarse spatial resolution (1,000 m), the
vegetation indices observed by the Himawari-8–AHI satellite may
indicate fairly accurate values.

At present, however, the Himawari-8–AHI satellite is still
not suitable with regard to spatial resolution for phenology
observations in tropical rain forests. In fact, despite the high
frequency of observations under clear sky conditions, no
characteristic change in the time-series of NDVI was shown in
May 2019, when the general flowering occurred in Lambir Hills
National Park (Figures 1, 2). The time-series in GRVI, which can
detect the change of color of the canopy surface (Motohka et al.,
2010; Nagai et al., 2014b), might capture some characteristic of
temporal change. In Lambir Hills National Park, the time-series in
the ratio of RGB digital numbers for each individual tree extracted
from daily canopy surface images showed differences among tree
species around the general flowering period (Nagai et al., 2016a).
In contrast, those for the whole canopy showed almost constant
values throughout the year (Nagai et al., 2016a), perhaps because
not all individuals and tree species flowered at the same time. In this
case, the target region of canopy surface images was within at most
100 m (Nagai et al., 2016a), but in the Lambir Hills National Park,
which consists of over 1000 tree species (Lee et al., 2002), vegetation
indices observed by the Himawari-8–AHI satellite can detect the
average phenology of various tree species within a 1,000-m-by-
1,000-m area. Therefore, for accurate phenology observations in
tropical rain forests, we require an onboard optical sensor with a
high spatial resolution to discriminate each tree individual (≤ 10
m) at high temporal frequencies (on the order of 10-min interval)
to eliminate cloud contaminations in satellite data.
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Despite the uncertainty caused by the heterogeneity of tree
species and microtopography, previous studies indicated that the
time-series of vegetation indices could be used to accurately
detect the spatiotemporal variation of leaf flush and leaf fall in
deciduous forests in Japan by validating the indices against long-
term continuous in situ observed data (Miura et al., 2019; Yan
et al., 2019). Despite the effect of microtopography (elevation)
on phenology and the differences in timing and patterns of leaf
flush and leaf fall among tree species (Inoue et al., 2014; Nagai
et al., 2014b; Shin et al., 2021a), leaf flush and leaf fall within
a narrow region (e.g., 1,000-m square) occur rapidly and nearly
simultaneously. The Japanese government is planning to launch
a geostationary satellite with an optical sensor with a 3- to 4-m
spatial resolution. 9Such future developments in optical sensors on
board satellites with high observation frequency and high spatial
resolution will remarkably improve the accuracy of phenology
observations in tropical rain forests, where the phenological timing
and patterns differ among the numerous and highly diverse tree
species (Osada, 2018; Reich et al., 2004).

3. Improvements in the accuracy of
land-cover and land-use detection

3.1. Detection of year-to-year variability
of land-cover and land-use change

Figure 4 shows that the interannual variation of deforestation
from 2001 to 2020 could be detected by analyzing the time-series
of the daily GRVI observed by the Terra/Aqua–MODIS satellites
[500-m spatial resolution; adapted from Nagai et al. (2014b)] in
Indonesia in Sumatra, where marked land-cover and land-use
change has occurred due to deforestation and expansion of oil
palm plantations (Ichikawa, 2007; Fitzherbert et al., 2008; GEAS,
2011; Koh et al., 2011; Miettinen et al., 2011; Hansen et al., 2013;
Carlson et al., 2014; Nagai et al., 2014a; Estoque et al., 2019; Najib
et al., 2020). Here, we defined deforestation as having occurred
at points where the ratio of number of days observed GRVI < 0
under clear sky conditions to total observed GRVI under clear sky
conditions was above 80% (Nagai et al., 2014a). This hypothesis
was based on the fact that GRVI < 0 after leaf fall or when there
was no vegetation (Motohka et al., 2010; Nagai et al., 2014b). In
the deforested area detected by the Terra/Aqua–MODIS satellites
(Figure 4), we also identify that vegetation is sparse by visually
inspecting the RGB composite images observed by the Sentinel-
2A/2B–MSI satellites with a 10-m spatial resolution (shown in
brown; Figure 5). In addition, we identify that GRVI observed by
the Sentinel-2A/2B–MSI satellites showed under 0 (Figure 6). From
2001 to 2020, the deforested areas continuously expanded in Riau
(central Sumatra; Figure 4C) and Lampung (southern Sumatra;
Figure 4B). In Indonesia, the loss rate of primary forests has
declined since 2016 according to the Secretariat of the Convention
on Biological Diversity (2020); however, our analysis suggests that
the deforestation is still ongoing.

9 https://www8.cao.go.jp/space/comittee/27-anpo/anpo-dai32/siryou1-
1.pdf

FIGURE 6

GRVI of Indonesia in Sumatra observed by the Sentinel-2A/2B–MSI
satellites in 2020. No algorithm was applied to remove cloud
contamination. The black symbols mark the locations of rice paddy,
banana, cassava, and rubber recorded in field notes in 1978
(https://fieldnote.archiving.jp/). Boundary and river data come from
the “1:10 m cultural vectors” published by Natural Earth
(https://www.naturalearthdata.com). The dashed squares in (a) are
enlarged in (b) and (c).

Interannual variation of deforestation in the tropics has been
detected by analyzing the time-series of vegetation indices observed
by the Landsat series (30-m spatial resolution at 16-day intervals;
Hansen et al., 2013). However, for those satellites capturing data
at 16-day intervals, it is possible that no data are observed under
clear sky conditions throughout an entire year especially in the
Asian tropics, which is one of regions with active atmospheric
water circulation. In addition, in the case of the ETM + sensor
on board the Landsat-7 satellite, each observation scene always
included partial missing data due to a systematic error in the sensor
(malfunction of the scan line corrector; Wang et al., 2021). For
the Terra/Aqua–MODIS satellite observations with a 500-m spatial
resolution, we could detect large-scale land-cover and land-use
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FIGURE 7

Example of Mapillary images (https://www.mapillary.com/) taken at four points where the typical landscapes in Indonesia in Sumatra were recorded
in field notes in 1978 (https://fieldnote.archiving.jp/): (a) rice paddy (geolocation based on the field note: 0◦41’58.9"S, 100◦36’02.4"E; geolocation
based on the Mapillary image: 0◦42’13.0"S, 100◦35’56.0"E; location gap of about 500 m), (b) banana (geolocation based on the field note:
3◦44’18.5"S, 104◦39’33.6"E; geolocation based on the Mapillary image: 3◦44’52.2"S, 104◦39’28.1"E; location gap of about 1,100 m), (c) cassava
(geolocation based on the field note: 5◦19’12.9"S, 105◦11’59.1"E; geolocation based on the Mapillary image: 5◦18’40.0"S, 105◦11’21.4"E; location gap
of about 1,500 m), and (d) rubber (geolocation based on the field note: 5◦19’49.6"S, 105◦12’20.5"E; geolocation based on the Mapillary image:
5◦19’54.4"S, 105◦11’47.2"E; location gap of about 1,100 m). The Mapillary images are provided under the Creative Commons Attribution ShareAlike
license (CC-BY-SA; https://www.mapillary.com/).

change in the tropics, including the establishment of oil palm and
acacia plantations after deforestation (Nagai et al., 2014a), but we
could not accurately detect local-scale changes such as the loss of
vegetation caused by a landslide, which typically occurs at an area
smaller than a footprint of satellite data (1 pixel size of satellite
data) with a coarse spatial resolution (500-m or 1,000-m; Miura
and Nagai, 2020). In contrast, high-frequency observations by the
Sentinel-2A/2B–MSI satellites with a 10-m spatial resolution at 5-
day intervals may improve the accuracy of detecting interannual
variation of land cover and land use in the tropics. Using the time-
series of the vegetation index observed by the Sentinel-2A/2B–MSI
satellites, whose data will be accumulated over a long period, should
help us to more accurately detect the interannual variation of
the geographic distribution of deforestation by applying the same
analysis as was applied to the Terra/Aqua–MODIS satellites data.

3.2. Collection of past and present
ground-truth information

To improve and validate the accuracy of satellite-based
land-cover and land-use maps, we must collect ground-truth
information at multiple points (Tsutsumida et al., 2019). One way to
achieve this is by using digital camera images with the geolocation
information, time, and date shot at multiple points that have been

uploaded on the Mapillary website, 10which is a crowdsourcing
project. For some reported points, we can use images taken on
different dates, thus allowing us to obtain evidence of land-cover
and land-use change over a short period. Funada and Tsutsumida
(2022) also indicated the usability of the street-level photographs
published on the Mapillary to map the geographical distribution
of cherry flowering in Fukushima in Japan. The text and images
uploaded to the Degree Conference Project (DCP) website11 are
also useful ground-truth information regarding land cover and land
use. Previous studies reported the suitability of information on the
DCP for use in validating satellite-based land-cover and land-use
maps (Iwao et al., 2011; Soyama et al., 2017).

Figure 7 shows Mapillary images at four locations that were
typical landscapes in Indonesia in Sumatra, according to field notes
recorded in 1978 (full details are mentioned later). Mapillary also
contains many images taken at intervals along the route of a
participant’s trip by using a car-mounted camera. Such uploaded
data may have a geographic bias and be concentrated in areas
that are strongly affected by anthropogenic activities (e.g., on
streets). Compared with Mapillary, there is less systematic bias
in the geographic distribution of target points published on the
DCP website, which allows users to choose the intersection of

10 https://www.mapillary.com/

11 https://confluence.org/
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latitude and longitude integer values in remote regions that have
been little affected by human activities. However, the data volume
of Mapillary (more than 1.8 billion street-level images as of 16
November 2022; See text footnote 10) is much larger than that of
the DCP (about 1.32 million photographs as of 16 November 2022;
See text footnote 11), making the usability of Mapillary superior. By
actively uploading captured images with geolocation information
on Mapillary, especially in the points and areas where images have
not yet been uploaded, field scientists can help to reduce the missing
areas of in situ observations.

Another important issue is how to obtain ground-truth
information regarding land cover and land use in the past. This
solution deepens our understanding of the conversion processes
of deforestation and agricultural expansion. We may estimate
the historical land cover and land use by examining the present
conditions. For instance, we can assume that areas now covered
by oil palm and acacia plantations in Sarawak, Malaysia in Borneo
were once covered by tropical rain forests (Nagai et al., 2014a).
Without ground-truthing, however, those values will always remain
as estimates. To solve this issue, landscape descriptions in research
field notes may provide useful ground-truth information regarding
past land cover and land use. A group of Japanese scientists at Kyoto
University launched the “Inheriting field notes” project (Takata
et al., 2014; Yamada, 2015)12 and have published 46,281 sets of
digitalized field notes on their website. 13Those field notes include
field trips in the Middle East, the Mediterranean, Africa, South Asia,
East Asia, Southeast Asia, and Oceania from 1967 to 2016 (mainly
the 1980s and 1990s). At the time of the field trips, researchers
could not use the tools to capture geolocation information, such as
a Global Positioning System (GPS) receiver or a digital camera with
this function. However, by thoroughly examining the time-series of
objective descriptions in the field notes, we can roughly identify the
landscape at a certain point.

For instance, by applying a text mining approach to field notes
recorded in Indonesia in Sumatra in 1978 (1802 items) we analyzed
the frequency of the words used (Yamamoto et al., 2015). The
field notes included typical words regarding landscapes, such as
rice paddy (total of 283 cases), banana (164 cases), cassava (136
cases), and rubber (185 cases), which allowed us to identify the
landscape at that time. These words are also useful ground-truth
information regarding the land cover and land use in Indonesia in
Sumatra in 1978. We plotted the locations of rice paddy, banana,
cassava, and rubber extracted from the field notes in Figure 5. In
addition, by using the Mapillary images (Figure 7), we compared
the land cover and land use in 1978 published on field notes with
those at the present time. Despite the difficulty in checking precise
geolocations, we could validate that there was no land-cover and
land-use change at two points, where rice paddy and banana were
recorded in the field notes. However, like the Mapillary images,
many points recorded on the field notes may be located in areas that
were strongly affected by anthropogenic activities. The retirement
and decease of owners will accelerate the loss of personal analog
data such as field notes. Rescuing and archiving of these analog data
and information is an urgent issue (Shin et al., 2020).

12 https://newsletter.cseas.kyoto-u.ac.jp/jp/02/02_02_yanagisawa.html

13 https://fieldnote.archiving.jp/

4. Future tasks to help improve our
understanding of Asian tropical
ecosystems

To improve our understanding of Asian tropical ecosystems,
we propose five issues that need to be addressed: (1) further
collecting ground-truth information from multiple locations and
various periods; (2) improving the classification of plant functional
types (PFTs) on land-cover and land-use maps and detecting the
interannual variation of PFTs; (3) studying the interactions between
terrestrial and marine ecosystems; (4) investigating the interaction
between land-cover and land-use change and anthropogenic
activities; and (5) developing integrative analysis and evaluation of
in situ and satellite-observed data.

4.1. Further collection of ground-truth
information from multiple locations and
various periods

In conjunction with the development of optical sensors on
board satellites, researchers also need to gather ground-truth
information obtained at multiple locations in various periods. The
quality of satellite data depends on the accuracy and precision
of atmospheric and geometric corrections of those data. Previous
studies used locally collected data such as daily phenology images
and spectrum data observed from towers (Nagai et al., 2014a,
2020a,b; Nakaji et al., 2014; Lopes et al., 2016). Such ground-truth
information provides accurate and precise data collected over a
long period. However, the number of locations in the tropics where
phenology images and spectrum data are being collected is still
limited (Nakaji et al., 2014; Nasahara and Nagai, 2015; Lopes et al.,
2016; Alberton et al., 2017; Nagai et al., 2018, 2020a).

Another way to obtain detailed ground-truth information from
multiple locations for a broad-scale picture of historical changes in
land cover and land use is to examine “social sensing data,” a type of
big data. These include videos posted to YouTube and old television
programs (De Frenne et al., 2018; Shin et al., 2022b), and text and
photographs with geotag information posted to social networking
services (e.g., Twitter, Instagram, and Flickr; Fernández-Bellon and
Kane, 2020; Silva et al., 2018; Song et al., 2020; Yoshimura and
Hiura, 2017). The interests and movement of people at various
locations can also be tracked by analyzing the access statistics
of Google (Google Trends: Takada, 2012; Proulx et al., 2013),
14number of visitors at Wikipedia (Fernández-Bellon and Kane,
2020), and geolocation information of mobile phones (Chang et al.,
2021; Pintér and Felde, 2021). For instance, the analysis of Twitter
posts was useful for evaluating the spatiotemporal variation of the
timing of leaf coloring in Japan (Shin et al., 2021b). Kotani et al.
(2021) and Shin et al. (2022a) analyzed the time-series of Google
Trends and/or Yandex statistics (a major search engine in Russia)15

to assess the spatiotemporal characteristics of people’s interest in
the use of berries in Arctic and the Russian Far East regions,

14 https://trends.google.com/trends/

15 https://wordstat.yandex.com
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which the authors used as proxy data of ripening phenology.
Likewise, people’s interests in oil extracted from illipe nuts (Borneo
tallow nut), which are seeds of Dipterocarpaceae species (Blicher-
Mathiesen, 1994), may be useful as ground-truth information for
ripening phenology in Sarawak, Malaysia Borneo.

4.2. Improving classification of PFTs on
land-cover and land-use maps and
detecting interannual variation of PFTs

As an example of a detailed land-cover and land-use map
in Asia with a high spatial resolution, the Japan Aerospace
Exploration Agency has published the land-cover and land-use
maps of Japan and Vietnam with 10-m or 30-m spatial resolutions
by integrative analysis of data from multi-satellites such as the
Sentinel-2A/2B–MSI, the ALOS–AVNIR2 (Advanced Visible and
Near Infrared Radiometer type 2), the Landsat series satellites,
and the ALOS2–PALSAR2 (Hirayama et al., 2022; Hoang et al.,
2020). 16However, these maps of Japan did not account for the
interannual variation in land cover and land use. In addition,
PFTs were classified into broad categories, such as deciduous
broad-leaved forest and evergreen coniferous forest. To accurately
evaluate the spatiotemporal variation of the heat, water, and carbon
cycles and biodiversity in the tropics, and to understand the
sensitivity of vegetation to environmental change and succession,
accurate classification of PFTs and detection of their interannual
variation are needed. For instance, traits of photosynthesis and
evapotranspiration differ among ecosystems and tree species in the
tropics (Ishida et al., 2005; Kenzo et al., 2004, 2006, 2011, 2015). The
improved classification of PFTs and discrimination of tree species
based on photosynthesis, leaf traits, and leaf and canopy structures
are important tasks because these traits help to account for the
sensitivity of the flowering, leaf-flush, and leaf-fall phenology and
leaf longevity to environmental changes and succession.

4.3. Studying the interactions between
terrestrial and marine ecosystems

The soil in the tropics is oligotrophic (Fujii et al., 2018), and
land-cover and land-use change due to deforestation has strongly
affected not only the heat, water, and carbon cycles (Carlson
et al., 2014; Kumagai et al., 2013; Takahashi et al., 2017), but
also coastal ecosystems due to the outflow of nutrients from the
soil surface to rivers (Tanaka et al., 2021). To accurately evaluate
the spatiotemporal variation of ecosystem functions, ecosystem
services, and biodiversity triggered by anthropogenic activities
and climate change, we need to improve our understanding
of the interactions between terrestrial and marine ecosystems.
The SeaWiFS (1.13-km at a daily interval) 17and Aqua–MODIS
satellites, which were launched around 2000, observe ocean color
and allow for estimation of chlorophyll concentration (O’Reilly
et al., 1998; Schollaert et al., 2003; Gregg and Casey, 2004;

16 https://www.eorc.jaxa.jp/ALOS/jp/dataset/lulc_j.htm

17 https://oceancolor.gsfc.nasa.gov/SeaWiFS/

Siswanto and Tanaka, 2014; Groom et al., 2019). In addition, the
Second Generation Global Imager (SGLI) on board the Global
Change Observation Mission-Climate (GCOM-C) satellite (250-
m at 2-day intervals)18 improved the accuracy and precision of
ocean color observations (Murakami, 2016; Matsuoka et al., 2021).
Further research should examine, for instance, the relationship
between the interannual variation of deforestation and the
spatiotemporal variation of the chlorophyll concentrations in the
coastal areas of some river basins.

4.4. Investigating the interaction
between land-cover and land-use
change and anthropogenic activities

To understand the spatiotemporal variation of ecosystem
services and biodiversity, we must evaluate the spatiotemporal
variation of the interaction between land-cover and land-use
change and anthropogenic activities. For this, the nighttime light
data observed by the Visible Infrared Imaging Radiometer Suite
(VIIRS) on board the Suomi NPP satellite (Day/Night Band [DNB];
750-m at a daily interval; Elvidge et al., 2017, 2021)19 may be useful,
as land-cover and land-use change has caused the spatiotemporal
variation of nighttime light. In a study of 46 cities with more than
50,000 inhabitants, Ivan et al. (2020) reported the suitability of the
Suomi NPP–VIIRS satellite-observed nighttime light to evaluate
the geographic variation of income. Studies of tropical regions
could use these satellite data to examine the relationship between
the interannual variation of deforestation and spatiotemporal
expansion of the nighttime light.

4.5. Developing integrative analysis and
evaluation of in situ and
satellite-observed data

Despite the language barrier (Amano et al., 2016), the collection
of in situ observed data and ecophysiological information in each
country and region (especially non-English data and information;
Nagai et al., 2016b; Takeuchi et al., 2021) will accelerate the
development of integrative analysis and evaluation of in situ
and satellite-observed data. As noted by Farley et al. (2018),
researchers should aim to conduct more big data analyses by
integrating citizen science, which has superior veracity; real-
time sensor networks, which have superior velocity; in situ
observed data collected by scientists, which have superior variety;
and remote-sensing, which has a superior volume. The support
of international scientific networking communities such as the
Asia-Pacific Biodiversity Observation Network (Takeuchi et al.,
2021)20, the Asia-Oceania GEO, 21and the East Asia and Pacific
International Long-Term Ecological Research Network (Kim et al.,
2018)22 is indispensable for the development of these integrated

18 https://suzaku.eorc.jaxa.jp/GCOM_C/index.html

19 https://ncc.nesdis.noaa.gov/VIIRS/

20 http://www.esabii.biodic.go.jp/ap-bon/japanese/index.html

21 https://aogeo.net/en/

22 https://www.ilter.network/
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studies. Takeuchi et al. (2021) emphasized the necessity of satellite
observations that provide the academic perspectives and evidence
needed to implement natural ecosystem conservation policies. We
further encourage the use of in situ observed data to improve the
accuracy and precision of analyses of satellite observations and
reinforcing the networking of research communities working with
in situ and satellite observations in the Asian tropics (Dronova and
Taddeo, 2022; Shin et al., 2023).

5. Conclusion

Our discussions in this perspective paper can be summarized
that future advances in the optical sensors on board satellites with
high frequency (≤ 10 min) and high spatial resolution (≤ 10 m) are
expected to deepen our understanding of ecosystems in the Asian
tropics, thus improving our knowledge of phenological changes
as well as land-cover and land-use changes due to anthropogenic
activities and climate change. Consequently, we could deeply
understand the temporal change of the friction between people and
ecosystems in the Asian tropics (i.e., degree of the unsustainable
circumstances) under societal and climate changes. Despite unclear
phenology with a high biodiversity as well as high heterogeneity of
land cover and land use, the day is undoubtedly coming when we
can monitor tropical ecosystems in Asia even at the individual tree
scale. Now, we are in the beginning of a new era of satellite remote-
sensing.
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