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The rates of land degradation and urbanization has increased worldwide

during the past century. Herein, we evaluate the spatio-temporal changes

in global land cover via categorical intensity analysis of the European Space

Agency’s climate change initiative (ESA-CCI) data for the period 1992 to

2018. Specifically, we evaluated intensity analysis at the category level for

five time intervals, namely 1992–1997, 1997–2002, 2002–2007 and 2007–

2012, 2012–2018. We also, evaluate the decrease and increase in the land

cover at continental and climate zone. The study evaluates the following

land cover categories: Cropland, Forest, SGO (Shrubland, Grassland, and

Other), Urban, Bare areas, and WIS (Water, ice, and snow). After accuracy

assessment, the global land-cover map for 2009 from the GlobCover data

is selected, and a reclassified version of this map is used as a verification tool

for comparison with the reclassified study data. The analysis of changes over

the last 26 years shows that the loss for Cropland are dormant during the

first and second time intervals, but active during the third, fourth, and fifth

time intervals. By contrast, Forest experienced loss during all time intervals,

and SGO experienced active loss only during the second time interval. Urban

is the only category that experienced active gain during all time intervals.

The present study also indicates that urbanization has and converted land in

temperate regions during the past 26 years. Additionally, in South America and

the tropical regions, the expansion of Cropland is the largest contributor to the

decline in Forests and SGO.
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Introduction

Change in land cover can involve losses in the natural
ecosystem, and can be triggered by human intervention
through the use of various land cover types for different
purposes (Mendoza-Ponce et al., 2018). Among the many
drivers of change in land cover, anthropogenic and natural
hazards are key factors. Land cover changes contribute to
global environmental change (Shrestha et al., 2018). Hence,
scientists and decision-makers are increasingly using change
analysis to study the changes in the global environment (Foley
et al., 2005). In this respect, land-use and land-cover change
(LULCC) is an essential variable of change globally, and is
mostly affected by regional changes, which, in turn, mainly
concern environmental changes (Mendoza-Ponce et al., 2018;
Lamchin et al., 2020). Although this is usually a phase of
several decades in length, it is greatly accelerated by human
forces such as urbanization and industrial agriculture, and
natural phenomena such as flooding or rising sea levels (Foley
et al., 2005; Ghimire et al., 2014; Shrestha et al., 2018). The
LULCC is essentially equivalent to the perturbation of natural
ecosystems by man (Klein Goldewijk, 2016), and is a major
cause of climate change and global and regional environmental
change (Foley et al., 2005; Bonan, 2008; Brovkin et al., 2013;
Alkama and Cescatti, 2016).

Pontius et al. (2013) developed a thorough understanding of
land cover and land use analysis concerning change intensity,
where the intensity assesses the land use changes by evaluating
stability (Sang et al., 2019). To quantify intensity, researchers
have proposed sophisticated methods such as intensity analysis
(Fang et al., 2018; Quan et al., 2019; Sang et al., 2019;
Shafizadeh-Moghadam et al., 2019; Feng et al., 2020), and
advanced statistical methods have been developed to evaluate
the modeling results and explain the potential motives for land-
use change (Aldwaik and Pontius, 2012; Pontius et al., 2013).
During the last decade, advancements in quantity analysis,
spatial mapping, and satellite-based monitoring have been
employed to assess land-use change (Olmedo et al., 2015;
Pickard et al., 2017; van Vliet, 2019; Liu et al., 2020). These
studies help identify the factors that might affect land-cover
changes, and how humans affect land-cover changes and the
environment (Wang et al., 2012; Cloern et al., 2016; Fang
et al., 2018). Thus, several studies have used historical land-
cover change analysis to reveal how humans have impacted
the natural environment (Klein Goldewijk et al., 2011), while
others have used GIS modeling tools to investigate the global
effect of land-cover transition (Veldkamp and Verburg, 2004;
Liu and Tian, 2010; Jepsen et al., 2015). For example, the
LULC model has been used to analyze land-cover change
and generate predictions for the identification of trends
in the LUCC (Václavík and Rogan, 2009), urban growth,
deforestation in the tropics (Khoi and Murayama, 2010),
modeling of habitat (Gontier et al., 2010), Muzaffarpur in India

(Mishra et al., 2014), and erosion concerning conservation
(Gaspari et al., 2009). In addition, remote-sensing, GIS,
and LULC modeling have been used to study land use
in Kashmir, India (Amin and Fazal, 2012), while a Land
Transition Agent-Based Model (LTABM) has been applied
to a case study on the land transition in the Missisquoi,
Canada watershed (Amin and Fazal, 2012; Tsai et al., 2013;
Pandolfi, 2016).

In the present study, we employ remotely sensed data
and geospatial techniques to analyze spatio-temporal
changes in global land cover during 6-year time intervals.
Categorical intensity analysis of global temporal differences
in the European Space Agency’s climate change initiative
(ESA-CCI) dataset indicates significant change during the
past 26 years. This has resulted in the identification of
distinct land cover dynamics within and between the Earth’s
continents and climate zones. In detail, we compute the
total area gained and lost by each land cover type and map
the evolution of the magnitude of the transition between
land cover types. The specific goals of the study were as
follows:

1. To evaluate the categorical intensity analysis and
determine the extent to which each deviation from the
starting value of each category differs from a uniform
intensity around the world.

2. To assess the change in gain intensity of each category,
expressed as a percentage of the end size derived from
global adjustments over an interval. Quan et al. (2019)
defines a category’s gain intensity as the percentage of the
category’s end size that derives from the gain during the
time interval, whiles a category’s loss intensity is percentage
of the start size of category that loses during the time
interval. As a result, we make reference to these definitions
whenever we use the phrases “gain intensity” and “loss
intensity.”

3. To evaluate how the land cover has changed over the long-
term at the global level and within climatic zones on a
continental scale.

Materials and methods

Land-cover dataset

The newly released annual ESA-CCI land-cover (LC) maps
provide continuous information about land-cover changes
at 300 m resolution for the period from 1992 to 2018.
The full data archive of the medium resolution imaging
spectrometer (MERIS) satellite from 2003 to 2012 provides
15 spectral bands at 300 m resolution. A baseline was
established for this dataset by combining the outputs of
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machine learning and unsupervised algorithms (ESA, 2017).
Recordings of time series at 1 × 1 km spatial resolution
were conducted between 1992 and 1999 by the Advanced
Very High Resolution Radiometer (AVHRR) satellite, between
1999 and 2013 by the Satellite SPOT-VGT, and between
2014 and 2015 by the Project for On-Board Autonomy –
Vegetation (PROBA-V) satellite. Data collected from these
recordings were used to detect and confirm changes in
land cover. After 2004, when possible, these changes were
delineated at a 300-m spatial resolution. The 10-year delineating
process produced 24 annual land change (LC) maps spanning
the period from 1992 to 2015. A vital component of the
classification process required that each change persisted for
a time period greater than 2 consecutive years. Further
details can be found in the ESA-CCI-LC Product User
Guide (ESA, 2017). The classification process yielded a
collection of annual LC maps from 1992 to 2018, with
a spatial resolution of 300 m. The classification algorithm
used pixel-based uncertainty to report the level of confidence
for each pixel’s LC classification, and evaluated the LC
products using an accepted international standard. This
evaluation procedure derived accuracy from a confusion
matrix. In addition, a panel of international experts built an
object-based validation database comprised of 2,600 primary
sampling units in order to assess the accuracy of the LC
classes and changes (ESA, 2017).1 Further validation was
performed by the present authors by using GlobCover data
2009.2

Preprocessing

In the ESA-CCI data, the surface of the Earth is
divided into 37 initial LC classes using the United
Nations Land-Cover Classification System -UN-LCCS
(Di Gregorio, 2005). Hence, each pixel in the land-
cover image is assigned a class between 1 and 37. In
the present study, the results for 1992, 1997, 2002, 2007,
2012, 2015, and 2018 were re-classified into six classes
based on the IPCC land categories used by ESA (2017),
as shown in Table 1. To reclassify the land-cover image
in GRASS3, a new mapset was built, and each class was
allocated and integrated based on an understanding and
interpretation of the LC class definitions. The reclassified
land-cover maps are presented in Figure 1, along with
the breakdown by percentage of each category as a pie
chart.

1 http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-
PUGv2_2.0.pdf

2 https://epic.awi.de/id/eprint/31014/16/GLOBCOVER2009_
Validation_Report_2-2.pdf

3 https://grass.osgeo.org/grass82/manuals/r.reclass.html

Although there are variants of each class in the Olivier
et al. (2010) map that are comparable to the LULC classes
in the ESA-CCI, these variants are not identical. Hence,
the same procedure was used to reclassify the 22 classes
that make up the 2009 GlobCover map into six classes
for the present study. The input data for the ESA-CCI
is a multi-facet of sensors such as SAR and Landsat.
Obviously, these sensors have different radiometric sensitivities,
which users must note. ESA-CCI addresses this problem
by applying a spatially and temporally weighted regression
(STWR) model to the images derived from the sensors
(ESA, 2020). As a result, ESA-CCI normalizes the effect of
the difference in the radiometric properties of the sensors.
ESA-CCI applies a similar method to account for the
geometric variations in the images derived from the different
sensors.4

Accuracy assessment of
reclassification

For verification of the sampling accuracy on a global
scale, the Google earth engine used an equal sample of points
for all classes using the GlobCover map as the reference
data. For this procedure, the resolution of the GlobCover
map was reduced, and each pixel was converted into an
individual point. In total, 148,793 points were extracted
and used as sampling points for the verification process.
The values of the reclassified GlobCover and ESA-CCI map
data corresponding to the 148,793 sample points were then
extracted, and the accuracy of the ESA-CCI map was verified
by using a confusion matrix containing the class values of
each map corresponding to the verification sample point.
This was followed by calculation of the producer accuracy,
user accuracy, and overall accuracy. Patel and Kaushal
(2010) provides definitions and details of the three types of
accuracies.

Intensity analysis

We examined intensity analysis at the category level for
a total of five different time intervals, namely 1992–1997,
1997–2002, 2002–2007, 2007–2012, and 2012–2018. Intensity
analysis is a quantitative tool used to study land use at
a categorical, interval, and transitional level (Aldwaik and
Pontius, 2012; Teixeira et al., 2016). The interval intensities
measure the variations in both the size and the annual
rate of change during each specific time interval. A time
interval is the amount of time that passes between two

4 https://climate.esa.int/media/documents/CCI_HRLC_Ph1-D2.2_
ATBD_v2.0.pdf
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TABLE 1 The land-cover (LC) classes of the ESA, GlobCover, and the present study.

ESA-CCI code ESA-CCI The present study Global cover Glob Cover Code

10, 11, 12 Rainfed cropland Cropland Post-flooding or irrigated croplands 11

20 Irrigated cropland Rainfed croplands 14

30 Mosaic cropland (> 50%)/natural vegetation (tree, shrub, herbaceous
cover) (< 50%)

Mosaic cropland (50–70%)/vegetation (grassland, shrubland, forest)
(20–50%)

20

40 Mosaic natural vegetation (tree, shrub, herbaceous cover)
(> 50%)/cropland (< 50%)

Mosaic vegetation (grassland, shrubland, forest) (50–70%)/cropland
(20–50%)

30

50 Tree cover, broadleaved, evergreen, closed to open (> 15%) Forest Closed to open (> 15%) broadleaved evergreen and/or semi-deciduous
forest (> 5 m)

40

60, 61, 62 Tree cover, broadleaved, deciduous, closed to open (> 15%) Closed (> 40%) broadleaved deciduous forest (> 5 m) 50

70, 71, 72 Tree cover, needleleaved, evergreen, closed to open (> 15%) Open (15–40%) broadleaved deciduous forest (> 5 m) 60

80, 81, 82 Tree cover, needleleaved, deciduous, closed to open (> 15%) Closed (> 40%) needleleaved evergreen forest (> 5 m) 70

90 Tree cover, mixed leaf type (broadleaved and needleleaved) Open (15–40%) needleleaved deciduous or evergreen forest (> 5 m) 90

100 Mosaic tree and shrub (> 50%)/herbaceous cover (< 50%) Closed to open (> 15%) mixed broadleaved and needleleaved forest
(> 5 m)

100

160 Tree cover, flooded, fresh or brackish water Mosaic forest-shrubland (50–70%)/grassland (20–50%) 110

170 Tree cover, flooded, saline water Closed (> 40%) broadleaved forest regularly flooded – Fresh water 160

Closed (> 40%) broadleaved semi-deciduous and/or evergreen forest
regularly flooded – saline water

170

110 Mosaic herbaceous cover (> 50%)/tree and shrub (< 50%) Mosaic grassland (50–70%)/forest-shrubland (20–50%) 120

120, 121, 122 Shrubland Closed to open (> 15%) shrubland (< 5 m) 130

130 Grassland Closed to open (> 15%) grassland 140

14140 Lichens and mosses Sparse (> 15%) vegetation (woody vegetation, shrubs, grassland) 150

150, 151, 152, 153 Sparse vegetation (tree, shrub, herbaceous cover) SGO Closed to open (> 15%) vegetation (grassland, shrubland, woody
vegetation) on regularly flooded or waterlogged soil – fresh, brackish or
saline water

180

180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water

190 Urban areas Urban Artificial surfaces and associated areas (urban areas > 50%) 190

200, 201, 202 Bare areas Bare area Bare areas 2

2210, 220 Water bodies, Permanent snow and ice WIS Water bodies, Permanent snow and ice 210, 220
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TABLE 2 Mathematical notations of the categorical intensity analysis.

Symbol Meaning

Ctii Size of the spatial extent that persists during interval t as a category i

Ctij Size of the spatial extent that transitions during interval t from category i to category j

Ctji Size of the spatial extent that transitions during interval t from category j to category i

Ctjj Size of the spatial extent that persists during interval t as category j

Et Exchange component of change intensity as a percentage of spatial extent during interval t

St Shift component of change intensity as a percentage of spatial extent during interval t

Gtj The gain intensity in spatial extent during the interval t for category j relative to the size of category j at the end of interval t

i Index for a category where i = 1, 2,. . ., J

j Index for a category where j = 1, 2,. . ., J

J Number of categories

t Index for a time interval where t = 1, 2, 3. . .t

Lti Loss intensity in spatial extent during interval t for category i relative to the size of category i at the start of interval t

Qt Quantity component of change intensity as a percentage of spatial extent during interval t

Dt Change intensity during interval t

Yt Year at start of time interval t

Yt+1 Year at end of time interval t

different time points. As a result, the intensity of the intervals
provides information about which sites experience a slow
or rapid annual rate of change (Table 2). The magnitudes
of each category’s gross gains and losses are measured by
the categorical level intensity metric, which sheds light on
which categories are inactive or active during a specified
period of time. Consequently, categorical level intensity analysis
indicates which patterns of change are consistent across the
specified time intervals. Meanwhile, the transitional level
intensity metric indicates which category’s transitions are
being intensified or little affected during the specified time
period. This present study focuses on categorical level intensity
analysis.

First, we compute the three components of change:
Quantity, Exchange, and Shift using Eqs. 1–4. Equation 2
is divided by 2 because each change involves a loss and
gain category (Chen and Gilmore Pontius, 2011). Next,
we use Eqs. 5–8 to compute the intensities of Gross
Change, Quantity, Exchange, and Shift. This approach allows
us to show the intensities of the components of change
in Figures 2B,D,F,H,J. Finally, Eqs. 9, 10 compute each
category’s loss and gain intensity, which we compare to the
uniform intensity Dt , which is the bar called “Extent” in
Figure 2.

Lti computes the size of the loss intensity of a category (i)
as the percentage of the category’s start size that is lost during
the time interval Yt+1 − Yt Similarly, Gtj computes the size of
a category’s (j) gain intensity as the percentage of the end size
of the category that is gained during time interval Yt+1 − Yt .
Thus, comparing Dt to Lti and Gtj reveals which category’s
losses and gains are active or dormant. Specifically, if Lti < Dtior
Gtj < Dti then loss and gain of categories i and j is dormant. If

Lti > Dti or Gtj > Dti, then loss and gain of categories i and j

is active. Finally, if Lti = Dti or Gtj = Dti then loss and gain of
categories i and j is uniform. We modified the equations after
Bilintoh (2022).

Changet =
∑J

i=1

[(∑J

j=1
Ctij

)
− Ctii

]
(1)

Quantityt =

[∑J

i

∣∣∣∣∑J

j=1

(
Ctij − Ctji

)∣∣∣∣] /2 (2)

Exchanget =
∑J

i=1

{[∑J

j=1
MINIMUM

(
Ctij, Ctji

)]}
(3)

Shiftt = Changet − Quantityt − Exchanget (4)

Dt =
Changet 100%
size of region

=
Changet 100%∑J
i=1

(∑J
j=1 Ctij

) (5)

Qt =
Quantityt 100%

size of region
=

Quantityt 100%∑J
i=1

(∑J
j=1 Ctij

) (6)

Et =
Exchanget 100%

size of region
=

Exchanget 100%∑J
i=1

(∑J
j=1 Ctij

) (7)

St =
Shiftt 100%

size of region
=

Shiftt 100%∑J
i=1

(∑J
j=1 Ctij

) (8)

Lti =
annual loss of i during [Yt, Yt+1]

size of i at Yt+1
100%

=

[(∑J
j=1 Ctij

)
− Ctii

]
/ (Yt+1 − Yt)∑J

j Ctij
100% (9)
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FIGURE 1

Spatial distribution of land-cover classes on maps for 1992, 1997, 2002, 2007, 2012, and 2018 (left) and the corresponding pie charts showing
the breakdown percentage of each category (right).
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FIGURE 2

The categorical level losses and gains in terms of the difference areas (left-hand side) and intensities (right-hand side) during the time intervals
1992–1997, 1997–2002, 2002–2007 and 2007–2012, 2012–2018. The intensities for each category are divided into the three components of
change: Quantity (black), Exchange (purple), and Shift (blue).
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Gtj =
annual gain of j during [Yt, Yt+1]

size of j at Yt+1
100%

=

[(∑J
i=1 Ctij

)
− Ctjj

]
/ (Yt+1 − Yt)∑J

i Ctij
100% (10)

Results

Reclassification of accuracy
assessment

The user’s and producer’s accuracies for the various land
cover types in the ESA-CCI and GlobCover maps are compared
in Table 3. Here, the WIS category is assessed with a high
accuracy of > 90%, the Bare area and Forest categories are
calculated with moderate accuracies of 70–90%, but Cropland,
SGO, and urban classes are evaluated with low accuracies
of < 65%. Thus, the sample-point based accuracy analysis for
the two reclassified maps indicates an overall accuracy of 92%,
with a Kappa coefficient of 0.82.

Categorical intensity analysis

The categorical level losses and gains (in thousands of square
kilometers and area percentage) are indicated in in terms of
both the difference area (left-hand side) and intensity (right-
hand side) during the time intervals 1992–1997, 1997–2002,
2002–2007, 2007–2012, and 2012–2018. In the left-hand plots,
the individual components of Quantity, Exchange, and Shift for
each category are indicated by the black, purple, and blue areas,
respectively. The area for each component of change was derived
from Eqs. 1–4. Here, Cropland shows net gain only during the
first, second, third, and fourth time intervals, Forest shows net
loss during all time intervals, SGO shows net loss during the
first three time intervals and net gain during the last two time
intervals, Urban experiences net gain during all time intervals,
and Bare areas show a net gain during the first time interval and
net loss during the second, third, fourth, and fifth time intervals.
Moreover, the right-hand side of Figure 2 indicates that the
changes in Cropland and SGO involve all three components (i.e.,
Quantity, Exchange, and Shift) during all time intervals, whereas
the change in Urban areas consists only of Quantity during all
time intervals.

Additionally, the right-hand plots in Figure 2 provide
information concerning each category’s gross loss or gain for
each time interval. Here, the size of the losses and gains for
every category are in units of percentage of area, thus indicating
whether a category’s change is positive, negative, or zero. To gain
further insights, the present study focuses on those categories
with the biggest losses and gains.

In the left-hand plots of Figure 2, the Extent bars indicate
whether the intensities of change are uniform, active, or
dormant. If a category’s intensity falls short of the extent bar,
then the category’s temporal difference is dormant. If a category’s
intensity extends beyond the Extent bar, then the category’s
temporal difference is active. If a category’s intensity equals the
Extent bar, then the category’s temporal difference is uniform.
Thus, the loss intensity for Cropland is dormant during the
first and second time intervals, but active during the third,
fourth, and last time intervals. Forest experiences active loss
intensities during all time intervals. SGO experiences active
loss only during the second time interval, with dormant loss
intensities during all other time intervals. Urban is the only
category that experiences active gain intensities during all time
intervals.

Global land-cover hotspots, dynamic
changes, and transitions

The previous section used categorical level intensity analysis
to examine the size and proportions of each category’s change.
The present section examines the global land cover changes
and exchanges during the temporal extent. Here, the global
land cover area during 1992–2018 is seen to be variable,
changing by a total of 6981654.3 km2 representing 5.18% of
the global area. The largest non-persistent change in Forest
is 2,619,453 km2, representing 6.5% of the global forest area
during the entire temporal extent. Most of this occurred through
losses in the Amazon, Savanna, South-east Asia, North America,
Russia (Siberia), western Europe, and northeast Asia. The
largest change in Cropland is 1,253,213 km2 about 5% of the
total cropland of the world over the entire temporal extent.
Again, this was mainly in the Amazon, with some areas in
northern America, Africa, central Asia, the Korean Peninsula,
northeastern China, and southeastern China. Major changes are
observed in the SGO cover, which changed by 5.4% in Alaska,
the western part of North America, the Amazon, Savanna areas,
the eastern and western parts of Australia, and southeastern
Asia over the 26-year period. Meanwhile, Urban areas increased
by 0.09% overall in India, the eastern part of North America,
the western part of Europe, and eastern China. Conversely, the
Bare area decreased by 0.06% in the eastern part of Canada,
central Asia and western Europe, central Russia, and central
Australia. The effects of the various losses, gains, and exchanges
upon global land cover over the entire study period are further
illustrated in Figures 3, 4. Globally, as shown in Figure 5.
the most gained land-cover types were SGO (0.33% increase)
and Cropland (0.32% increase), while Forest experienced the
largest loss (0.40% decrease), followed by SGO (0.33% decrease),
Cropland (0.19% decrease), and Bare area (0.06% decrease).

The transitions that occurred between the six main land-
cover types, where the diameters of the filled circles in Figure 1
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TABLE 3 The confusion matrix of the ESA-CCI and GlobCover maps for 2009.

GlobCover ESA-CCI

Cropland Forest SGO Urban Bare WIS Sum User’s accuracy (%)

Cropland 4,885 968 1,637 67 44 33 7,634 64

Forest 850 10,790 1,964 38 27 201 13,870 78

Shrubland, grassland, and other (SGO) 1,162 2,235 8,042 34 554 326 12,353 65

Urban 25 4 12 50 1 4 96 52

Bare 105 38 1,085 5 4,520 54 5,807 78

Water, ice, and snow (WIS) 19 85 340 2 229 108,358 109,033 99

Sum 7,046 14,120 13,080 196 5,375 108,976 148,793

User’s accuracy (%) 69 76 61 26 84 99 92

FIGURE 3

Maps of land-cover Exchanges (changes from the initial type to any other type) during the full period of 1992–2018.

represent the area of land that has undergone each transition,
are expressed in square kilometers relative to the total area
of land globally that changed land cover type over the study
period. Globally, the largest transition is 1194912.4 km2 (17%)
for the conversion of Forest cover to Cropland, followed by
651492.5 km2 (9.3%) for the conversion of Cropland to Forest
cover, and 286650.4 km2 (4.1%) for the conversion of Cropland
to Urban.

Global land-cover change by continent

The estimated land-cover changes at the continental level
during the individual time periods are expressed in Figure 6.
Thus, summing the results for each land-type category in

Asia over the entire time period of 1992–2018 indicates
that Cropland and Urban expanded by 0.55% (243,704 km2)
and 0.43% (191,776 km2), respectively, while Forest and
Bare areas have declined by 0.68% (299,124 km2) and
0.36% (161,196 km2), respectively. Meanwhile, the continent
of Africa experienced decreases of 0.31% (115,844 km2)
in Bare area, and increases of 0.68% (205,576 km2) and
0.21% (65,348 km2) in Cropland and Forest, respectively. In
Europe Urban has increased by 0.42% (97,704 km2), while
Forest and Cropland have decreased by 0.77% (176,528 km2)
and 0.32% (74,756 km2), respectively. In North America,
Forest decreased by 0.30% (72,460 km2) while Urban and
Cropland increased by 0.33% (79,952 km2) and 0.11%
(27,968 km2), respectively. In South America, Cropland
and Urban increased by 2.07% (368,384 km2) and 0.27%
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FIGURE 4

Maps of the main land-cover type gains and losses between 1992 and 2018.

FIGURE 5

The losses and gains for each land-cover type during the entire study period.

(23,280 km2), respectively, while Forest decreased by 3.2%
(579,108 km2). Also, in Australia and Oceania, Cropland
increased by 0.40% (34,120 km2), while Bare Area and Forest
declined by 0.42% (34,780 km2) and 0.24% (20,484 km2),
respectively.

Global land-cover changes by climatic
zone

As global warming caused by human activity has led to
changes in the distribution of climatic zones (especially an
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FIGURE 6

The percentage land-cover changes for each year by continent.

expansion of arid climates and a contraction of polar climates),
the primary objective of this section is to examine how the
various land cover types have changed in each climatic zone.
It is anticipated that ongoing global warming will lead to the
development of new, hot climates in tropical regions, along
with a poleward movement of the climatic zones from middle
to high latitudes, and increase in altitude for climatic zones at
higher elevations. It is possible for ecosystems in these regions
to undergo structural, compositional, and functional changes
as a result of increased exposure to temperature and rainfall
extremes that go beyond their accustomed climatic regimes. In
addition, it is anticipated that warming at high latitudes may
hasten the process of permafrost thawing, and raise the level
of disturbance in boreal forests caused by both abiotic (such
as drought and fire) and biotic (such as pests and disease)
agents (Jia et al., 2019). Although Wang et al. (2019) have
studied the land surface temperature throughout the period
of increase, the spatial distribution of this increase has been
influenced by the transformation in land cover, and needs to
be considered. Hence, the present study compares the results
from image classifications to estimate the changes that have
occurred in the arid, cold, polar, and temperate tropical climate
zones. In addition, a sixth category termed WIS is analyzed
at the climatic level because this category includes water

and snow, which are greatly affected by weather or climatic
conditions. As shown in Figure 7, the tropical zones have
experienced unprecedented rates of disturbance and conversion
throughout their range. Between 1992 and 2018, tropical zones
witnessed a 1.87% increase in Cropland and a 0.18% increase in
Urban, while Forest decreased by 1.91%. Meanwhile, arid zones
experienced increases of 0.38%, and 0.15% in Cropland and
Urban, respectively, along with a 0.64% decrease in Bare area
and a 0.02% decrease in Forest. In the temperate zones, Forest
has declined by 0.99%, while Urban and Cropland increased
by 0.85 and 0.08%, respectively. The cold regions experienced
an increase of 0.35% in Urban cover, and an increase of 0.21%
in Cropland, whereas Forest decreased by 0.52%. In the polar
regions, Forest decreased by 0.01%.

Discussion

Implication of intensity analysis for
global land-cover changes

Categorical level intensity provides information concerning
the magnitudes of a category’s gross gains and losses, which
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FIGURE 7

The percentage land-cover changes for each year by climatic zone.

is critical for explaining how a category’s change compares
to its size at the beginning of a time interval. The present
study shows that Cropland was an active gainer during the
third, fourth, and fifth study time intervals, which is consistent
with the findings of Cao et al. (2019), Liu et al. (2021),
and Potapov et al. (2022). Meanwhile, Forest has been an
active loser during all time intervals, which is consistent
with the results of d’Annunzio et al. (2015), and can be
ascribed to the logging of trees and clearing of forest areas
in regions such as South America (Bilintoh, 2022). The Forest
and SGO categories experienced both active gains and losses
during various time intervals within the study period, with
the positive changes resulting from ongoing projects aimed at
restoring damaged forests in previously cleared areas across
the globe. Urban was an active gainer during all the time
intervals, we hypothesize that this mainly due to increased land
requirements for infrastructural development in response to an
increase in population growth rates. Expanded urban land use
is needed in order to meet the basic living requirements of
residents, including education and infrastructure. Hence, the
United Nations has proposed sustainable development goals
that include education, infrastructure, health, climate, and food
security (United Nations, 2015).

As indicated by the pie charts in Figure 1, the net
losses and gains in Bare area was dormant during all
time intervals, even though changes may be expected to
arise due to the various natural or artificial processes. For
instance, change in sea levels may cause a cyclic pattern of
gains and losses in sand and rock, which often characterize
the landscapes around water bodies. Furthermore, natural
disasters such as fire outbreaks in vegetated areas followed
by regrowth of vegetation can contribute to loss and gains of
Bare areas. The observed dormancy during all time intervals

suggests that the various processes have an overall balancing
influence.

The net land-cover net changes by
continent and climate zone

According to previous studies, the LCC indicates a decrease
in the mean and extreme global precipitation, particularly above
regions of intense deforestation (Sy and Quesada, 2020; Hoang
and Kanemoto, 2021). In addition, researchers have observed
the more formal response of extreme weather conditions to
the LCC (Findell et al., 2017; Lejeune et al., 2018). In those
studies, the area of Cropland exhibited an increase between
1992 and 2012, but decreased between 2012 and 2018 (FAO,
2016). Similar observations have been made by Folberth
et al. (2020). Some researchers have suggested that Cropland
expansion must stop (e.g., Cunningham et al., 2013), but this
would negatively affect the ability to secure nutritious food
for people in the poorest parts of the globe McGuire (2015).
Additionally, researchers have found that the global Cropland
area increased by 110% between 1850 and 2015, while the
area of the world’s forests decreased by 17% (Houghton and
Nassikas, 2017). Similarly, the present study has revealed a
continuous increase in the Urban area over the entire study
time interval, which is in agreement with previous findings
(Pesaresi et al., 2015; Liu et al., 2018, 2020; Gao and O’Neill,
2020; Lim et al., 2020). Moreover, these findings have been
echoed more recently by van Vliet (2019), who found that
38.0 Mha of new cities were created between 1992 and 2015
worldwide, which represents an 115% increase during the last
23 years.
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On a continental scale, the smallest decrease in Forest
(0.77%) occurred in Europe majority of Russia, while South
America experienced the largest decrease (3.2%) in Forest.
Indeed, Africa was the only continent to have experienced an
increase in Forest (0.21%). Similar results have been reported
by Fearnside (2005), Nepstad et al. (2014), and Qin et al.
(2019) as the rate of land-use change, anthropogenic activities,
and climatic change in the Amazon have led to significant
deforestation in the region over the years. As the biggest tropical
forest worldwide, and the most complex terrestrial ecosystem,
the Amazon is an important land for world conservation, and,
as a result, should be closely monitored for anthropogenic
impacts (Jenkins et al., 2013; Cavalcante et al., 2022). Meanwhile,
Urban areas increased in all continents during 1992–2018,
which is attributable to the impact of global urbanization.
This has been especially prominent in Asia, Africa, and
Europe.

In terms of climatic zones, the present study has revealed
a substantial increase in Cropland within the tropical zone
relative to the other zones during 1992–2018. This trend is
related to the favorable conditions for farming, and the decrease
in forests. Researchers have identified tropical deforestation as
an increasingly common anthropogenic greenhouse gas source
(van der Werf et al., 2009; Smith et al., 2014; Page et al.,
2022), and other researchers have identified international trade
as the most important driver of carbon emissions from tropical
deforestation, over and above that caused by fossil fuels (Pendrill
et al., 2019). In the present study, the temperate zone exhibited
the most growth in Urban area and the greatest decrease in
Forest between 1992 and 2018. This is an interesting finding,
and it can be hypothesized that the decreased Forest resulted in
increased Urban and Cropland during 2012–2018. Meanwhile,
the arid zone experienced a major decrease in Bare areas, but
the largest increase in Cropland. Our results also confirm other
studies that suggested that Bare area decreased by 0.06% overall
globally, but decreased differently between continents. Similar
observations were previously reported by Song et al. (2018), who
found that Bare area was reduced by 1.16 million km2 (3.1%)
worldwide, but most significantly in the agrarian regions of Asia.
Meanwhile, Forest cover in Asia has continuously decreased,
while Urban cover has increased, during the last 26 years.

Technical significance and limitations,
future directions

The present investigation was performed without any
major problems; nevertheless, there were some restrictions. The
technical significance of the research design and the methods
of data analysis were discussed, and recommendations were
made for future research at the global scale, particularly big
data. For a global intensity and net change analysis, high-
quality data should be selected, divided into sections, and then

combined. When calculating the intensity and net change for
global analysis, it is important to proceed very carefully, as errors
can be introduced at each step, and accumulate.

Conclusion

This paper aimed to monitor land cover change on a
global scale, by making use of the unique data on global land
cover change. We first reclassified data globally, then evaluated
their intensity analysis categorical level for six time intervals
1992–1997, 1997–2002, 2002–2007, 2007–2012, and 2012–2018.
Afterward, we assessed changes in land use in 1992, 1997, 2002,
2007, 2012, 2015, and 2018 by continent and climate zone.
Additionally, the global land-cover changes in the six land
cover type were analyzed according to specific continental and
climatic zones. Instead of focusing only on one specific land
cover transition or specific regions, as was the case in most
previous studies, our research involved all possible transitions at
a global scale. Also, this is the first time change intensity analysis
was conducted globally.

A thorough spatio-temporal approach was developed for
analyzing and acquiring an improved understanding of the
global land-cover change in terms of the intensities of three
components (Quantity, Exchange, and Shift) for six different
land-cover categories between 1992 and 2018. The results
revealed that the Exchange component accounted for most of
the change in all categories except for Urban, which experienced
predominantly Quantity change. Notably, Bare area experienced
a gross loss after the first time interval (1992–1997), while
Cropland experienced gross gains during all time intervals
except for 2012–2018. Urban areas experienced gross gains
during every time interval, and this is directly associated with
continuous gross losses in Forest and Bare area. Furthermore,
the intensity of Urban change was active during all the time
intervals, which can be attributed to an increase in the human
population and, hence, the need for expansion in infrastructural
developments such as housing. The intensity analysis assessed
the processes of land-use change by defining the concept of
stability. Although the creation of stable land use might not
automatically lead to sustainable development, it can provide a
strong basis for the development of sustainability.

Cropland increased in Asia, Africa, and Europe during the
period 1992–2012, and then decreased from 2012 to 2018,
while Shrubland decreased during 1992–2012, but increased
during 2012–2018. Another positive finding from this study is
that North America and Europe have experienced decreases
in the area of Bare land since 2000, while hotspots of
Bare area continuously increased throughout the study period
in other regions.

Over the past 3 years, the total area of Forest has increased
in tropical, temperate, and arid climatic zones, but decreased in
the cold climatic zone. Concurrently, the tropical and temperate
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climatic zones each exhibited a lower decrease in Cropland,
while the arid and cold zones experienced increases in Cropland.

The results presented provide critical supporting
information on the active change that is needed for climate
change adaptation. Moreover, the findings can provide
critical information for promoting progress toward the
UN’s Sustainable Development Goals (SDGs), and can assist
policymakers in regulating future land use change in a
sustainable manner.
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