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Biomass burning is a major phenomenon that plays an important role in small-

scale ecological processes such as vegetation dynamics and soil erosion, and

global processes such as hydrological cycles and climate change. However,

global fire databases have low accuracies for burned area detection in

areas with small fires, low biomass and in woodlands and open forests

that characterize Central India. The present study uses higher resolution

(30 meter) Landsat imagery to test accuracies for burned area detection

using spectral indices (SI), machine learning (ML) algorithms and supervised

classification. We find that detection of burned area by global fire product Fire

Information for Resource Management System (FIRMS) is very low (<20%).

Accuracies are higher for Landsat-based classification of burned area using

supervised classification, random forest (RF) and Support Vector Machines

(SVM). Accuracies are higher in April–May than in February–March and

vary by azimuth angle on the day of image acquisition. RF produced the

most consistently high classification accuracies for April (>80%), but had a

tendency to misclassify less frequently available land covers; SVM had similar

classification accuracies but had a tendency to overfit the model. Both lead to

the potential for increasing commission errors and need to be used carefully

when predicting burned area. Inclusion of SI had high relative importance in

predicting burned area and reduced commission errors. Given these caveats,

we recommend using ML algorithms for mapping burned area in the future,

as it requires less time investment than classification and can yield consistent

results. Accurate mapping of high-resolution fires is important for more

accurate inputs into carbon inventories and ecological understanding of

land-use dynamics and drivers.

KEYWORDS

crop residue burning (CRB), wildfire, normalized burn ratio (NBR), machine learning
(ML), random forest—ensemble classifier, spectral index (SI), support vector machine
(SVM)

Frontiers in Forests and Global Change 01 frontiersin.org

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2022.933807
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2022.933807&domain=pdf&date_stamp=2022-12-20
mailto:meghna.agarwala@ashoka.edu.in
https://doi.org/10.3389/ffgc.2022.933807
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2022.933807/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-933807 December 14, 2022 Time: 15:24 # 2

Chandel et al. 10.3389/ffgc.2022.933807

1 Introduction

Biomass burning is a global environmental phenomenon
with fires occurring in natural habitats such as tundras,
savannas, deserts and forests, as well as human dominated
landscapes such as agricultural fields. The size, timing, intensity
and fuel in biomass burning influences land surface properties,
atmospheric chemistry, vegetation cover (Bowman et al.,
2009) and plays an important role in global processes such
as hydrological cycles, soil erosion, radiation budget, and
climate change (Chuvieco and Martin, 1994). Quantifying fires
accurately is important to understand drivers of fire, and impact
of fire on fragmentation, edge effects (Cochrane and Laurance,
2002) and biodiversity. Quantifying fires accurately is also
crucial in studies on economics and health due to contribution
of fires to pollution and health (Agarwala and Chandel, 2020;
Singh P. et al., 2021). Finally, quantifying fires accurately is
critical to create accurate carbon inventories to inform climate
models (Shiraishi et al., 2021).

Remote sensing tools have been used to monitor and
understand fire because many fire locations have low
accessibility, and because of the dynamic nature and large
extent of fires (Szpakowski and Jenson, 2019). Remote sensing
tools have been used in varied ways to assist in fire risk mapping
(Chuvieco and Congalton, 1989; Chuvieco and Martin, 1994),
fuel mapping (Arroyo et al., 2008), active fire detection (Giglio
et al., 2008), burned area estimates (Roy et al., 2008), burn
severity assessment (Epting et al., 2005), and monitoring
vegetation recovery (Fornacca et al., 2018) and its drivers
(Gouveia et al., 2010). Climate inventories use global fire
emissions databases such as Global Fire Emissions Database
(GFED), Global Inventory for Chemistry-Climate Studies
(GICC), and Global Fire Estimation System (GFAS) that are
based on Moderate Resolution Imaging Spectroradiometer
(MODIS) and Visible Infrared Imaging Radiometer Suite
(VIIRS) Fire products (Singh D. et al., 2021). However, MODIS
fire products report accuracies under 20% for fires, particularly
because they are unable to identify small fires, although small
fires are more widespread than large fires globally (Giglio
et al., 2016). Such underestimation of fires compromises global
carbon monitoring. Studies examining ecological processes
are also compromised as fires may alter vegetation structure,
plant species diversity and biomass carbon stocks (Hultquist
et al., 2014). This suggests that there is a large scope for
improvement of fire inventories for better climate modeling
(Shiraishi et al., 2021).

The accuracies for fire prediction are particularly low in
India. MODIS products have a low probability of fire detection
in South East Asia and India, likely because fires are too small in
these regions (Giglio et al., 2008, 2016). Other global products
also either have fewer training data available in India (Fire_cci

project)1 or have low accuracies in similar ecosystems, such as
in Africa (Ramo et al., 2018). Mapping and quantifying fires at
high resolution is particularly important in India where 55%
of forest areas are at risk of burning annually causing a total
economic damage of $104 million (Chand et al., 2007; Forest
Survey of India, 2019). A recent assessment for the state of
Uttarakhand, in India, found that MODIS and VIIRS based
products are only able to identify 5.64% of fire incidents due to
their coarse scale (Kalaranjini et al., 2020). Within India, states
in Central India (Andhra Pradesh, Chhattisgarh, and Madhya
Pradesh) are most regularly affected by forest fires (Reddy et al.,
2012), and have a high fire risk (Somashekar et al., 2009).
Further, although frequency of forest fires is high in Central
India, 55% of total biomass burning in the state of Madhya
Pradesh was found to be in croplands, where small property sizes
lead to small size of agricultural fires (e.g., Cusworth et al., 2018).
Researchers also found an increasing trend in agricultural fires
from 2002 to 2016 (Verma et al., 2019). Therefore, Central India
has co-occurrence of small agricultural and forest fires in close
proximity (Figure 1), which is important to quantify.

Use of high resolution (20-m) imagery increased detection
of burned area by 80% compared with coarse resolution data
in biomes similar to Central India in Africa. The difference in
detection was more stark for smaller burn patches (<25 ha)
where high resolution data detected 30 times more burned area
(Roteta et al., 2019). Therefore, there is an urgent requirement
for medium to high resolution fire mapping to better understand
fire dynamics in India (Reddy et al., 2012). However, the vast
majority of studies in India use MODIS based products or
DMSP-OLS data for mapping fires at a coarse resolution (Chand
et al., 2007; Singh et al., 2008). They are then used to either
associate fires with air quality (Badarinath et al., 2007; Kharol
et al., 2008), characterize agricultural burning patterns (Singh
and Panigrahy, 2011; Verma et al., 2019), or predict forest fire
risk (Somashekar et al., 2009; Giriraj et al., 2010; Renard et al.,
2012; Jung et al., 2013). Studies that do attempt to quantify fire
at a higher spatial resolution have mostly used Sentinel data
(Babu et al., 2018; Kalaranjini et al., 2020; Singh D. et al., 2021),
or data from Indian Remote Sensing Satellite (IRS-P6, AWiFS)
(Reddy et al., 2012). As Sentinel data is only available since
2014, a long-term understanding of patterns in fire dynamics
and its interaction with ecosystems requires burned area to be
mapped at high resolution for periods before 2013 as well. While
Landsat-based burned area products exist for some parts of the
world (e.g., Loboda et al., 2018; Vetrita and Cochrane, 2019),
there is no such product for India.

Because higher resolution imagery is less frequently
available than MODIS products and VIIRS-derived Fire
Information for Resource Management System (FIRMS) data,
higher resolution imagery cannot rely on contrasting between
thermal properties of fires and surrounding non-fire areas

1 http://www.esa-fire-cci.org

Frontiers in Forests and Global Change 02 frontiersin.org

https://doi.org/10.3389/ffgc.2022.933807
http://www.esa-fire-cci.org
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-933807 December 14, 2022 Time: 15:24 # 3

Chandel et al. 10.3389/ffgc.2022.933807

FIGURE 1

(A) Nine images selected for this study. (B) Landsat image (LT0514304520100329) showing variation in types of burned area in a landscape.

(Giglio et al., 2008, 2016; Schroeder et al., 2014). Instead, they
rely on the different spectral properties associated with fire
such as reduced chlorophyll, leaf tissue damage, decrease in
crown shadow and moisture (Epting et al., 2005) and presence
of charcoal residue (Fornacca et al., 2018). However, spectral
properties may still allow burned area to be confused with
other types of land surfaces such as water and shadow, and
other land cover change processes such as selective logging
and changing phenology (Epting et al., 2005). Classification
accuracies differ by ecosystem (Epting et al., 2005) and region
(Giglio et al., 2016). Central India is characterized by: small
fires; a hilly terrain where shadows, contrasting topography, and
heterogeneous landscapes that confounds analysis (Fornacca
et al., 2018); forests with varying canopy cover (from very open
forests with low tree cover to more dense woodlands); and a
very high fire frequency. Hence, it is important to understand
which methods would be most appropriate for identifying
and quantifying fires (both agricultural and in the forest) in
this region. Further, improved detection of burned area in
such ecosystems is required as fires in grasslands, savannas
and woodlands account for 60% of total carbon emissions
(Shiraishi et al., 2021).

Methods used for mapping fires at high resolution in India
are varied. Many scholars visually trace out fires or use local
informants for mapping fires for smaller studies (Jung et al.,
2013). Others use supervised classification based on maximum
likelihood (Reddy et al., 2012; Ray et al., 2020), but supervised
classification is not able to quantify fire severity. Supervised
classification is also time-consuming and does not lend itself
well to automation. Creating a burned area product for India
cannot be done on individual images but will need to be
automated and applied on multiple images to be available at
large scales.

One method that lends itself well to large scale mapping
of burned area across imagery is spectral indices (SI) as SI
can be calculated easily from individual bands for any image.
Use of SIs for burned area mapping focus on spectral bands
that are most sensitive to fire and aim to reduce the noise
in the signal (Fornacca et al., 2018). For example, decrease in
chlorophyll following a fire may be associated with increase
in reflectance in the visible spectrum, whereas leaf tissue
damage may be associated with reduction in NIR reflectance
(Pu and Gong, 2004). Decrease in crown shadow and canopy
moisture may be associated with an increased reflectance in
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MIR (Epting et al., 2005). Spectral indices developed for burned
area aim to capitalize on these differences and have high
separability of burned and unburned area (Ba et al., 2019).
While several indices have been known to perform well in areas
with heterogeneous forest cover, low biomass and small fires
(Fornacca et al., 2018), few studies exist for India. Studies on
spectral indices for mapping burned area in India use only
Normalized Difference Vegetation Index (NDVI), Normalized
Burn Ratio (NBR), and Normalized Different Water Index
(NDWI) as indices, that are used in combination to identify
multiple thresholds for burned area mapping (Babu et al.,
2018; Kalaranjini et al., 2020; Singh P. et al., 2021). Confusion
between water and burned area still remains (Singh P. et al.,
2021), which some scholars address by masking out water
areas before quantifying fires (Babu et al., 2018). Alternatively,
addition of these indices as inputs into a classification algorithm
may increase classification accuracies (Pu and Gong, 2004;
Ba et al., 2019).

A second method that has been used for mapping burned
area and shows high accuracy is the use of machine learning
(ML) algorithms such as Classification and Regression Tree
(CART), random forest (RF) (Ramo et al., 2018; Roteta et al.,
2019), support vector machine (SVM) (Petropoulos et al., 2011;
Ramo et al., 2018), logistic regression (LR) (Pu and Gong,
2004), and Artificial Neural Networks (Ramo et al., 2018; Ba
et al., 2019). ML algorithms can learn the spectral features of
a sample of pixels with labels and recognize those patterns in
other areas of the image (Ramo et al., 2018; Jain et al., 2020).
ML algorithms have a further advantage in that they do not
assume a normal data distribution (Belgiu and Drãguţ, 2016),
and lend themselves well to automation. Scholars in India have
begun using ML methods (Deshpande et al., 2022), but they have
used MODIS data to help identify potential burned area. It is
unclear how results will differ with use of more fine-scaled labels.
Further, while ML-algorithms may be trained for classifying
burned area in one image, given training data from sufficient
numbers of images, it may be possible for ML algorithms to
classify burned area in other images. This will require that we
provide sufficiently representative images across space and time
so that atmospheric and seasonal differences between images
may also be included in the ML algorithms.

The present study focuses on using Landsat imagery to
quantify burned area in forests and croplands in Central India.
It has three objectives: first, we test whether accuracy of ML-
based burned area mapping is as high as accuracy using
supervised classification; and if so, we identify which parameters
provide highest accuracy for each ML technique. Second, we
test whether SIs have good separability for mapping burned area
in Central India; and whether classification accuracies increase
with addition of SIs to the training dataset. Finally, we use a
larger number of images to test if accuracies differ by month
of image acquisition, or other meta-data associated with image,

to understand whether ML techniques can be applied across
images of the same sensor to map burned area.

2 Materials and methods

2.1 Study area and imagery

Our study region was located in Central India, a region that
has very high frequency of forest fires; many areas in Central
India burn more than four times in ten years (Forest Survey
of India, 2019). Dry deciduous forests in this area are highly
susceptible to forest fires because of low soil moisture and a long
dry pre-monsoon period which lasts for 5–6 months (Sannigrahi
et al., 2020). Central India falls in sub-tropical climatic region
with temperatures ranging from as low as 10◦C in winters to as
high as 48◦C in summers. Mean annual rainfall at 1,160 mm is
concentrated during the monsoon. This region has also seen an
increase in agricultural burning (Verma et al., 2019).

Because the fires in the study region are small, one image
contains both forest fires and agricultural fires (Figure 1), and
these fires may have very different spectral properties (Figure 2).
Further, highest frequency of forest fires is in March while
highest frequency of agricultural fires is in April. This may
result in any given image containing active fires, freshly burned
area and older burned area (Figure 1). This variation may
also confound identification of burned area due to variation
in spectral properties between these types of burned area. This
region also has strong seasonality as deciduous trees increasingly
lose canopy from February to May (coinciding with burning
period) with crops being harvested in April (also coinciding with
burning period).

In order to select imagery that represents Central India
spatially and temporally, we randomly selected 5 images to
represent Central India (Figure 1). For this purpose, we
downloaded the IDs of all Landsat 5 images in Central India
from 1986 to present. We then divided the images into those
in the fire season (those acquired from February to May). We
then used R software (version 4.2.1) to randomly select 5 image
IDs from the fire season. Final imagery selected ranged in time
period from 1993 to 2011 (Supplementary Table 1).

In addition to these 5 images to represent the landscape,
we chose two scenes from 2010 to represent crop burning and
forest fires: Landsat 5 imagery from March 2010 represented
peak forest burned area (LT0514345_20100329), and imagery
from April 2010 (LT05145044_20100428) represented peak
agricultural burned area. However, both images contain both
types of burned area (Figure 1 and Supplementary Figure 1).
These images were the first ones taken after peak fire (within
15 days). We then selected the most similar date for same path
and row for 2009. Therefore, combining these images with the 5
randomly selected images, we used a total number of 9 Landsat
scenes in our study (Supplementary Table 1).

Frontiers in Forests and Global Change 04 frontiersin.org

https://doi.org/10.3389/ffgc.2022.933807
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-933807 December 14, 2022 Time: 15:24 # 5

Chandel et al. 10.3389/ffgc.2022.933807

FIGURE 2

Spectral reflectance curves for Landsat image from March 2010 (LT0514304520100329) (A–C) and April 2010 (LT14504420100428) (D–F) show
differences between forest areas and burned area in forests (A,D); differences in agricultural areas and burned agricultural areas (B,E); and
between burned area in forests, burned area in agriculture, shadow, water and old burns (C,F). Trajectories for the March 2010 (G–I) and April
2010 (J–L) images show difference in normalized burn ratio (NBR) for one year between forests and burned area in forests (G,J); agriculture and
burned area in agriculture (H,K); and old burns, shadow and water (I,L).

For comparison with FIRMS data, we also downloaded
the MODIS Collection 5 NRT Hotsport/Active Fire Detection
MCD14DL product2 for the same dates as the Landsat images.
FIRMS data has a spatial resolution of 1,000 m, with daily
temporal resolution, and is widely used in quantifying fires in
India (Forest Survey of India, 2019).

2.2 Remote sensing

2.2.1 Image pre-processing
Landsat imagery (Collection 1, Level 1) was downloaded

from NASA Earth Observation Data site. The Landsat images
were calibrated to Top of the Atmosphere (Chavez, 1996)
using ENVI 5.6 software. After calibration, all the bands other
than thermal bands were stacked and masked before further
analysis. For analysis in Google Earth Engine (GEE) platform,
Collection 1 Level 1 TOA Reflectance data collection was

2 https://earthdata.nasa.gov/firms; doi: 10.5067/FIRMS/MODIS/MCD1
4DL.NRT.00

used for analysis. Elevation data was collected from USGS
(USGS/SRTMGL1_003) and was used to calculate slope and
hillshade for each image for the day of image acquisition.

2.2.2 Calibration and validation datasets
For training and validation data, we used qGIS (version

3.16.13) to generate 700 random points at a minimum distance
of 1 km from each other for each image. We then manually
labeled 700 points as one of the following classes: burnt
forest, unburnt forest, active fire in forest, forest area with
leaf fallen off, burnt agriculture, unburnt agriculture, active fire
in agriculture, agricultural area with no crops, water, shadow,
cloud, old burns and others (built-up, barren land, and sandy
areas). We included cloud and shadow to be able to later
classify those areas where we had no data on fires as opposed
to those areas where there was no fire. We included water
as a separate label as it is often confused with burn scars.
Identifying shadow was also important as it is also confused
with burned area (Singh P. et al., 2021). We included forest area
with leaf fallen off and agricultural area with no crops as
labels because they are season-specific land classes that may
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otherwise confuse classification (Supplementary Figure 2). The
discrimination between burnt and unburnt pixels was based on
visual assessment of the image in SWIR, NIR, and Red bands,
as has been done by many previous studies (e.g., Fornacca
et al., 2018). However, as a secondary check on our labels,
we also extracted values of spectral bands and spectral indices
from January of that year to the following January to show
the difference in spectral profiles of the different classes and
the difference in their year-long trajectory (Figure 2). These
trajectories show that points labeled as “old burns” are those
that burnt a month prior to the date of image acquisition
(Figure 2I). From these 700 points for each Landsat scene, 200
points were randomly selected using a random sample generator
in R and saved as validation dataset (Dataset 1). Remaining
500 points were used as calibration dataset (Dataset 2) and are
representative of actual distribution (e.g., Ramo et al., 2018)
(see frequency distribution of class labels in Supplementary
Table 2).

2.2.3 Spectral indices (SI)
Inclusion of SIs in the training data significantly improves

the accuracy of the burned area classification (Pu and Gong,
2004; Ba et al., 2019). We identified nine indices that
are able to either identify burned area on their own or
improve classification accuracies (Table 1). These include NDVI
(Epting et al., 2005), NBR (Epting et al., 2005; Fornacca
et al., 2018), Burned Area Index (BAI) (Martin et al., 2005;
Fornacca et al., 2018; Parks and Abatzoglou, 2020), Normalized
Difference Moisture Index (NDMI), Burn Area Index Modified-
sSWIR (BAIMS), Burn Area Index Modified-lSWIR (BAIML)
(Fornacca et al., 2018), Global Environmental Monitoring Index
(GEMI) (Chuvieco et al., 2002; Fornacca et al., 2018), Mid-
Infrared Burn Index (MiRBI) (Fornacca et al., 2018; Ba et al.,
2019) and Normalized Difference Water Index (NDWI) (Reszka
and Fuentes, 2015). Although difference Normalized Burn Ratio
(dNBR) also has strong results (Babu et al., 2018; Fornacca
et al., 2018), we excluded this index from our analyses due to
its bi-temporality.

We used Dataset 1 to calculate M-statistics or signal-to-
noise ratio (Table 1), which is defined as the difference between
the means (µ) of two classes normalized by the total of their
standard deviations (σ) (Fornacca et al., 2018; Ba et al., 2019;
Roteta et al., 2019). M values greater than 1 indicate superior
separation between the two classes, while values below 1 indicate
inferior separation (Ba et al., 2019).

2.2.4 Supervised classification
Since supervised classification using maximum likelihood is

the most common method used to map burned area in India,
we first tested the accuracies of burned area detection using
supervised classification with maximum likelihood estimation.
For this, we utilized Dataset 2 as training data to classify Landsat
bands 1, 2, 3, 4, 5, and 7 into 13 classes, and used Dataset 1

to create a confusion matrix and evaluate accuracy. We then
included SIs with high separability [from section “2.2.3 Spectral
indices (SI)”] as inputs in our classification, to test if their
inclusion improves accuracy (Table 2). Given the confusion
between shadows and burned area, we also included hillshade
as an input in our classification and tested whether inclusion of
hillshade improves accuracy. Our classification used a threshold
of 0.1 as it was providing the best results.

2.2.5 Machine learning algorithms
We tested the ability of two common ML techniques to

classify burned area. The first was RF, one of the most extensively
used LULC classifiers (Jain et al., 2020). RF is a supervised
learning technique based on a decision tree; a decision tree is a
series of if-then-else rules that can categorize pixels into burned
or unburned. Decision trees are sensitive to training data and
may overfit the model (Belgiu and Drãguţ, 2016). To reduce
the overfitting of data and reduce bias, ensemble classifiers
were developed that reduce susceptibility to noise by using
bootstrapping or boosting (Belgiu and Drãguţ, 2016); RF is an
ensemble classifier that uses bootstrapping. It produces multiple
independent decision trees; each tree that classifies a pixel into
a particular class acts as a vote for that pixel to belong to that
class (Gislason et al., 2006; Hultquist et al., 2014; Jain et al.,
2020). The advantages of RF are that it can successfully handle
high data dimensionality and multicollinearity, is insensitive to
overfitting (Belgiu and Drãguţ, 2016), and training algorithm
is fast (Gislason et al., 2006). Within RF, we tested whether
classification accuracy was influenced by number of trees (100
to 1000 at intervals of 100), number of variables per split (1 to
10 at intervals of 1), and bag fraction (0.1 to 1 at intervals of 0.1).

The second type of supervised learning ML technique we
tested was SVM, which converts a non-linear problem to a
linear one by using a kernel function to increase number of
dimensions (Hultquist et al., 2014). It basically determines the
best hyperplane for separating decision boundaries between
different classes (Ramo et al., 2018), and is also one of the
mostly commonly used ML algorithms for LULC classifications
(Jain et al., 2020). We tested influence of kernel type [linear,
polynomial, and radial basis function (RBF)] and penalization
(0.1, 1, 10, and 100–1,000 at intervals of 100) on classification
accuracy. For RBF, we further tested the role of gamma (0.05, 1).
For polynomial, we also tested the role of degree (1,2,3,4). For
hyperparameterization of both RF and SVM, we used Jupyter
Notebook (jupyterlab 3.4.7; python version 8.5.0) and imported
Google Earth Engine into python.

Although other ML algorithms exist and some, such as
artificial neural networks, are used as often as RF and SVM
for fire detection (Jain et al., 2020), the accuracies of SVM
and RF are not biased by parameter selection as they are in
artificial neural network (Ramo et al., 2018), and require less
time in training than artificial neural networks. As a result,
we limited our analysis to RF and SVM. Both ML algorithms
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NDVI
Red − NIR
Red + NIR

1.38 1.3 1 1.21 0.81 0.85 1.66 1.68 0.06 0.58 2.99 0.33 0.23 0.01 0.07

NDMI
NIR− sSWIR
NIR+ sSWIR

0.85 0.42 0.54 0.59 0.79 0.61 0.6 0.4 0.44 0.04 2.76 1.64 1.64 0.82 0.55

NBR
NIR− lSWIR
NIR+ lSWIR

1.06 0.78 0.67 0.89 0.88 0.81 0.9 0.86 0.45 0.12 1.97 1.53 1.57 1.07 0.85

GEMI γ (1− 0.25 × γ)−
Red − 0.125

1− Red

γ =
2
(

NIR2
− Red2

)
+ 1.5 × NIR+ 0.5 × Red

NIR+ Red + 0.5

1.45 1.44 1.12 1.2 1.12 0.93 1.49 1.78 0.21 0.56 2.62 0.38 0.26 0.07 0.32

BAI
1(

0.1− Red
)2
+ (0.06− NIR)2

0.95 0.68 0.9 0.94 1.28 0.88 0.48 0.79 0.6 0.25 1.26 0.81 0.8 0.12 0.59

BAIMS
1

(NIR− 0.05 × NIR)2
+ (sSWIR− 0.02 × sSWIR)2 1.06 0.52 1.04 0.82 1.43 0.63 0.63 0.71 0.60 0.26 1.79 1.33 1.28 0.10 0.60

BAIML
1

(NIR− 0.05 × NIR)2
+ (lSWIR− 0.02 × lSWIR)2 1.06 0.18 1.04 0.55 1.43 0.45 0.63 0.3 0 0.15 1.79 1.46 1.42 0.1 0.6

MiRBI 10 × lSWIR− 9.8 × sSWIR+ 2 0.04 1.38 0.07 1.2 0.1 1.03 0.09 1.59 0.05 0.4 3.36 0.51 0.12 0.62 0.74

NDWI
Green− NIR
Green+ NIR

1.38 1.44 1.03 1.36 0.88 0.97 1.62 1.83 0.06 0.5 2.85 0.74 0.63 0.23 0.4
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TABLE 2 Accuracy assessment of supervised classification.

Forest burned area Agricultural burned area Any burned area (forest +
agriculture pooled)

Old burned area

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

Producer’s
accuracy

User’s
accuracy

March April March April March April March April March April March April March April March April

1 6 Spectral bands 0.73 0.45 0.9 0.13 0.69 0.42 0.46 0.78 0.71 0.79 0.85 0.72 0.97 0.97 0.69 0.69

2 6 Spectral bands + NBR 0.69 0.30 0.85 0.09 0.76 0.42 0.47 0.72 0.8 0.8 0.66 0.75 0.69 0.88 0.86 0.67

3 6 Spectral bands + NDVI 0.68 0.45 0.85 0.14 0.69 0.41 0.43 0.81 0.76 0.79 0.63 0.73 0.69 0.89 0.83 0.67

4 6 Spectral bands + NDWI 0.64 0.50 0.8 0.22 0.6 0.59 0.42 0.76 0.76 0.75 0.69 0.73 0.74 0.83 0.87 0.71

5 6 Spectral bands + NDMI 0.68 0.4 0.77 0.13 0.8 0.46 0.48 0.76 0.85 0.8 0.63 0.76 0.65 0.93 0.83 0.62

6 6 Spectral bands + BAI 0.68 0.45 0.88 0.15 0.8 0.41 0.68 0.81 0.82 0.82 0.82 0.74 0.82 0.76 0.82 0.68

7 6 Spectral bands + GEMI 0.76 0.55 0.86 0.14 0.84 0.37 0.44 0.80 0.86 0.8 0.61 0.74 0.74 0.87 0.83 0.67

8 6 Spectral bands + BAIMS 0.65 0.45 0.85 0.13 0.84 0.37 0.46 0.80 0.82 0.83 0.64 0.73 0.68 0.87 0.84 0.68

9 6 Spectral bands + MIRBI 0.72 0.27 0.85 0.09 0.77 0.41 0.44 0.75 0.78 0.84 0.63 0.68 0.69 0.9 0.85 0.64

10 6 Spectral bands + BAIML 0.65 0.71 0.85 0.15 0.84 0.4 0.46 0.8 0.82 0.83 0.64 0.75 0.69 0.89 0.85 0.66

11 6 Spectral bands + NDVI +
NDMI + GEMI

0.69 0.4 0.75 0.1 0.88 0.42 0.46 0.72 0.82 0.8 0.63 0.76 0.71 0.92 0.85 0.69

12 6 Spectral bands +
Elevation

0.76 0.5 0.86 0.2 0.84 0.58 0.52 0.8 0.8 0.77 0.64 0.74 0.64 0.96 0.78 0.68

13 6 Spectral bands +
Hillshade

0.7 0.42 0.85 0.15 0.9 0.51 0.52 0.8 0.84 0.75 0.67 0.78 0.73 0.9 0.87 0.71

14 6 Spectral bands + Slope 0.62 0.44 0.71 0.12 0.56 0.51 0.41 0.75 0.69 0.82 0.61 0.71 0.67 0.6 0.8 0.71

Fro
n

tie
rs

in
Fo

re
sts

an
d

G
lo

b
alC

h
an

g
e

0
8

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/ffgc.2022.933807
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-933807 December 14, 2022 Time: 15:24 # 9

Chandel et al. 10.3389/ffgc.2022.933807

included spectral bands, spectral indices and topography-
derived variables such as slope and hillshade as input layers.
We also quantified relative importance of different inputs in
classification accuracy.

2.2.6 Potential for automating burned area
detection across Central India

We expected that classification accuracy may vary due to
differences in spectral reflectances because of conditions on
the day of the image acquisition such as haze, solar position,
season and location of image. Spectral reflectances may also
vary because on-ground conditions may vary by month and
location. To understand this, we classified each image using its
own training data (Dataset 2), tested accuracy using its own
validation data (Dataset 1), and checked how accuracy varies
with factors related with position of sun such as solar elevation,
azimuth angle and zenith angle, location-based factors such as
path and row, and seasonal factors such as month. We then
pooled the calibration data (Dataset 2) of all the 9 images to
train a RF classifier to classify burned area in all the images.
For this, we included scene-specific meta-data such as path ID,
row ID, month of image acquisition, solar elevation and solar
azimuth angle to the training data (we excluded solar zenith
as it is calculated from solar elevation). We then applied this
classifier to other images and tested accuracy using Dataset 1
of all the images.

3 Results

3.1 Separability of spectral indices

Separability of burned from unburned area varies with
month of image acquisition and whether it is forest burned
area or agricultural burned area (Table 1). For example, in
March, GEMI and BAIML are able to separate forest burned
area from both forest and agriculture (M-value > 1), NDVI
and NDWI are able to separate forest burned area from forests,
NBR is able to separate forest burned area from forest and
shadow and BAI is able to separate forest burned area from
agriculture (Table 1). However, by April, forest burned area can
be differentiated from forests using NDVI, GEMI, NDWI, and
only MiRBI can differentiate forest burned area from forest and
agriculture. Fewer indices are also able to separate water from
forest burned area.

For agricultural burned area, the impact of month of
image is not as drastic. NDVI, GEMI, NDWI can all separate
agricultural burned area from both forests and agriculture in
both March and April. MiRBI can separate agricultural burned
area from agriculture and forests only in April. No SI could
separate forest burned area from agricultural burned area.
Visually, the SIs appear to have very different outputs (Figure 3).

3.2 Supervised classification

For supervised classification that used only spectral bands,
results varied by month of image acquisition. In March, for
forest burned area, producer’s accuracy is around 73% and
the user’s accuracy is around 90%. Accuracies are much lower
in April—producer’s accuracy is 45% and user’s accuracy is
13% (Table 2). For agricultural burned area, in March, the
producer’s accuracy is 69% and user’s accuracy is 46%, but
these are 42 and 78%, respectively in April. Overall, supervised
classification is unable to differentiate between forest burned
area and agricultural burned area. However, if we pool all
burned area (burned area in both forest and agriculture),
accuracy is much more consistent and ranges between 71 and
85% when using only spectral bands. Old burned area are
confused with both forest burned area and agricultural burned
area, but pooling old burned area with any other burned
area (both agricultural and forest) only consistently increases
producer’s accuracy and decreases user’s accuracy. Addition
of elevation, hillshade and slope do not consistently increase
accuracy (Table 2).

Supervised classification had sometimes very high and
sometimes extremely low accuracies and is probably influenced
by sampling bias in training data. In the March image, training
data included sufficient points in water and shadow classes and
the supervised classification was able to distinguish between
water, shadow and burned area. In April image, the number
of points in water did not exceed the number of bands in
the training data, and hence dropped out of the classification.
As a result, some water got classified as burned area in the
supervised classification for April. In classifications where SIs
were included, although classification accuracies are lower
(varied between 63 and 82%), some water still got classified as
burned area in April (Figure 4).

3.3 ML algorithms

3.3.1 Random forest
Results from RF were sensitive to parameter selection; some

patterns are consistent across images while others are different
for different images. Number of trees appears to have no
association with accuracy. However, variation of bag fraction
and number of variables per split with accuracies has different
patterns for different images (Figures 5A–H).

This is reflected in the variation in results from RF
(Figure 4). The highest producer’s accuracy for burned area
(combining agriculture and forest burned area) for March is
0.75 and for April is 0.87, while the highest user’s accuracy for
burned area in March is 0.77 and for April is 0.81. However,
in choosing parameters that maximize either producer’s or
user’s accuracy, RF misclassifies shadow as burned area in
March image (Figure 4). When selecting parameters that
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FIGURE 3

(A) Mapping burned area using different spectral indices, and (B) boxplots showing separability of different land use classes using different
spectral indices. The images used in this figure are calculated from the March 2010 image; see Supplementary Figure 3 for similar figures for
the April 2010 image.

maximize both producer’s and user’s accuracy, accuracy is
lower at 0.73 and 0.82 producer’s accuracy for March and
April, respectively, and 0.70 and 0.81 user’s accuracy for
March and April. However, these parameters misclassify both
water and shadows as burned area for March image but
no water is classified as burned area for April image. All
of these results are obtained using very different parameters
(Table 3). In creating these results, SIs had higher relative
importance than spectral bands, but the particular SIs that
are more important are different for March and April
(Figures 5I,J).

One advantage of RF appears to be that it is not limited
by the minimum number of samples per class. In April image,
where water had dropped out of the supervised classification due
to insufficient training data points, water does get included in
RF classification and is able to distinguish between water and
burned area when we select parameters that yield highest user’s

accuracy and when we select parameters that maximize both
user’s and producer’s accuracies.

3.3.2 Support vector machine
The highest producer’s accuracy for burned area for March

is 0.77 and for April is 0.91, while the highest user’s accuracy
for burned area in March is 0.77 and for April is 0.79.
If we tabulate hyperparameterization results for SVM, some
accuracy values may be outliers at upto 9% points above
others (Supplementary Figure 4). As SVM does not use
any bagging techniques, it may be overfitting the data and
obtaining anomalously high accuracies which overestimate
burned area (e.g., user’s accuracy in April, Figure 4J). If we
select the model parameters that have the highest user’s and
producer’s accuracies but are not outliers, then we obtain
accuracies of 0.62 and 0.68 for March and 0.84 and 0.78
for April. These still classify water and shadows as burned
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FIGURE 4

Classification results for models with highest producer’s accuracy (A–D), highest user’s accuracy (G–J) and models that maximize both
producer’s and user’s accuracies (M–P) for RF (A,B,G,H,M,N) and support vector machine (SVM) (C,D,I,J,O,P). Results from supervised
classification using only spectral bands (E,F), supervised classification that included NBR, NDVI and NDMI (K,L) and FIRMS (Q,R) included for
comparison.

FIGURE 5

Influence of bag fraction on producer’s and user’s accuracy, where mean and confidence intervals are calculated for number of trees from 100
to 1,000 for number of variables per split equal to 7 (A–D). Influence of number of variables per split on producer’s and user’s accuracy, where
bag fraction is 0.5 and mean and confidence intervals are calculated for number of trees from 100 to 1,000 (E–H) for March 2010 (A,B,E,F) and
April 2010 (C,D,G,H) imagery. Relative importance of different variables for March 2010 image (I) and April 2010 image (J) for classifications with
highest total accuracy.
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TABLE 3 Variation in ML parameters that yield highest producer’s accuracy, highest user’s accuracy, and maximize both producer’s and user’s accuracies.

RF

Value Month Accuracy type Number of trees Number of variables per split Bag fraction

Parameters that yield highest producer’s accuracy 0.75 March Producer’s 300 or 400 1 0.3

0.87 April Producer’s 91 combinations

Parameters that yield highest user’s accuracy 0.77 March User’s 100 9 0.1

0.81 April User’s 100 2 or 3 0.1

Parameters that maximize both user’s and producer’s accuracies 0.73 March Producer’s 100 7 0.6

0.70 March User’s

0.82 April Producer’s 100 10 0.5

0.81 April User’s

SVM

Value Month Accuracy type Kernel type Degree Cost

Parameters that yield highest producer’s accuracy 0.75 March Producer’s Linear 0.1 or 300

Polynomial 1 0.1

0.91 April Producer’s Polynomial 1 900

Parameters that yield highest user’s accuracy 0.77 March User’s Polynomial 1 600

0.79 April User’s Polynomial 1 100

Parameters that maximize both user’s and producer’s accuracies 0.62 March Producer’s Polynomial 1 500 and 600

0.68 March User’s

0.84 April Producer’s Polynomial 1 100 and 300

0.78 April User’s
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area in March, but do not classify water as burned area in
April.

Results from SVM were not as sensitive to parameter
selection as RF: for linear kernel type, increasing cost
was associated with an oscillating pattern for both
producer’s accuracy and user’s accuracy (Figure 6); for RBF
kernel type, cost did not have much impact on accuracy
above a cost of 100 (Supplementary Figure 5.1). For
polynomial kernel type, increasing degree was associated
with lower accuracy for both March and April image
(Figure 6).

Support vector machine results are obtained using slightly
similar parameters (Table 3). Linear kernel type and polynomial
kernel type often result in similarly high accuracies, but
misclassification of water and shadows as burned area is
higher in linear kernel type (Supplementary Figure 5.2).
Qualitatively, SVM performed better at differentiating
between water, shadow and burned area than RF in April
image, but it has a tendency to overfit the data. Water
did not get classified as burned area in April image for
parameters that maximize both highest producer’s and user’s
accuracies.

3.4 Comparison with FIRMS

In comparison to Landsat-based methods, commonly used
FIRMS data has very low accuracy. Detection of forest fire was
better than detection of agricultural fires in the month where
forest fires were more frequent, and detection of agricultural
fires was better in the month where agricultural fires were more
frequent (Table 4 and Figure 4). Further, FIRMS did not get
water and shadow confused with burned area.

3.5 Potential for automating burned
area detection across Central India

Classification accuracy appears to decrease with azimuth
angle of image and increase with month (Figure 7). Within this,
classification accuracy of forest fire does not vary systematically
with month and azimuth angle, while classification of
agricultural burned area is low at higher azimuth angle and
earlier in the year when agricultural burning has lower incidence
(Supplementary Figure 6). When we use training data from
all the images together for classification, the most important
scene-specific variables in the classification were solar azimuth

FIGURE 6

Variation in accuracy for linear kernel type (A,B) and polynomial kernel type (C,D) in SVM.
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TABLE 4 Comparison of user’s accuracies across different methods.

Forest fire Agricultural fire All fire

March April March April March April

Supervised classification 0.9 0.13 0.46 0.78 0.85 0.72

Random forest 0.85 0.75 0.64 0.68 0.70 0.81

Support vector machine 0.92 0.80 0.60 0.67 0.68 0.78

FIRMS 0.18 0.07 0 0.20 0.09 0.17

at 4th position, solar elevation at 12th position and month at
18th position (Figure 7). They contributed 21.89, 18.86, 12.13%,
respectively to the classification accuracy. Relative importance
varies with different runs of the model, but these variables
are consistently important. This suggests that accounting for
this meta-data may allow higher accuracy for classification of
multiple images.

4 Discussion

4.1 Spectral indices

SIs did not perform consistently when used in isolation.
While the literature focuses on NBR and BAI, NBR and
BAI did not perform very well. NBR performs better when
biomass is higher; in literature, classification of burned area
had 10% higher accuracy in forests than in non-forest areas
(Epting et al., 2005). This may explain poor separation
of burned area in April when leaf fall in deciduous trees
implies lower forest biomass, thus lower separability for
NBR. Absence of a pre-burn reference may also have led
to confusing features such as water, senescent vegetation
and older fire scars—which have similar spectral properties—
with new fire scars (Epting et al., 2005). One advantage of
NBR, though, is its ability to separate forest burned area
and shadows in March. Poor performance of BAI may be
due to it being developed for coarser resolution AVHRR
imagery, but it has previously performed well with Landsat
imagery (Fornacca et al., 2018). Further, BAI prioritizes the
spectral signature of charcoal (Fornacca et al., 2018), which
may be absent in agricultural fields if the field is plowed
soon after burning. Charcoal may also be low in forest
burned area if forest fires do not leave sufficient charcoal
residue visible from above the canopy, as may be the case
in this region due to small fires that are often limited to
the understory. Instead, high separability between burned and
unburned area (M-value>1) was more consistently achieved
by indices such as GEMI, NDVI, and NDWI. These indices
performed well because vegetation is higher in unburned
area; tellingly, NDVI performed worse in both agricultural
and forest burned area in April when vegetation was lower.

Because GEMI and NDVI appear to be capturing the loss
of vegetation aspect of burned area, they cannot be used in
isolation.

Although inclusion of SIs did not consistently increase
classification accuracy of burned area using supervised
classification, SIs had higher relative importance when using
ML algorithms for classification. Three types of SIs appear
to be playing a role in classification: those that differentiate
burned area from unburned area because vegetation is
higher in unburned area (such as GEMI, NDVI); those
that differentiate burned area from unburned area due to
other factors such as shadows (such as NBR, MiRBI); and
those that differentiate burned area from water (such as
NDMI, NDWI). The importance of SIs is reflected in results
from ML algorithms where NDMI, MiRBI, NDVI and NBR
consistently show up as important, followed by NDWI
and GEMI. The incorporation of these indices probably
helps account for other important variables associated
with fires such as change in vegetation, charcoal and
moisture (Ba et al., 2019), and reduces or eliminates other
confounding factors such as soil and atmospheric effects
(Pu and Gong, 2004).

4.2 Classifying agricultural and forest
burned area

Machine learning algorithms had more consistent results
than supervised classification. This may be because of several
reasons. First, supervised classification, particularly those
using maximum likelihood estimations, assumes normal data
distribution which may not always be the case and lead to
erroneous analysis (Belgiu and Drãguţ, 2016). ML algorithms
also require less training data than supervised classification,
which requires a minimum number of training data per class
in order to use it in classification. This meant that supervised
classification was unable to classify water and shadow when
training data was unbalanced. It also meant that low frequency
of forest fires in April led to lower classification accuracy in
quantifying forest burned area (13%), whereas ML algorithms
could identify the same with an accuracy of over 75% (Table 4).

Of the two ML algorithms tested, RF had more consistent
results than SVM if we choose the parameters with the highest
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FIGURE 7

Change in (A) producer’s accuracy with azimuth angle, (B) user’s accuracy with azimuth angle, (C) producer’s accuracy with month of image
acquisition, (D) user’s accuracy with month of image acquisition, and (E) relative contribution of image-associated meta-data to accuracy of
burned area classification across all images.

accuracy for both producer’s and user’s accuracies. SVM can
result in outlier accuracy values for certain parameters that are
∼9% points above the next accuracy value (Supplementary
Figure 4). For SVM, results are consistent if we choose
parameters with highest producer’s and user’s accuracies after
excluding outliers. This difference between RF and SVM
is probably because RF accounts for decision tree’s known
limitation of being influenced by noise and overfitting the
model (Belgiu and Drãguţ, 2016), by virtue of being an
ensemble classifier. Previous research has also found that RF was
marginally better than SVM (Hultquist et al., 2014), although
RF’s known disadvantage is that it is sensitive to sampling design
(Belgiu and Drãguţ, 2016). This is also reflected in the fact that
RF misclassified classes that are less frequently present in the
landscape, such as water and shadow, in certain parameters,
which SVM did not. Overall, for best RF results, we should use
parameters that maximize both user’s and producer’s accuracies.
Other parameters may lead to misclassification of less frequently
present land-cover types. For best SVM results, we must exclude
parameters that result in outlier accuracy values, otherwise SVM

algorithm may overestimate the more frequently present land
covers like burned area (as in Figure 4J).

Although the two ML algorithms used different approaches
to learning (Jain et al., 2020), both ML algorithms gave
accuracy results comparable with or better than supervised
classification. This may be because the ML algorithm was
able to use differentiation on multiple parameters, including
information from indices included as layers in the analysis.
Although the ability of ML algorithms to capture non-linear
patterns (Jain et al., 2020) did lead to more consistent results
than the supervised classification, the reduced time invested in
the method and its capacity for automation make it a more
attractive option when considering a method for identifying and
quantifying burned area over larger landscapes encompassing
more than one image.

Overall, accuracy for burned area detection using Landsat
imagery was ∼70% for March and ∼80% for April using
ML techniques (detailed in section “4.3 Seasonal effects”).
These are lower than previous studies that report accuracies
>90%. Our results may be lower because we used an external
validation dataset instead of using bagging to calculate accuracy.
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Additionally, forests in the study region had a hilly terrain
with hill shadows, water bodies and dense broadleaved trees
that may have increased the noise and induced errors in
detection (Fornacca et al., 2018). Further, forests of Central
India closely resemble woodlands or savanna due to their
openness (Ratnam et al., 2011); woodlands have a more
variable response to fires and may range from resprouting
shrubs to becoming unvegetated (this is very different from
forested pixels that give a consistent spectral signal of charred
boles and branches) (Epting et al., 2005). Also, agricultural
areas in the study region had small settlements with possibly
small fires that may induce errors in identifying cropland
fires.

4.3 Seasonal effects

Classification accuracies for images acquired in March
and April had consistently different results (∼70% for
March and ∼80% for April using ML techniques). This
may be due to several reasons. One set of reasons is
because of actual differences in fire on the ground. For
example, peak agricultural burning is in April when forest
fire is less frequent and peak forest fires are in March
when agricultural burning is less frequent. This alters
sampling frequency as training data in April may have less
samples of forest burned area, as forest burned area is less
frequent in that month. The forest biomass itself is lower
in April due to the deciduous nature of the forest. Many
of these techniques work better when biomass is higher;
for example, NBR performs better when biomass is higher
(Epting et al., 2005).

The second set of reasons appears to be associated with
the day conditions where accuracy appears to increase later
in the season (Figure 7). However, on closer examination,
agricultural fires have a lower accuracy before April whereas
there is not much variation in classification accuracy of forest
burned area across the seasons (Supplementary Figure 6). This
suggests that we should choose images later in the season, in
April or May, when automating burned area detection across
the region.

4.4 Comparison with FIRMS data

Fire Information for Resource Management System had
accuracies under 20% in all conditions. Similar accuracies were
obtained for Landsat only in supervised classification when
the frequency of forest fires was very low. In comparison,
ML algorithms that used Landsat consistently had accuracies
over 70% for single image classifications. FIRMS underestimates
burned area by at least one fourth with implications for poor
understanding of large-scale drivers and patterns of forest fires.

Given high rate of increase of crop residue burning in India
(Verma et al., 2019), underestimation of agricultural burning
also has significant implications for misunderstanding patterns
and drivers and misinforming policy. This study shows that use
of Landsat imagery may help identify burned area at higher
accuracy across the region. In doing so, overall accuracy is
likely to be higher if we focus on images later in the fire
season (April-May). Incorporation of image-associated meta-
data is likely to allow classification of images for which training
data is not present, thus allowing large-scale mapping of
burned area.

Overall, since accuracies using Landsat-based imagery is
so much higher for burned area than FIRMS, in choosing a
method, we must prioritize commission errors over omission
errors. Increasing accuracy from <20 to >70% is a significant
increase in fire detection, but it will be compromised
if our commission error rate is high. Of the two ML
techniques, RF is highly sensitive to parameter selection, and
can tend to misclassify less frequently present land-covers.
Since previous research has been troubled by misclassification
of water and shadow as burned area, the commission
errors due to this in RF have a potential to be high.
On the other hand, while SVM does not appear to have
this problem, it has a tendency to overfit the model and
misclassify non-burned area as burned area earlier in the
season. We must be careful when applying either SVM
or RF to opt for lower accuracy and prioritize limiting
commission errors for the burned area product to be an
improvement on FIRMS.
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