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Moso bamboo (Phyllostachys edulis) is currently distributed across a wide geographical
area in East Asia. As a common bamboo species occurring along a broad environmental
gradient, there is a need to understand how environmental and biotic drivers affect
belowground processes at large scales. In this study, we investigated the influence
of climate, soil properties, stand characteristics, and organic matter input parameters
as potential drivers of the initial decomposition process in Moso bamboo stands at a
regional scale. Using the Tea Bag Index method, we estimated the initial decomposition
rate (k) and stabilization factor (S; potential long-term carbon storage) from standard
litter incubated at 13 sites across southern Japan and Taiwan. We found that both
decomposition parameters were strongly affected by the climate. The climatic conditions
during the incubation period better explained the variance in k. In contrast, the long-term
climate was more important for S. Notably, temperature and precipitation interactively
affected the initial decomposition rates. This interaction showed that in warmer sites,
precipitation increased k, whereas in cooler sites, precipitation had no effect or even
decreased k. Soil parameters had no influence on k and only had minor effects on
S. A structural equation model showed that the stabilization factor was indirectly
affected by stand density, which suggests that higher bamboo densities could increase
litter stabilization by increasing above-and below-ground organic matter input. Our
study highlights the central role of climate in controlling decomposition processes in
Moso bamboo stands on a broad scale. Moreover, differences in stand structure can
indirectly affect potential soil carbon storage through changes in organic matter input
and soil conditions.

Keywords: Tea Bag Index, early-stage decomposition, Moso bamboo, stand structure, climate, stabilization
factor, soil properties
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INTRODUCTION

Moso bamboo [Phyllostachys edulis (Carrière) J. Houz, Poaceae]
is one of the largest and most common bamboo species in East
Asia. It was originally introduced from subtropical China to
other regions, such as Japan, Korea, and Taiwan, for shoot and
timber production (Canavan et al., 2017). Owing to their rapid
growth and underground rhizome expansion, bamboo stands can
rapidly displace the surrounding vegetation and progressively
replace them with monospecific stands (Okutomi et al., 1996;
Isagi and Torii, 1997). This species’ invasive characteristics and
the abandonment of previously managed stands have contributed
to the continuous expansion of unmanaged areas over the last 30
years (Shinohara et al., 2014; Suzuki, 2015). Bamboo-dominated
areas are currently distributed over many geographical regions,
and their expansion rates are expected to increase in the future
(Shinohara et al., 2014; Takano et al., 2017). As Moso bamboo
stands occur along a wide environmental gradient, there is a
need to understand how environmental factors, namely climate
and edaphic conditions, control key ecosystem processes, such as
litter decomposition, at large scales. Understanding the relative
importance of decomposition drivers at regional scales could
facilitate predictions of how carbon and nutrient cycling in Moso
bamboo stands will respond to future environmental changes.

Litter decomposition is an essential process regulating
nutrient cycling and carbon storage in terrestrial ecosystems. The
decomposition of organic matter is mainly controlled by climatic,
biotic (litter quality and soil decomposers), and edaphic factors
(Coûteaux et al., 1995; Aerts, 1997; Berg and McClaugherty,
2014). At larger scales, the interplay of environmental and
biotic factors influences the decomposition rate and stabilized
material, which later forms part of the soil organic matter
(Prescott, 2010). Climate is regarded as one of the most important
environmental controls on litter decomposition at regional scales
(Meentemeyer, 1978; Berg et al., 1993; Epstein et al., 2002). The
influence of climatic drivers on litter decomposition has often
been evaluated independently; however, previous studies have
shown that precipitation and temperature (or soil moisture and
temperature) can interactively affect the decomposition process
(Taylor et al., 2017; Althuizen et al., 2018; Petraglia et al., 2019).
Determining the thresholds at which the effect of one climatic
factor is conditioned by the other is key to understanding the
environmental controls of litter decomposition and soil carbon
sequestration at broad scales (Prescott, 2010).

In addition to directly affecting litter quality, plant
communities can indirectly influence the decomposition
process through changes in litter input, soil microclimate, and
chemical conditions (Wardle et al., 2004; Fang et al., 2015; Joly
et al., 2017). In plant communities dominated by a single species,
stand density and canopy structure variations can affect litter
accumulation on the forest floor and the input of belowground
organic matter (Penne et al., 2010; Na et al., 2021). Differences
in litter accumulation may alter the water-holding capacity
of the surface layer and provide a different microclimate for
decomposer communities (Facelli and Pickett, 1991; Fekete et al.,
2016). Variations in below-and above-ground litter input can
alter soil pH or nutrient status (Xu et al., 2013; Liu et al., 2019b)

and may indirectly affect belowground processes. In addition,
canopy coverage can influence soil moisture conditions through
rainfall interception or by decreasing the rate of evaporation from
the soil through decreased sunlight (Prescott, 2002). Previous
studies have shown that canopy structure is an important
indirect driver of decomposition in regional and large-scale
analyses (Joly et al., 2017; Wallace et al., 2018; Zhang et al., 2019).
However, the overall contribution of stand structure and organic
matter input can be masked by considering only their direct
effects on litter decomposition (Wallace et al., 2018). As several
factors within the decomposition system often affect each other,
evaluating their direct and indirect effects could help elucidate
the underlying mechanisms that simultaneously control the
decomposition process.

Variation in litter quality in plant communities is expected
due to differences in climate and soil conditions at broad
scales. Litter decomposes faster in its original environment, as
decomposers are adapted to degrade native litter (Veen et al.,
2015). This process is known as home-field advantage and can
represent potential pitfalls when evaluating the effect of litter
quality on the decomposition process. To avoid this potential
bias, Keuskamp et al. (2013) developed the Tea Bag Index
(TBI) protocol based on two types of tea substrate as standard
litter material. The contrasting decomposability of the substrates
allows the calculation of the initial decomposition rate (k) and
stabilization factor (S) after a short incubation period. Similar
to the decomposition of other standard materials (i.e., cellulose
paper), the TBI approach cannot predict actual carbon dynamics
of native litter. However, the decomposition of tea substrates
represents well the decay patterns of plant materials (Didion et al.,
2016; Blume-Werry et al., 2021) and has a similar response to
variations in moisture and temperature as local litter (Didion
et al., 2016; Mueller et al., 2018). Using substrates of known litter
quality makes it possible to exclude litter bias and better evaluate
how environmental factors affect the decomposition parameters
k and S (Keuskamp et al., 2013; Didion et al., 2016). In several
studies, the TBI protocol was a reliable method for estimating
the initial decomposition rates and the later stabilization phase
across different environmental conditions and ecosystem types
(Althuizen et al., 2018; Mueller et al., 2018; Petraglia et al., 2019).

In this study, we aimed to determine the relative importance
of environmental factors, namely, climate and soil, as drivers
of litter decomposition in Moso bamboo stands. We selected
13 sites comprising managed and unmanaged stands distributed
along a broad climatic and latitudinal gradient (spanning 23◦N
to 33◦N) across southern Japan and Taiwan. Because the culm
density of Moso bamboo varies depending on the management
conditions (managed stands maintain densities of less than
4,000 culm ha−1, whereas abandoned stands exceed densities
of 8,000 culm ha−1) (Inoue et al., 2018; Yin et al., 2019), we
also considered the variation in stand properties and input of
organic matter as potential drivers of decomposition. To avoid
variation in litter quality and the possible influence of home-field
advantage from local litter, we used the TBI method (Keuskamp
et al., 2013) to estimate the decomposition parameters k and
S as proxies for the initial decomposition rate and long-term
carbon accumulation, respectively. We first investigated which
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controlling factors (climate, soil properties, stand properties,
or organic matter input) exert predominant control over k
and S. We then determined how particular indicators of stand
properties, organic matter input, and soil parameters directly or
indirectly affected the decomposition process. To understand the
relative contribution of climate, two types of temporal scales were
considered: temporal climate, which refers to the temperature
and precipitation during the incubation period (90 days), and
long-term climate. We hypothesized that climate would be an
important driver of k and S. However, we expected that the
temporal climate would mainly control k, while the long-term
climate would be more important for S. We also expected that soil
and organic matter input parameters would be relatively more
important for S than for k. Finally, we expected that the stand
structure variability of Moso bamboo stands would indirectly
influence decomposition parameters through changes in organic
matter input and edaphic properties.

MATERIALS AND METHODS

Study Sites
We selected 13 sites with Moso bamboo stands distributed along
a wide latitudinal gradient from 33◦60′N to 23◦40′N across
Taiwan and southern Japan. Most of these sites were located
on Kyushu Island (southern Japan), and one site was located
in central Taiwan (Table 1). All locations corresponded to the
warm temperate and humid climate biome (Breckle, 2002). Moso
bamboo was the dominant species in the surveyed stands and few
understory vegetation was present.

Climate Data
Precipitation and temperature records were obtained from
the Japan Meteorological Agency (2019) and Taiwan Central
Weather Bureau (2019) from the meteorological station closest to
each site. The mean annual temperature (MAT) and mean annual
precipitation (MAP) for 10 years (2008–2018) ranged from 12.6
to 19.3◦C, and 1,660–3,190 mm (Table 1). These data represented
the “long-term climate.” The average daily temperature and total
precipitation during the incubation period (June–September
2018) were obtained at the site level and represented the
“temporal climate.” Precipitation and temperature values were
not correlated across sites (rs = −0.14, P = 0.34), whereas long-
term climate was positively correlated with temporal climate
(temperature: rs = 0.49, P < 0.01; precipitation: rs = 0.85,
P < 0.001).

Soil Properties
We randomly established four 2 m × 2 m plots at each site,
and surveyed soil properties at the plot level. Plots were carefully
selected to minimize variations in other soil conditions (slope,
aspect, and distance to stand edges). Three soil core samples
were collected from a depth of 5 cm and oven-dried at 70◦C
to determine gravimetric water content. From the fine soil
fraction (sieve < 2 mm diameter), total carbon and nitrogen
concentrations were measured using a CN analyzer (Yanaco MT-
700, Kyoto, Japan). Soil pH (H2O) (2:5 dry soil:distilled water

ratio) was measured using a pH meter (Horiba D54-S, Kyoto,
Japan), and soil bulk density was determined from the soil core
samples at depths of 0–10 cm. The measured soil properties
(pH, water content, bulk density, and C/N ratio) showed high
variation among sites and low within-site variability, indicating
high regional variation (Table 2 and Supplementary Figure 1).

Stand Properties and Organic Matter
Input
We considered stand structure variability and the amount
of organic matter input to be potential drivers of litter
decomposition. In each plot, we recorded the diameter at breast
height (DBH ≥ 5 cm) and counted the number of individual
living culms to estimate the stand density. Canopy coverage
was measured by obtaining hemispherical images 2 m above the
ground using a fish-eye lens. The photographs were then analyzed
using the software Gap Light Analyzer (Frazer et al., 1999).

In addition, leaf litter samples on the forest floor were collected
using a 20 cm × 20 cm frame to determine the amount of litter
accumulated in the organic layer. Litter samples were collected
in mid-June 2018; therefore, they reflect the litterfall in Moso
bamboo stands that occurred during April–May (Song et al.,
2016). Fine roots were separated from the soil samples and
weighed to estimate the fine root biomass. Fine root biomass
and litter mass accumulated at the plot level were considered
indicators of organic matter input in the stands.

Because some of the surveyed sites corresponded to managed
stands (five sites, i.e., KMT, SBA, SSM, IZK, and TWN), high
variability of stand density and organic matter input properties
were captured among plots and sites (Table 2). Regardless
of management status, there was no clear separation between
managed and unmanaged sites in relation to stand structure
and organic matter input variables (Supplementary Figure 2).
Moreover, the high within-site variability indicated large local
variation in the studied region (Supplementary Figure 2).

Litter Decomposition Measurements
The TBI method was used to evaluate the influence of
environmental factors and stand properties on decomposition.
This method uses two types of tea (rooibos and green tea) as
standard materials. Owing to their contrasting litter qualities,
green tea decomposes faster than rooibos tea (Keuskamp et al.,
2013). After approximately 90 days of litter decomposition, the
mass loss of labile materials in green tea is used to calculate the
stabilization factor (S), whereas the more recalcitrant materials
still actively decomposing in rooibos tea allows for the estimation
of the short-term decomposition rate (k) (Keuskamp et al., 2013).

At the beginning of the summer season (June 2018), two green
(Lipton, Unilever, EAN: 87 22700 05552 5) and rooibos tea bags
(Lipton, Unilever, EAN: 87 22700 18843 8) were placed on the soil
in each plot, totaling 208 buried tea bags (4 tea bags× 4 plots× 13
sites). Following the method of Keuskamp et al. (2013), tea bags
were collected after 3 months of incubation and oven-dried at
70◦C for 48 h to calculate the mass loss of each substrate. Because
the tea samples had soil particles adhered to the substrates after
collection, the tea substrates were incinerated at 600◦C for 6 h,
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TABLE 1 | Location, environmental features, and mean values of stand structure characteristics (stand density and DBH) and decomposition parameters (k and S)
for the 13 sites.

Code Site name Lat (◦N) Lon (◦E) Altitude
(m.a.s.l.)

MAT (◦C) MAP (mm) Stand density (culms
/ha)

DBH (cm) k S

ITN Ito North 33.6 130.2 58 16.7 1,722 6,250 ± 883 11.8 ± 0.5 0.015 ± 0.002 0.19 ± 0.03

KYA Kasuya 33.6 130.5 161 16.1 1,656 5,781 ± 2127 8.7 ± 1.6 0.022 ± 0.005 0.20 ± 0.02

ITS Ito South 33.5 130.2 60 16.7 1,722 7,031 ± 1795 12.4 ± 1.2 0.013 ± 0.001 0.17 ± 0.02

IZK Iizuka 33.5 130.6 92 15.9 1,874 8,437 ± 2576 8.6 ± 1.2 0.014 ± 0.001 0.12 ± 0.04

KRM Kurume 33.3 130.6 48 16.9 1,987 6,562 ± 2576 12.7 ± 1.2 0.014 ± 0.001 0.11 ± 0.04

TKU Taku 33.3 130.1 181 14.9 2,248 8,437 ± 806 12.4 ± 0.2 0.022 ± 0.003 0.12 ± 0.03

KRG Kurogi 33.2 130.6 110 15.4 2,080 7,968 ± 312 12.8 ± 0.5 0.016 ± 0.004 0.17 ± 0.07

KMT Kumamoto 32.6 130.7 30 16.3 2,274 4,843 ± 1721 14.4 ± 0.2 0.010 ± 0.001 0.09 ± 0.01

SBA Shiiba 32.3 131.1 630 12.6 3,193 7,500 ± 1692 9.8 ± 0.3 0.017 ± 0.004 0.11 ± 0.03

SSM Satsumasendai managed 31.8 130.3 52 17.0 2,380 3,125 ± 510 12.2 ± 0.6 0.018 ± 0.003 0.19 ± 0.05

SSU Satsumasendai unmanaged 31.8 130.3 43 17.0 2,380 5,937 ± 1943 11.9 ± 0.2 0.016 ± 0.001 0.12 ± 0.03

TKK Takakuma 31.5 130.7 522 14.6 3,072 5,781 ± 1795 11.6 ± 1.0 0.023 ± 0.005 0.16 ± 0.02

TWN Taiwan 23.6 120.8 1120 19.32 2,793 5,958 ± 3437 8.4 * 0.023 ± 0.004 0.08 ± 0.02

Average values (n = 4) are shown with S.D. in parenthesis. MAT, mean annual temperature; MAP, mean annual precipitation; DBH, diameter at breast height; m.a.s.l.,
meters above sea level; S.D., standard deviation.
*Lin et al. (2017).

and the ash mass was subtracted from the dry mass to eliminate
soil contamination in the samples.

The stabilization factor (S), which represents the proportion
of the stabilized fraction that becomes recalcitrant after the initial
phase of decomposition, was calculated as follows:

S = 1 − ag/Hg (1)

where ag is the fraction of green tea remaining, and Hg is the
hydrolysable fraction of green tea (0.842 g g−1). Assuming that
S is the same for both tea substrates, the decomposable fraction
of rooibos tea (ar) was calculated as follows:

ar = Hr (1 − S) (2)

where Hr is the hydrolysable fraction of rooibos tea (0.552 g g−1).
The initial decomposition rate constant (k) was estimated using
the following decomposition curve:

X(t) = are−kt(1 − ar) (3)

TABLE 2 | Description of factors and measured variables used in the structural
equation models and the linear-mixed models.

Factor Variable Average ± S.D. Range

Stand structure Stand density (culms ha−1) 6,441 ± 2,178 2,500–11,250

Canopy coverage (%) 93.6 ± 0.8 91.8–95.3

Organic matter
input

Litter mass (Mg ha−1) 5.2 ± 3.0 0.5–12.2

Fine root biomass (Mg ha−1) 719.5 ± 413 56.0–1,580.5

Soil pH 5.7 ± 0.5 4.1–6.8

Bulk density (g cm−3) 1.2 ± 0.3 0.7–2.1

C/N ratio 12.1 ± 1.1 10.4–15.0

Water content (%) 0.5 ± 0.2 0.1–1.1

Mean values (n = 51) ± S.D. are shown.

where X(t) represents the fraction of remaining rooibos tea at
time t. The labile fraction (ar) decomposes at rate k, whereas
the recalcitrant fraction (1 – ar) is assumed to have a negligible
decomposition rate during the initial phase of decay (Keuskamp
et al., 2013). The mean values of k and S were calculated per plot,
except for one plot located at the Taiwan site, where teabags could
not be recovered.

Data Analysis
We used multiple linear regression analysis to test whether
the climatic conditions affected the decomposition parameters.
We selected the best temporal and long-term climate model to
explain the variation of k and S. For each model, interactions
between precipitation and temperature were also included. When
these interactions were significant, we further analyzed the
interactions using the Johnson-Neyman intervals (Bauer and
Curran, 2005). We considered temperature as the conditional
variable and then calculated the main temperature intervals
at which there would be significant changes in the slope
of precipitation to explain a decomposition parameter. The
specified alpha level for significance was set at P < 0.05. We used
an adjustment to account for inflating Type I errors to calculate
intervals (Esarey and Sumner, 2018). Interaction analysis and
correction of intervals were performed using the “sim_slopes”
function of the interactions package (Long, 2021) in the R
software v. 4.0.2 (R Core Team, 2021).

We used linear mixed-effects models to separately test the
effects of stand structure (stand density and canopy cover),
organic matter input (litter mass and root biomass), and soil
parameters (pH, C/N, water content, and bulk density) on k and
S. In these models, the explanatory variables were considered
fixed factors and the sites were included as random factors. The
lme4 package was used to fit the linear mixed-effect models
(Bates et al., 2015). Collinearity among variables was evaluated
using variance inflation factors (VIF). Model selection was

Frontiers in Forests and Global Change | www.frontiersin.org 4 July 2022 | Volume 5 | Article 921028

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-921028 July 6, 2022 Time: 11:21 # 5

Orrego et al. Early-Stage Decomposition in Moso Bamboo

performed based on the lowest AIC, and then the R2 (marginal
and conditional) of the most parsimonious model was extracted
using the “R.SquareGLMM” function of the MuMIn package
(Bartoń, 2022).

We then used the partial least squares structural equation
model (PLS-SEM) approach to explore the direct and indirect
effects of stand structure, organic matter input, and soil variables
on k and S. Climatic variables were not included in the model
because they could affect the decomposition indices interactively,
and SEM models cannot account for such interactions. For a
specific a priori model, we hypothesized that stand structure
properties would indirectly control decomposition. For instance,
higher canopy coverage increases soil moisture by reducing
soil surface evaporation, thereby affecting the decomposition
parameters (Prescott, 2002; Joly et al., 2017). In addition,
higher stand density increases litter mass and fine root biomass,
indirectly affecting k and S (Na et al., 2021). We also
expected that litter mass and root biomass would influence
soil properties, such as pH, water content, bulk density, and
C/N ratio (Facelli and Pickett, 1991; Xu et al., 2013; Liu et al.,
2019b). Finally, we expected that soil properties would directly
control both decomposition parameters (Prescott, 2010; Berg
and McClaugherty, 2014). All data were standardized prior to
performing the structural equation model, and non-parametric
bootstrapping (5,000 resamples) was employed to obtain the PLS
parameter estimates. We used a bootstrap confidence interval of
95% to determine the significance of the path coefficients, and
only the significant pathways were retained in the final model
(Hair et al., 2017). PLS-SEM analysis was performed using the
SmartPLS software (v3.3.6, Ringle et al., 2015).

RESULTS

Identifying the Direct Controls of k and S
Across sites, the mean values of k and S ranged from 0.010 to
0.023, and from 0.08 to 0.20, respectively (Table 1). Climate
significantly affected both the decomposition parameters (k and
S). The most parsimonious model of the temporal climate
explained 42% of the variance in k, whereas the long-term
climate model explained only 16% (Table 3). Conversely, the
long-term climate explained 21% of the variance in S, whereas
the temporal climate explained 14% (Table 3). In both climatic
models, precipitation and temperature interactively affected the
decomposition rates. In the temporal climate model, the effect
of precipitation on k was dependent on specific temperature
thresholds. When the temperature was lower than 23.7◦C, k
decreased with increasing precipitation; when the temperature
was between 23.7 and 26.8◦C, precipitation did not affect k; and
when the temperature was higher than 26.8◦C, k increased with
precipitation (Figure 1A). In the long-term climate model, the
interaction showed that when MAT was higher than 15.6◦C, k
increased with MAP, whereas when MAT was lower than that
value, MAP had no significant effect on k (Figure 1B). There was
a nonlinear decrease in S with temperature in both the temporal
and long-term climate models, while S increased nonlinearly with
precipitation in the latter model (Table 3).

The linear mixed-effects models showed that stand structure,
organic matter input, and soil parameters had no significant
influence on the initial decomposition rates across sites (Table 4).
Fine root biomass had a marginal effect on S (P < 0.1) in the most
parsimonious model of organic matter input and explained only
6% of the variance in S (Table 4).

Identifying the Indirect Drivers of k and S
PLS-SEM models accounted for 23 and 27% of the variation in k
and S, respectively (Figure 2). The model revealed interconnected
relationships among the decomposition drivers, but none of the
stand structure, organic matter input, or soil variables directly or
indirectly affected k (Figure 2A). However, the model showed
indirect cascading effects from stand density to S, mediated by
changes in organic matter input and soil bulk density (Figure 2B).
Stand density had a significant direct influence on litter mass
(0.28) and fine root biomass (0.25). Both fine root biomass and
litter mass negatively affected the soil bulk density (−0.22 and
−0.31, respectively), while the latter negatively influenced litter
stabilization (−0.31). Overall, this indicated that stand density
and organic matter input had indirect positive effects on S,
mediated by changes in soil bulk density. Although canopy cover
did not affect soil conditions (Figure 2), these results demonstrate
that stand structure variability can modify the soil environment
and indirectly influence litter stabilization.

DISCUSSION

The climate variables were the most important drivers of the
initial decomposition rate (k) and stabilization factor (S). We
found that the temporal scales of the climate affected the
decomposition indices differently. The temporal climate was
relatively more important, explaining 42% of the variation in
k. This could be attributed to the variation in temperature
and moisture conditions during the incubation period, which
can directly influence microbial activity and leaching of soluble
compounds, the latter of which is an important driver of mass loss
in the early phases of litter decomposition (Cotrufo et al., 2010;
Berg and McClaugherty, 2014). Conversely, the stabilization
factor was primarily controlled by the long-term climate (21%)
compared with the temporal climate (14%). Similar to our results,
Althuizen et al. (2018) found that the long-term climate regime
was more important for litter stabilization than variations in
the short-term climate. The selected long-term climate model
showed that temperature had a stronger effect on S despite
low variability across the climatic gradient. The temperature
sensitivity of carbon stabilization is a key factor in regulating soil
carbon stocks (von Lützow and Kögel-Knabner, 2009). In warm
temperate areas, soil carbon losses occur as microbial activity
and heterotrophic respiration increase with temperature (Jackson
et al., 2017). Although we found a negative nonlinear relationship
between temperature and S, this result contrasts with that of
Xu et al. (2018), who reported that soil carbon stocks in Moso
bamboo stands decreased linearly with mean annual temperature
across a latitudinal gradient.
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TABLE 3 | Selected regression models for the temporal and long-term climate models.

k S

Slope ( ± SE) Adj. R2 AIC Slope ( ± SE) Adj. R2 AIC

(a) Temporal climate (a) Temporal climate

t × p 5.13 × 10−6 (±1.41 × 10−6) 0.42 −418.78 t2 −6.43 × 10−3 (±2.51 × 10−3) 0.14 −160.03

(b) Long-term climate (b) Long-term climate

MAT × MAP 3.16 × 10−6 (±1.29 × 10−6) 0.16 −400.12 MAT2
−7.23 × 10−3 (±2.85 × 10−3) 0.21 −166.03

MAP2 9.65 × 10−8 (±3.68 × 10−8)

R2 and AIC for the best models are shown. Climatic variables included in the models represent: t, mean temperature during the incubation period; p, total precipitation
during the incubation period; MAT, mean annual temperature; MAP, mean annual precipitation.

FIGURE 1 | Johnson-Neyman plots showing the interactions between temperature and precipitation on the initial decomposition rate (k) in the (A) temporal climate
and (B) long-term climate model. Dash lines show the temperature thresholds at which there are significant changes in the effect of precipitation on k.

TABLE 4 | Results of multiple linear mixed models testing the effects of stand structure, organic matter input, and soil parameters on k and S.

k S

Slope (±SE) R2m/R2c AIC Slope (±SE) R2m/R2c AIC

Stand structure

Stand density −1.46 × 10−4 (6.06 × 10−4) – – −9.29 × 10−3 (6.21 × 10−3) – –

Canopy cover −5.92 × 10−4 (6.13 × 10−4) – – 1.01 × 10−2 (6.27 × 10−3) – –

Organic matter input

Litter mass 6.17 × 10−4 (7.25 × 10−4) – – −8.10 × 10−3 (7.52 × 10−3) – –

Fine root biomass −4.99 × 10−4 (7.03 × 10−4) – – −1.21 × 10−2 (7.26 × 10−3) 0.06/0.52 −154.57

Soil

WC −7.90 × 10−4 (7.96 × 10−4) – – 3.41 × 10−3 (8.73 × 10−3) – –

pH 4.13 × 10−6 (1.07 × 10−3) – – 1.32 × 10−2 (1.17 × 10−2) – –

BD 1.37 × 10−3 (1.28 × 10−3) – – −9.81 × 10−3 (1.38 × 10−2) – –

C/N −4.18 × 10−4 (7.50 × 10−4) – – 5.76 × 10−3 (8.22 × 10−3) – –

R2m, R2c, and AIC are only reported for the most parsimonious models. Retained variable(s) in the best model are shown in bold.

Compared to other vegetation types in the region (Suzuki
et al., 2019), the decomposition parameters in Moso bamboo
stands from this study were in the upper and lower range for k

and S, respectively (Supplementary Figure 3). The differences
in the decomposition of standard litter could be attributed
to the variation in environmental and site-specific conditions.

Frontiers in Forests and Global Change | www.frontiersin.org 6 July 2022 | Volume 5 | Article 921028

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-05-921028 July 6, 2022 Time: 11:21 # 7

Orrego et al. Early-Stage Decomposition in Moso Bamboo

FIGURE 2 | Structural equation models showing the effects of stand structure (stand density and canopy cover), organic matter input (fine root biomass and litter
mass), and soil variables (bulk density, pH, C/N ratio, and water content) on (A) the initial decomposition rate (k) and (B) the stabilization factor (S). R2 values
represent the proportion of total variance explained by the model. Significant paths are shown in black arrows with solid and dashed arrows representing positive
and negative effects, respectively. Thin gray lines show tested relationships that were not significant.

Moso bamboo invasion into neighboring forests can lead to
changes in the decomposition environment through the input
of more recalcitrant litter (Song et al., 2016; Liu et al., 2019a).
The slightly higher S in Moso bamboo stands than that of
evergreen broadleaved forests could be related to the recalcitrance
of bamboo litter and its lower decomposition rates, which may
result in higher soil organic matter accumulation in the long-
term (Liu et al., 2021). In addition, belowground biomass,
which is significantly higher in Moso bamboo in comparison
with evergreen broadleaved forests (Wang et al., 2013), may
potentially contribute to increased carbon input and organic
matter accumulation (Qin et al., 2017). The average k in Moso
bamboo were comparable with that of evergreen broadleaf forests
and higher than those of deciduous broadleaf, coniferous, mixed
(broadleaf-conifer) forests and alpine shrubs. Similar initial
decomposition rates in bamboo stands and evergreen broadleaf
forests suggests that k was mainly influenced by climatic factors.

The interaction between precipitation and temperature was
an important determinant of the variation in k. In this
regional study, the effect of precipitation on k was mainly
controlled by temperature thresholds. Increasing precipitation

accelerated the initial litter decomposition at warmer sites,
whereas decomposition was not determined and was negatively
influenced by precipitation at the middle-range temperature
and cooler sites, respectively. In this study, cooler sites were
located at high altitudes and corresponded to locations with
high mean annual precipitation (>3,000 mm). The negative
effect of precipitation at these sites could be explained by the
high amount of rainfall and oxygen depletion in soils, which
can affect microbial communities and limit decomposition rates
under such conditions (Schuur, 2001; Althuizen et al., 2018).
Previous studies using the TBI method found that the effects
of soil temperature on decomposition rates were dependent
on soil moisture (Petraglia et al., 2019; Sarneel et al., 2020),
indicating that complex interactions can affect decomposition
rates during the early stages. Taylor et al. (2017) showed that,
similar to our sites, warmer locations in tropical forests were
associated with enhanced decomposition only under conditions
of higher precipitation.

In our regional study, neither stand characteristics nor site
conditions affected the initial decomposition rate (k). Specifically,
soil properties had no direct effect on k, despite being important
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modulators of the abundance and activity of soil microbial
communities and microarthropods (Prescott, 2010; Berg and
McClaugherty, 2014). The limited contribution of soil parameters
to k may be related to the greater importance of the leaching
process during the early phases of litter decomposition (Cotrufo
et al., 2010). However, as we only focused on the controls of initial
decomposition rates, the relative importance of soil parameters
might change during the later stages of decomposition (García-
Palacios et al., 2016). It is also important to note that climate data
aggregated at the site level could lead to a larger contribution
by climate on decomposition rates at large scales of analysis
(Bradford et al., 2016). This could mask the contribution of other
decomposition drivers at the local scale, such as variations in
the microbial communities (Bradford et al., 2017). In addition,
because water availability is an important driver of mass loss
in tea bags (Djukic et al., 2018; Blume-Werry et al., 2021;
Mori et al., 2021), the local-scale conditions of soil moisture
measured continuously throughout the incubation period may
better explain the variation in initial decomposition rates.

Contrary to our expectations, the linear mixed-effect model
showed no influence of soil properties on S, despite being
highly variable across the studied region. However, SEM analysis,
which tests the causal relationships among variables, showed
that soil bulk density was negatively related to the stabilization
factor. Organic matter can be stabilized in the soil through
the physical protection of soil microaggregates. This mechanism
protects organic matter from decomposition and, consequently,
favors its accumulation in the soil (Six et al., 2002). Generally,
increasing soil bulk density reflects a high degree of compaction
and low porosity in the soil (Soane, 1990). As such, high bulk
densities could lead to decreased micro-aggregation in soils
and thus negatively affect the stabilization of organic matter
(Six et al., 2002). In a previous study, Zhang et al. (2015)
showed that soil bulk density was negatively associated with the
topsoil organic carbon and was a good predictor of its spatial
variation in Moso bamboo stands. The association between soil
bulk density and litter stabilization found in this study further
suggests that variations in soil structure could be important
determinants of organic matter stabilization and potential soil
carbon sequestration.

Stand structure did not directly explain the variability of the
decomposition parameters; however, the SEM model showed
indirect cascading effects from stand density to S. In the
present study, bamboo stands with higher densities had increased
amounts of litter mass accumulated on the forest floor and
higher fine root biomass. Increasing litter mass and fine root
biomass indirectly and positively affected the stabilization factor
(S) through their effects on soil bulk density and not through
soil microclimatic conditions, as initially expected. Above- and
below-ground organic matter inputs can substantially influence
the soil structure and carbon accumulation (De Deyn et al.,
2008). For instance, rhizodeposition from roots is a source of
labile carbon in the soil that can increase the presence of soil
aggregates and binding structures and enhance the soil structure
(Jobbágy and Jackson, 2000; Traoré et al., 2000). By altering soil
structure and pores in the soil, roots can modify soil aggregation
and short-term stabilization (Morel et al., 1991; Six et al., 2004).

Additionally, litter decomposition and root turnover allow the
progressive accumulation of organic matter in the soil (Jastrow
and Miller, 1998), which has the potential to improve soil
structure and promote organic matter stabilization (Kay, 1998;
Abiven et al., 2009). Yang et al. (2021) showed that increased
input of organic matter in extensively managed Moso bamboo
stands were positively associated with soil aggregate stability and
soil organic carbon. Altogether, our results suggest that variations
in stand density and organic matter input in bamboo stands
can modulate changes in soil structure and represent important
indirect biotic controls of litter stabilization.

Variations in stand density and organic matter input in
bamboo stands can represent important plant controls affecting
below-ground processes and may be particularly relevant in
bamboo-dominated communities that form dense monospecific
stands and underground root networks (Fukuzawa et al., 2007;
Yin et al., 2019). Unmanaged stands have higher densities than
managed stands (Chen et al., 2016; Yin et al., 2019). However,
the managed stands considered in this study had great variation
in stand densities and did not differ in stand structure and
organic matter input variables compared to unmanaged stands
(Supplementary Figure 2). Nevertheless, it is important to note
that different management practices can affect soil conditions and
may have further consequences for below-ground functions (Fu
et al., 2014; Yuen et al., 2017; Yang et al., 2021). In addition,
the time of management, or in the case of unmanaged stands,
the time of abandonment, might also be factors to consider
when evaluating below-ground processes and soil carbon storage
(Yin et al., 2019; Yang et al., 2021). Although the effect of such
factors may be inherent in the studied sites, our results still
provide an understanding of the mechanisms by which stand
structure controls organic matter stabilization and the potential
soil carbon storage in bamboo stands. These results may provide
further insights into how specific management practices (i.e.,
thinning) and the variability of stand density could influence the
decomposition process in Moso bamboo stands.

CONCLUSION

Our study suggests that climatic factors are the main drivers of
decomposition processes in Moso bamboo stands on a regional
scale. Long-term climate greatly influenced litter stabilization,
whereas k was mostly affected by temporal climatic conditions.
Our analysis also revealed that k was strongly affected by the
interaction between precipitation and temperature, suggesting
that precipitation only accelerated the initial decomposition rates
at warmer sites. Overall, stand structure and soil properties had
limited direct effects on both the decomposition parameters.
However, indirect cascading effects from stand density affected
litter stabilization through variations in the amount of organic
matter input and their consequent modifications to soil bulk
density. These results demonstrate the importance of identifying
direct and indirect pathways to disentangle the different
mechanisms controlling litter decomposition and stabilization.
Finally, the particular relevance of climate in this region suggests
that changes in precipitation regimes or temperature would
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greatly affect the early phases of decomposition and potential
soil carbon storage in Moso bamboo stands. Nevertheless,
because this study only measured potential indicators of the
decomposition process, further research considering litter quality
and its interaction with other environmental factors is required
to improve our understanding of the biogeochemical processes
in Moso bamboo stands.
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