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Drought is an important driver of forest dynamics in the Mediterranean region. The
forecasted increase in drought frequency and severity can notably influence tree
growth, forest structure, composition and productivity. Understanding how coexisting
tree species respond to drought is thus crucial to understand which are less vulnerable
and will perform better in a warmer and drier world. To assess drought vulnerability,
we used dendrochronology to study the radial growth trends and responses to a
drought index of four pine species (Pinus halepensis, Pinus pinea, Pinus nigra, and
Pinus sylvestris) coexisting in North-eastern Spain. We reconstructed the growth of
each species and evaluated their short- and long-term growth response to drought
for the common period 1980–2017. The growth of the four pine species depended
on water availability and high early spring temperatures impacted the growth of P. nigra
and P. sylvestris negatively. The occurrence of a severe drought between 2005 and 2007
lead to marked growth reductions in the four species, but it was greater in magnitude
in P. pinea and P. halepensis in 2005, and in P. nigra in 2007. The results of basal
area increment models at the individual tree level suggested that P. halepensis trees
grow more than the rest of species. After accounting for age and drought effects,
P. nigra and P. sylvestris displayed negative growth trends in the 2008–2017 period
while P. pinea and P. halepensis displayed positive growth trends. P. sylvestris was the
most resistant species and P. pinea the less resistant. Conversely, P. halepensis and
P. pinea were slightly more resilient than P. sylvestris. Moreover, P. sylvestris was the
species displaying the highest autocorrelation and the lowest coefficient of variation in
ring-width indices. A marked drop in the autocorrelation of P. pinea ring-width index
was observed in response to the 2005 drought. These results indicate that all study
species are vulnerable to drought but in different degrees. The strong resilience capacity
of P. halepensis suggests that it will better thrive in a drier future, but mixed pine
forests, such as the one here studied, may contract or become rare due to the strong
sensitivity of P. pinea to drought and the lower post-drought performance of P. nigra and
P. sylvestris.
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INTRODUCTION

As climate warms, a rearrangement of plant communities looms
(García-Valdés et al., 2015; Buras and Menzel, 2019) impacting
the structure, composition and functioning of forests (García-
Valdés et al., 2020). Currently, climate warming has boosted
the occurrence of severe droughts (IPCC, 2022). It has been
recognized that drought is a major constraint of tree radial
growth worldwide (Babst et al., 2019) and a recurrent cause of
forest dieback and mortality both directly and indirectly (Allen
et al., 2015; Hartmann et al., 2022). The Mediterranean Basin
represents a climate change hotspot in which forests are suffering
the direct and indirect consequences of increasingly warmer
and drier conditions (revised in Peñuelas and Sardans, 2021).
Directly, a warmer climate and more intense droughts may cause
tree death by inducing xylem hydraulic failure among other
responses (Hereş et al., 2014; Camarero et al., 2015a; Pellizzari
et al., 2016; Hevia et al., 2019). Indirectly, severe droughts can also
enhance tree mortality by weakening trees, reducing their carbon
pools and making them more vulnerable to pathogens (McDowell
et al., 2008; Gaylord et al., 2015; Stephenson et al., 2019; Trugman
et al., 2021). A key question emerging here is: when coexisting,
which tree species will be more vulnerable to drought?

In drought prone regions such as most Spain, differences in
radial growth rate, wood traits and xylogenesis are important
factors determining how trees respond to water shortage
separating angiosperms from gymnosperm species (Carnicer
et al., 2013; Camarero, 2018). Under drier scenarios, forests
will shift toward less productive and more drought tolerant
communities (García-Valdés et al., 2021). In the long term,
drought tolerant angiosperms such as anisohydric oaks will
be benefited against drought vulnerable gymnosperms such as
isohydric pines in the case of mixed pine-oak stands (Quero
et al., 2011; Gea-Izquierdo et al., 2014, 2019, 2021). However,
differences exist within pines which may become more important
when coexisting (Camarero et al., 2015a; Marqués et al., 2016;
Salazar-Tortosa et al., 2018; Andivia et al., 2019). Pines represent
an important part of Spanish forests accounting for ca. 40% of
the total forested area which is ca. 15 million ha (Astigarraga
et al., 2020). Therefore, assessing how they respond to drought
is fundamental to advance in our understanding of how future
Spanish forests will look like in the near future (Andreu
et al., 2007; Camarero et al., 2021a; Herrero et al., 2021).
Poleward and upward migrations of Mediterranean tree species
are forecasted in the long-term (Buras and Menzel, 2019),
but these projections should also consider the role played by
drought as constraint of performance in some pine species
(Andreu et al., 2007).

It is expected that Mediterranean pines with lower lethal
water potential, i.e., more resistant to xylem embolism and the
loss of hydraulic conductivity, and a facultative bimodal growth
pattern, i.e., potentially growing in spring and autumn, could
better tolerate drought than drought-vulnerable temperate pines
with unimodal growth patterns showing a major growth peak in
spring (Camarero et al., 2010). That is, Mediterranean species
with either a facultative or obligated bimodal growth pattern
such as Pinus halepensis Mill., Pinus pinaster Ait. or Pinus pinea

L. (e.g., Castagneri et al., 2018; Campelo et al., 2021) may have
advantages over other species from mesic sites with unimodal
growth patterns such as Pinus nigra J.F. Arn. or Pinus sylvestris
L. (Rossi et al., 2006). Experimental evidence indicates that
the weaker stomatal control of P. halepensis as compared to
P. sylvestris and P. nigra may allow this species to maximize
carbon uptake during drought (Borghetti et al., 1998; Salazar-
Tortosa et al., 2018). These species also differ in the amount
of biomass invested in belowground organs, with species such
as P. halepensis and P. pinea creating long-lasting large root
systems which may potentially reach deep water sources (Sarris
and Mazza, 2021). Besides, common garden experiments suggest
that Mediterranean pine species have also larger root systems
than pine species from more mesic sites (Andivia et al., 2019).

It is unclear how pine species will respond to drought when
they coexist under similar climate conditions. However, finding
sites where several pine species coexist is challenging (e.g.,
Granda et al., 2018; Hernández-Alonso et al., 2021), and thus
those regions offer valuable and informative settings to test
which species are move vulnerable to drought. Understanding
how trees responded to past droughts through the study of
tree rings may provide clues in this respect (Andreu et al.,
2007; Eilmann and Rigling, 2012; Camarero et al., 2015a). Past
droughts leave imprint information in tree-ring records (Fritts,
1976), which allows understanding how surviving individuals
responded to them (Ogle et al., 2015). Droughts cause abrupt
growth reductions in tree growth (Schweingruber, 1986) that can
last for several years creating carryover effects or drought legacies
(see Anderegg et al., 2015) and impacting drought resilience
capacity (Lloret et al., 2011). Importantly, tree growth responses
to past droughts may determine the likelihood of dieback and
mortality occurrence in the future and be used as early warning
signals of tree vulnerability (Camarero et al., 2015a, 2021a,b;
Cailleret et al., 2017; De Soto et al., 2020; Keen et al., 2022).

Here we studied growth patterns and responses to drought of
four co-occurring pine species (P. sylvestris, P. nigra, P. pinea,
and P. halepensis) coexisting in mixed pine forests located in
Northeaster Spain. We take advantage of a natural experiment
that evaluated the impact of a Diplodia shoot blight (Diplodia
sapinea (Fr.) Fuckel (Syn: Sphaeropsis sapinea (Fr.) Dyko and
B. Sutton).) on the four co-occurring pine species (Caballol
et al., 2022). We hypothesize that recent warming trends and
the occurrence of severe droughts may have left an imprint
in the radial growth series of those species offering valuable
information to infer their vulnerability to water shortage. Thus,
we investigate differences in growth and its response to drought
between species over the common period 1980–2017 (prior to
the Diplodia outbreak). We hypothesize that: (i) the growth of
the four pine species will respond to drought and all species will
present drought-induced growth declines, but (ii) P. nigra and
P. sylvestris, species found outside the Mediterranean Basin in
other Eurasian regions, will be more affected by climate warming
and recent droughts than species restricted to the Mediterranean
Basin (P. pinea and P. halepensis). This is supported on the
recently observed declines of P. sylvestris in its equatorward
distribution limit or rear edge (e. g. Gea-Izquierdo et al., 2014;
Camarero et al., 2015a) and its poor adaptation to withstand
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drought (Camarero et al., 2010). Along this, recent drought-
induced dieback and mortality episodes of P. nigra and P. pinea
in Mediterranean dry regions (Linares and Tíscar, 2010; Petrucco
et al., 2017) suggest that they will be more vulnerable to drought
than P. halepensis which will be the species more able to couple
with drought among those coexisting due to its above- and
belowground growth plasticity (Borghetti et al., 1998; Pacheco
et al., 2016; Salazar-Tortosa et al., 2018; Andivia et al., 2019;
Campelo et al., 2021; Sarris and Mazza, 2021).

MATERIALS AND METHODS

Study Site and Climate Data
The study was conducted in mixed pine forests located near
the village of Oristà, central Catalonia, North-eastern Spain (41◦
55′ 58.4′′ N, 2◦ 3′ 35.7′′ E, 468 m a.s.l.). The studied stands
were composed by mixed pine forests of P. sylvestris, P. nigra,
P. pinea, and P. halepensis. In the year 2020, eight stands in
the area were sampled for dendroecological purposes (Caballol
et al., 2022). Two stem cores were taken at 1.3 m using Pressler
increment borers (Haglöf, Sweden) for trees from the four pine
species to reconstruct their growth patterns and estimate their
age. Here we analyze a total of 123 trees sampled in six of these
stands (Table 1).

The climate in the region is humid subtropical or warm
temperate (Cfa) according to Köppen-Geiger classification
(AEMET-IMPA, 2011). The mean annual temperature in the
region is 12.6◦C, the coldest and warmest months are January
(4.0◦C) and July (22.0◦C), respectively (Supplementary
Figure 1). The total annual precipitation is 655 mm
(Supplementary Figure 1). The soils are thin and acid,
developed on shales, sandstones and conglomerates. The
vegetation is composed by mixed conifer forests with
accompanying angiosperms such as Quercus ilex L. The
presence of a Mediterranean climate with spring and autumn
precipitation peaks facilitates the co-occurrence of the four pine
species (Figure 1).

We obtained monthly mean temperature (◦C) and
precipitation (mm/day) data for the common 1980–2017
period from the 0.25◦-gridded E-OBS climate dataset
(Cornes et al., 2018). We used the Standardized Precipitation

TABLE 1 | Summary of the tree-ring width series for the common
period 1980−2017.

Species No. trees
(No. cores)

Tree age DBH Rbar EPS

P. halepensis 22 (43) 46 ± 10 24.53 ± 4.83 0.461 0.944

P. nigra 34 (68) 54 ± 8 25.85 ± 5.83 0.549 0.976

P. pinea 41 (82) 67 ± 15 34.27 ± 9.26 0.470 0.973

P. sylvestris 26 (48) 56 ± 22 20.77 ± 4.40 0.316 0.919

The estimated tree age at coring height (1.3 m) and the diameter at breast height
(DBH; 1.3 m) are shown together with the Rbar and the EPS. Rbar is the mean
correlation among trees’ series and EPS is the Expressed Population Signal. Values
are means ± SD.

FIGURE 1 | Climate space (Mean annual Temperature–MAT; Total Annual
Precipitation–TAP) for each species according to their distribution in Europe.
The black circle shows the location of Oristà according to its mean climatic
(MAT and TAP) records (AEMET-IMPA, 2011).

Evapotranspiration Index (SPEI; Vicente-Serrano et al., 2010) to
characterize drought severity at temporal resolutions from 1, 3, 6,
9, 12, and 24 months (Supplementary Figures 2, 3). SPEI values
were obtained at∼1.1 km2 spatial resolution for the study region
(Oristà) from the Spanish SPEI database (Vicente-Serrano et al.,
2017).1 We selected the 12-month long SPEI in further analyses
since it captured the main drought episodes in the study area.

To describe the climate niche of each species we first
downloaded distribution maps across Europe from the European
Forest Genetic Resource Programme website.2 These maps
were created by combining different sources of information
across Europe (Caudullo et al., 2017). Mean annual temperature
and total annual precipitation were downloaded from the
WorldClim database (Fick and Hijmans, 2017). Polygons from
the distribution for each species were converted into points
and the climate conditions were obtained from each point. The
climate space for each species was described by the climate
conditions in each point (see Figure 1).

Tree-Ring Analyses
A total of 123 trees were sampled for dendrochronological
purposes (Table 1) and their diameter at breast height (DBH)
was measured in the field. The cores were prepared following
standard dendrochronological procedures. Cores were air dried,
glued onto wooden supports and sanded until the tree rings were
clearly visible. The processed samples were visually cross dated
(Fritts, 1976) and the ring widths were measured to a 0.001 mm
resolution using scanned images (Epson Expression 10,000 XL,
resolution 2,400 dpi) and the CDendro software (Larsson and
Larsson, 2018). The age of each sampled tree at 1.3 m was

1https://monitordesequia.csic.es
2http://www.euforgen.org/
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estimated by counting the maximum number of rings in the
two cores extracted per tree. The COFECHA software (Holmes,
1983) was used to validate the cross dating by calculating moving
correlations between the individual series and the mean series
of each species.

First, to study growth responses to climate at the species level
after removing biological growth changes, we detrended tree-ring
series to eliminate the influence of changes in tree size and age or
disturbances (Figure 2). Each series was detrended with a cubic
smoothing spline that has a 50% cut-off response in 20 years.
We used the same detrending for all samples to facilitate the
comparison of the chronologies and their response to climate
(Klesse, 2021). Individual detrended series were also subjected
to pre-whitening to remove temporal autocorrelation and then
averaged using bi-weight robust averages to obtain residual
chronologies. To assess within-species growth coherence, we
calculated the mean correlation between individual series (Rbar)
and the Expressed Population Signal (EPS), which is a measure of
the robustness of the chronology (Wigley et al., 1984).

To study growth trends and responses to climate at the
individual tree level, we converted tree-ring widths measures into
basal area increments (BAI; Figure 2), assuming a circular shape
of stems and using the equation:

BAI = π (r2
t − r2

t−1) (1)

where rt and rt−1 are the tree radius in the year of tree-ring
formation (t) and the year before tree-ring formation (t–1),
respectively. BAI adequately reflects growth changes in the early
stages of tree life and retains high-frequency variations. BAI was
calculated for each individual tree after averaging the tree-ring
width measures of the two series from the outside inwards.

Pointer year analysis (Schweingruber, 1986) was used
to identify and quantify the presence of abrupt growth

FIGURE 2 | Growth variability (residual ring-width indices) for each pine
species considering the common period 1980–2017. The orange rectangle
identifies the dry (2005–2007) period.

enhancements and reductions for each species. Analyses were
done at the species level considering all trees of each species
(tree level not series level) and using BAI. For each tree, growth
enhancements and decreases were quantified as growth increase
of 40% and decreases of 60% as compared to the three preceding
years, respectively. According to Schweingruber (1986) pointer
years are those growth enhancements or decreases that occur in
75% or more of the individual series.

Resilience growth components were quantified according
to Lloret et al. (2011). Further, we considered two additional
metrics proposed by Thurm et al. (2016): recovery period
and total growth reduction. Resistance and Resilience were
quantified for the 2005–2007 severe drought (Supplementary
Figures 2, 3). Resistance (Rt) was considered as the ratio
in growth (BAI) between the first dry year (2005) and the
three preceding years. Resilience was quantified as the ratio
in growth between the pre- (2002–2004) and post-drought
(2008–2010) periods. Both the recovery period and total
growth reduction were calculated for a maximum period of
11 years after 2007.

Finally, early warning signals of critical transitions were
quantified by quantifying the coefficient of variation (CV) and the
first-order autocorrelation (AR1) of the ring-width indices (RWI)
of each species considering 25-year moving windows shifted by 1-
year intervals (Dakos et al., 2012). For these analyses, we used the
standard chronology (i.e., before pre-whitening) of each species
as it maintains short-term temporal autocorrelation but has no
effect of long-term biological trends (in contrast to BAI series).

Statistical Analyses
Correlation analyses were used to test for the relationship
between ring-width indices and, temperature, precipitation,
and drought (SPEI) for the period 1980–2017. Bootstrapped
correlation analyses were performed considering the period
1980–2017. Significance was assessed by resampling 1,000 times
using the classical bootstrapping method (Zang and Biondi,
2015). Analyses were performed at the species level using the
residual chronologies for each species (i.e., after pre-whitening)
and the mean temperature, precipitation and 12-month long
SPEI from the month of September in the year before growth to
the month of September in the year of growth.

We used linear mixed-effect models (LMM; Pinheiro and
Bates, 2000) to study growth trajectories and response to climate
for each species at the tree level. The model was of the form:

Y = f(Xst)+ us+ vt+ est (2)

Where Y is the log-transformed BAI (log(x+1)) of each
individual s in the year t, f(X) is the set of fixed effects, us
represents the tree nested within stands random effects, vt is
a normally distributed random effect for calendar year t (year
effect), and est is the normally distributed residual for tree s at
year t. We used this model following Mehtätalo et al. (2014) to
study the temporal variation in BAI while accounting for the fixed
effects together with unspecified tree-, and year-level factors.

As fixed factors, we included the age trend, the drought
index and species identity. The age trend was represented
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by the log-transformed age of each tree s at year t. To
represent drought conditions, we selected the 12-month long
SPEI for the month of September (Supplementary Figure 2).
We included potential interactions between both variables
and species identity. The analyses were carried out for the
period common to all species (1980–2017). Fixed factors were
standardized to have zero mean and unit variance prior
to the analyses. Model selection was based on the Akaike
Information Criterion (AIC) (Burnham and Anderson, 2002).
All potential models combining the variables listed above were
created and the one with the lowest AIC was selected. The
model was evaluated by graphically inspecting the residuals
(Zuur et al., 2009). For the selected model, we calculated the
conditional (R2c; variance explained by fixed plus random effects)
and marginal R2 (R2m; variance explained by fixed effects)
coefficients of determinations according to Nakagawa et al.
(2017).

We studied if growth trends after removing age- and drought-
effects differed between species before and after the dry period. To
this end, we obtained the residuals of the models proposed above
and studied how they varied between species and periods using
LME’s. The residuals were used as response variable and species
identity, calendar year and their interaction were used as fixed
factors using tree nested within stand as random factor. Separate
models were created for the period 1980–2004 and 2008–2017. To
test for the significance of year, species and / or their interaction,
we run model selection based on AIC.

We used linear models to compare the resilience components
between species. The corresponding indices (Rt, and Rs)
were used as response variable and species identity, tree age
and DBH at sampling time were used as covariates. The
resilience components were log-transformed prior to the analyses
(log(x+1)). In the case of the recovery period and the absolute
growth reductions, those trees that did not recover pre-drought
growth levels were not analyzed. In all cases, model selection was
applied and the models with the lowest AIC were selected.

When significant effect of species or interactions between
species and year were found, we performed least-square means
based on the Tukey’s honest significant difference (HSD) to test
for the differences in growth trends and resilience components
between species (Bretz et al., 2010).

All analyses were performed in the R environment for
statistical computing (R Core Team, 2021) using Rstudio
(RStudio Team, 2021). The package dplR (Bunn, 2008; Bunn
et al., 2021) was used to manage tree-ring width series, detrend
them and calculate BAI; the package pointRes (van der Maaten-
Theunissen et al., 2015) was used to calculate pointer years and
resilience components; climate-growth analyses were done with
the treeClim package (Zang and Biondi, 2015); the package early
warnings (Dakos et al., 2012) was used to quantify early warning
signals for critical transition; the package lme4 (Bates et al., 2015)
was employed to create linear models and LMMs, the package
MuMIn to perform AIC model selection (Barton, 2018) and the
package emmeans (Length, 2022) was used to perform trends and
factor comparisons using estimated marginal means; and finally
the package effects (Fox and Weisberg, 2019) was used to visualize
regression graphs.

RESULTS

Growth Trends and Response to Climate
Mean chronologies (pre-whitened RWI) were similar between
species (Figure 2) suggesting that the four species are
driven by similar climate conditions (Figure 3). In this line,
correlations between residual chronologies and climate showed
that P. halepensis, P. pinea, and P. sylvestris growth was enhanced
by March precipitation (Figure 3). All species except P. pinea
responded positively to the precipitation in June and July and
P. sylvestris responded also positively to the precipitation in May.
High temperatures during March reduced the growth P. nigra
and P. sylvestris (Figure 3). Finally, all species showed positive
significant correlations with the 12-month long SPEI from the
months of May to September (Figure 3).

The models of BAI at the tree level also supported the strong
impact of the SPEI on growth (Table 2 and Supplementary
Table 1). The selected model accounted for 69% of the variation
in the data (conditional pseudo-R2) which the fixed factors
accounting for 33% of it (marginal pseudo-R2). BAI increased
as trees aged, and it varied between species (Figure 4). The
relationship between BAI and SPEI was the strongest for P. nigra
and the lowest for P. sylvestris (Table 2). In general, P halepensis

FIGURE 3 | Climate-growth relationships for each species in the period
1980–2017. The correlation coefficient between the residual ring-width
chronologies and the (A) precipitation (mm/day), (B) temperature (◦C) and (C)
12-month long SPEI are shown. Asterisks indicate significant (p < 0.05)
correlations.
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TABLE 2 | Summary of the linear mixed-effect model of BAI.

Estimate SE t p

(Intercept) 0.892 0.046 19.263 0.000

Age 0.215 0.008 25.882 0.000

Species PN −0.102 0.054 −1.897 0.063

Species PP −0.084 0.054 −1.562 0.126

Species PS −0.146 0.057 −2.574 0.013

SPEI 0.073 0.011 6.740 0.000

Age: Species PN −0.079 0.010 −7.646 0.000

Age: Species PP −0.104 0.013 −8.298 0.000

Age: Species PS −0.052 0.010 −5.415 0.000

SPEI: Species PN 0.018 0.008 2.258 0.024

SPEI: Species PP 0.004 0.008 0.480 0.632

SPEI: Species PS −0.025 0.008 −3.072 0.002

For each variable and their interactions, the estimated regression coefficient and
standard error are shown together with the t-value and associated probability.
Species’ codes: PN, P. nigra; PP, P. pinea; PS, P. sylvestris.

had a higher age-corrected BAI than the rest of species (i.e., fitted
values for individuals with age fixed at its mean across species,
Figure 4).

The residual variation in BAI after accounting for age- and
SPEI-effects showed different results in the two periods studied.
In the first period (1980–2004), we found no differences in
the residual trend between species (Supplementary Table 2).
Conversely, we found differences in the trends between species
in the second period (2008–2017; Figure 4 and Supplementary
Table 2). In this second period, the model accounted for 56% of
the variation in the data although only 2% was because of the
interaction between calendar year and species. The growth trends
differed between species markedly because while P. halepensis
and P. pinea had positive trends, P. sylvestris and P. nigra had
clearly negative trends (Figure 4 and Supplementary Table 4).

Resilience Components
The pointer year analyses showed similar patterns in the
occurrence of positive and negative pointer years between
species although with subtle differences (Figure 5). Growth
enhancements higher than 40% and occurring in 75% or more
trees were only recorded by P. halepensis in 2004. Growth
decreases higher than 60% and occurring in at least 75% of
trees were observed in P. pinea and P. halepensis in the years
2005, and P. nigra in the year 2007 (Figures 2, 5). P. nigra also
displayed important growth decreases in 1998–1999 and 2016.
The strongest growth reductions in P. sylvestris were observed
in 2007 and particularly in 2016. The 2004–2007 period was
characterized also by substantial growth enhancements in 2004
affecting all species, except P. sylvestris, and followed by subtle
and severe growth reductions in 2005 and 2007.

The model of Rt accounted for 31 % of its variation
and showed differences between species as well as effects of
DBH and tree age (Supplementary Figure 4 and Table 3 and
Supplementary Table 3). P. sylvestris was the most resistant
species and P. pinea the less resistant (Supplementary Figure 4
and Supplementary Table 5). The models of resilience (Rs)

showed small differences between species being P. halepensis and
P. pinea the most resilient species and P. nigra and P. sylvestris the
less resilient (Figure 5 and Table 3). These differences were not
significant according to the post-hoc analyses (Supplementary
Table 5). The models accounted for 6% of the variation in Rs.
No differences between species were found in the average time
to recover and the absolute growth reduction (Supplementary
Table 3). However, there were 24 trees that were not able to
recover pre-drought BAI levels and corresponded to 9 P. nigra
(26%), 7 P. sylvestris (27%), 5 P. pinea (12%), and 3 P. halepensis
(12%) individuals.

Early Warning Signals for Critical
Transitions
Early warning analyses showed differences in the first-order
autocorrelation and the coefficient of variation (CV) of standard
chronologies (i.e., RWI) between species (Figure 6). In general,
P. sylvestris displayed the highest autocorrelation and the lowest
coefficient of variation in RWI while P. nigra displayed the
highest coefficient of variation in RWI followed by P. halepensis.
P. pinea displayed a marked drop in autocorrelation coinciding
with the 2005 drought (less intense in P. halepensis) and had a
positive trend in autocorrelation after it (Figure 6). P. halepensis
displayed an autocorrelation close to zero, excluding the effect
of the 2005 drought, during most of the studied period. The
trend in autocorrelation and the coefficient of variation of
standard chronologies was strong and positive in P. sylvestris and
P. pinea according to the non-parametric Kendall tau correlation
(Figure 6). In the case of P. nigra the trend was strong for
autocorrelation only while no clear trends were observed for
P. halepensis.

DISCUSSION

The results presented in this study corroborates that drought is a
major factor determining the growth of pines in Mediterranean
forests (Pasho et al., 2011; Peñuelas and Sardans, 2021). What
is novel here is that we have been able to compare how
four coexisting pine species with different growth behavior and
biogeographical origins respond to drought when coexisting.
Previous studies have compared how two (Martín-Benito et al.,
2013; Marqués et al., 2016) or even three of these species
responded to drought (Granda et al., 2018), or used some of
them to understand their physiological responses to drought
in controlled conditions (Andivia et al., 2019). Here we show
how they vary in their growth response to drought and
post-drought resilience capacity. Our results indicate that an
extreme drought event, such as that occurring in 2005−2007
(Supplementary Figures 2, 3), differently impacted each tree
species and had disparate effects on their growth. The growth of
the Mediterranean P. pinea and P. halepensis was more impacted
by the first drought event (2005) while P. sylvestris and P. nigra
growth was more impacted by the second part of the dry period
(2007) (see Figures 2, 4, 5). In this sense, P. sylvestris and P. nigra
were more resistant to the 2005 drought than P. pinea and
P. halepensis. However, P. sylvestris and P. nigra trees were slightly
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FIGURE 4 | Expected and observed growth (BAI) for each pine species. Panels (A,C,E,G) show the predicted growth pattern (solid and dashed lines represent main
effect and 95% confidence intervals, respectively) including the SPEI*species interaction while keeping age constant (mean age standardized = 0; ∼30 years). Panels
(B,D,F,H) show the observed growth trajectories considering the common period 1980–2017. Gray lines represent the observations for each individual tree. Straight
lines in the period 2008–2017 (secondary y-axis) represent the expected growth trends after accounting for age- and SPEI-effects (solid and dashed lines represent
main effect and 95% confidence intervals, respectively). The positive trend in the residuals means that the model underpredicts observed growth trends during the
studied period.

less resilient, presented negative growth trends after accounting
for age- and SPEI-effects and were less able to retrieve pre-
drought growth levels (Figures 4, 5). The analyses of climate-
growth couplings revealed the sensitivity of all species to drought

(i.e., SPEI; Figure 3C) but also suggested a greater sensitivity of
P. sylvestris and P. nigra to summer precipitation (particularly,
P. sylvestris, Figure 3A). These results at the species level
contrasted with the results of BAI at the tree level that showed a
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FIGURE 5 | Presence of pointer years and resilience to the 2005–2007
drought period. The percentage of trees of each species (A) showing abrupt
growth enhancements and reductions during the 1980–2017 period and the
resilience to the 2005–2007 drought period (B) is shown for each pine
species. In plot (A) dashed lines indicate the 75% thresholds. Species’ codes:
Ph, P. halepensis; Pn, P. nigra; Pp, P. pinea; Ps, P. sylvestris.

lower sensitivity of P. sylvestris to drought. Early warning signals
indicated differences between species and an important impact of
the 2005 drought in P. pinea growth autocorrelation (Figure 6).
All together, these results suggest that all species are vulnerable
to drought occurrence but that P. halepensis might be in an
advantageous position to thrive in a drier world and outperform
the other species, at least in the study site or in other sites with
similar climate conditions.

It has been suggested that negative growth trends are
common before drought-induced dieback in conifer species (e.g.,
Camarero et al., 2015a, 2018, 2021a; Cailleret et al., 2017; De Soto
et al., 2020; Keen et al., 2022). We observed that growth trends for
P. sylvestris and P. nigra were negative in the period 2008−2017
after accounting for age- and SPEI-effects (Figure 4). Moreover,
the analyses of the resilience components suggested that 9 out
of 34 (26%) and 7 out of 26 (27%) P. nigra and P. sylvestris
trees were not able to recover pre-drought BAI levels. These
age-corrected growth trends contrasted with the positive trends
found in P. halepensis and P. pinea. According to this, we would
interpret that the more Mediterranean species (P. halepensis and
P. pinea) have a better capacity to thrive with the current climate
conditions than the other two species (P. nigra and P. sylvestris).
Thus, it can be interpreted that P. halepensis and P. pinea have

TABLE 3 | Differences in resilience during the 2005–2007 drought period
between pine species.

Estimate SE t p

Resistance (Rt) (Intercept) 0.147 0.013 11.208 0.000

Age −0.024 0.007 −3.443 0.001

DBH 0.022 0.007 3.017 0.003

Species PN 0.040 0.016 2.516 0.013

Species PP −0.015 0.018 −0.838 0.404

Species PS 0.082 0.018 4.623 0.000

Resilience (Rs)

(Intercept) 0.327 0.019 17.311 0.000

Species PN −0.058 0.024 −2.374 0.019

Species PP −0.019 0.023 −0.809 0.420

Species PS −0.052 0.026 −2.042 0.043

Species’ codes: PN, P. nigra; PP, P. pinea; PS, P. sylvestris.

a better capacity to recover after the 2005–2007 dry period than
P. nigra and P. sylvestris in the studied forests.

However, the analyses of the resilience components were not
so clear (Figure 5 and Supplementary Figure 4). First, we found
a higher resistance to the 2005 drought of P. nigra and P. sylvestris
and differences in resilience between species were weak. Tree
species differ in their resistance to hydraulic damage, which can
make some species more resilient against drought than others
(e.g., Choat et al., 2018). Across biomes, these species vary in
their growth resilience capacity to drought being drought severity
one of the most important factors explaining such variations but
displaying similar trade-offs in resistance and recovery between
species (e.g., Gazol et al., 2018). However, when different tree
species co-habit in a region, and are thus exposed to comparable
drought conditions, only species differences, microsite conditions
and trees’ features can determine growth responses to drought
(Baker et al., 2019; Gazol et al., 2020; Férriz et al., 2021). Overall,
the four species were resilient to the drought event (2005–2007),
but the negative growth trend of P. sylvestris and P. nigra may
suggest their greater vulnerability to drought and their lower
capacity to recover.

The capacity of P. halepensis and P. pinea species to present
facultative bimodal growth patterns (e.g., Camarero et al., 2010;
Pacheco et al., 2016; Castagneri et al., 2018; Campelo et al.,
2021) can explain their resilience to drought, which contrast to
the low capacity of P. sylvestris to resume growth (Oberhuber
et al., 2021). The occurrence of drought often results in low
photosynthesis rates in gymnosperms due to stomatal closure
(Forner et al., 2018), which may give a competitive advantage to
those species that maintain growth rates during dry periods (e.g.
Salazar-Tortosa et al., 2018). In this sense, the weaker stomatal
control of P. halepensis and P. pinea (Manzanera et al., 2016) can
help these species to maintain growth and tolerate dry periods
better than P. nigra or P. sylvestris. Another potential explanation
for the greater resilience capacity of P. halepensis and P. pinea can
be found in their greater capacity to invest more in belowground
organs in response to drought (Sarris and Mazza, 2021). It has
been suggested that the capacity to access bedrock water may
serve as a “hydraulic refugia” allowing trees to avoid drought
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FIGURE 6 | Early warning signals of drought-induced growth decline for each
pine species. The first order autocorrelation (A) and the coefficient of variation
(B) in the chronology of each species were calculated using 25-year moving
windows for the period 1980–2017. Different colors correspond to each
species and the number in parenthesis indicate the non-parametric Kendall
tau correlation for the statistic of each species. The dashed line indicates the
2005 drought.

damage (McDowell et al., 2019). Andivia et al. (2019) found
that seedlings of these species grew belowground organs faster
than those of P. sylvestris and P. nigra allowing them to access
deeper water sources. In fact, Férriz et al. (2021) found that
larger P. pinea trees were less vulnerable to drought than small
individuals and pointed to relationship between aboveground
size and the root system. However, it is important to consider
that P. sylvestris can be more vulnerable to pathogens than
P. halepensis and P. pinea in the studied forest. Caballol et al.
(2022) found that this species was more affected by Diplodia
shoot blight than the rest of Pine species. We do not have
information on previous hailstorms and subsequent Diplodia
outbreaks that may explain P. sylvestris declining trends, but
the greater sensitivity of the species to this pathogen and its
low resilience capacity points to its vulnerability to climate
change in sight of the importance of combined impacts of
drought and pathogen attacks (McDowell et al., 2008, 2019;
Trugman et al., 2021).

Another aspect that deserves further attention is the
differences in the response of growth to the dry period across
species (Figures 2, 3): while Mediterranean pines responded
more to the first part of the dry period (the year 2005; Figure 5A),
pines from mesic sites responded more to the second part (the
year 2007). This is particularly true in the case of P. pinea which
shows a very marked growth reduction in response to the 2005
drought that has also marked effects on growth autocorrelation
(Figure 6). Interestingly, Férriz et al. (2021) found that the
growth of declining and non-declining P. pinea trees in central
Spain started diverging after the 2005 drought. The growth and
xylogenesis of P. pinea is strongly determined by water availability
during the growing season and before (Castagneri et al., 2018;
Calama et al., 2019; Mechergui et al., 2021). In fact, Piraino
(2020) found that planted P. pinea forests in central Italy were
sensitive to spring rather than to summer drought. This is also
true for P. halepensis which tends to respond to drought at large
temporal scales (Pasho et al., 2011). In our study, P. pinea was the
species with a strongest response to the precipitation in March
and showed significant correlations with the 12-month SPEI
from January to September. In P. halepensis we also observed
a significant response to the precipitation in March, but its
growth was also dependent on summer precipitation (Figure 3).
It has been argued that P. nigra growth is enhanced by May
precipitation and reduced by June temperatures (Martín-Benito
et al., 2008; Sánchez-Salguero et al., 2012) as well P. sylvestris
(Andreu et al., 2007) and they respond to drought at shorter
time scales. Our results partially confirm these findings as we
found negative impacts of March and May temperature in their
growth and a strong linkage with summer precipitation. This was
particularly true in the case of P. sylvestris. However, P. sylvestris
was the species displaying the least intense relationship with
SPEI at the tree level. It should be noted that P. sylvestris
displayed the lowest correlation between series (Table 1) which
can explain their lower correlation with SPEI at the tree level
because of the different response of different trees. Thus, it is
difficult to explain why these species responded differently to
the 2005 and 2007 years (Figure 5). Alternatively, the capacity
of P. halepensis and P. pinea to maximize carbon uptake during
drought (Borghetti et al., 1998; Salazar-Tortosa et al., 2018) can
explain their ability to cope with the 2007 dry year. In any case,
these results evidence that drought timing and its interaction with
species phenology are important factors controlling tree growth
responses to drought (Camarero et al., 2015b).

Both, P. halepensis and P. pinea are Mediterranean pines
species adapted to cope with summer drought (Castagneri et al.,
2018; Campelo et al., 2021). In our study, differences between
these two species in drought resistance and resilience were
minimal as well as in growth trends after accounting for age-
and SPEI-effects. We only found small differences suggesting a
greater sensitivity of P. pinea to the 2005 drought in the form of a
sudden drop in its growth autocorrelation (Figure 6). In addition,
we found clear differences in projected growth trajectories
between species with P. halepensis showing greater growth than
P. pinea (Figure 4). However, important age differences between
species makes difficult to assure that these results indicate that
P. halepensis tolerates better current drought conditions in the
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region than P. pinea. Interestingly, Caballol et al. (2022) found
linkages between P. pinea defoliation and growth, indicating
that those trees showing higher defoliation values grew less in
the past. This may indicate that this species is suffering from
drought-induced dieback and points to its drought vulnerability
in the studied forests. A recent review indicates that P. pinea is a
species very sensitive to climate change whose habitat will suffer
strong reductions in a drier future (Mechergui et al., 2021). It is
important to note that we are not considering other aspects that
can influence the persistence of the species in the forests such
as regeneration (e.g., Férriz et al., 2021). Further studies should
investigate whether P. pinea perform worse than P. halepensis in
the studied area testing potential mechanistic explanations such
as a higher sensitivity to warmer conditions and increased vapor
pressure deficit (Mechergui et al., 2021) or different root systems
(Sarris and Mazza, 2021).

Drought-induced growth declines and canopy dieback
episodes of P. sylvestris been widely reported since the late 20th
century across southern Europe (e.g., Hereş et al., 2014; Caudullo
and Barredo, 2019) and process-based model projections forecast
a worsening of the growth conditions for the species in the
region (Sánchez-Salguero et al., 2017). Despite being considered
a drought-tolerant species, drought-induced dieback episodes
have been also observed in P. nigra (Sánchez-Salguero et al.,
2012; Camarero et al., 2018), and Circum-Mediterranean studies
suggest an enhanced vulnerability of its growth to drought
(Sangüesa-Barreda et al., 2019). Even in the case of the drought-
adapted Mediterranean P. pinea and P. halepensis drought-
induced growth declines, dieback and mortality episodes have
been observed in some regions after very warm and dry
conditions (e.g., Camarero et al., 2015a; Mechergui et al., 2021).
These observations indicate that all the study pine species
and other Mediterranean species such as P. pinaster (Gea-
Izquierdo et al., 2019), are potentially vulnerable to dry spells,
but P. halepensis will be the species performing better in terms of
growth when coexisting with P. pinea, P. nigra, and P. sylvestris.
However, these results should be interpreted with caution due to
age differences between sampled individuals of each species.

CONCLUSION

The climatic characteristics of the Oristà forest facilitated
the coexistence of four pine species with contrasting drought
resistance and resilience. Results indicate that P. halepensis has
a greater capacity to recover pre-drought growth levels after
drought than P. sylvestris and P. nigra when coexisting. We

found that P. halepensis grew better and is slightly less sensitive
to drought than P. pinea in the studied forest. Thus, growth
patterns and response to climate suggest that P. halepensis has
a greater capacity to thrive in a drier and warmer world than
the other three species studied. Further studies could address if
this capacity of P. halepensis to withstand drought as compared
to other pines is based on above- (e.g., stomatal conductance,
regulation of hydraulic conductivity through needles and stems)
or belowground (e.g., root architecture and conductivity, fine
root longevity, sources of soil water) adjustments.
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