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Microbes are ubiquitous residents of the atmosphere, including the air that we breathe.
They are also widely present in terrestrial, marine, and aquatic environments. Typical
microbes include viruses, fungi, archaea, bacteria, algae, and bryophytes. Many are of
edaphic origin and play significant ecological roles in the soil. Propagules are exceedingly
lightweight and small, generally measured in microns (millionths of a meter). Propagules
achieve airborne status in the wind, where they may travel from a few millimeters to
thousands of kilometers. Most have been recorded at least as high as the stratosphere.
While airborne, microbes may pass through multiple generations. Microbes in the
atmosphere are often accompanied by vast clouds of dust. They perform a variety of
essential functions such as raindrop and snowflake condensation nuclei, without which
there would be little or no precipitation. It is important to realize that all solid things
that are carried up into the atmosphere must eventually fall back down to the Earth.
When precipitated or deposited back onto the Earth, they may land on and occupy
any surface, including trees and other plants where they become epiphytic residents.
They have been documented on broad-leaved and needle-leaved trees from deserts to
tropical rainforests. If they land on bare soil, they often participate in biological soil crusts
that are important for soil stabilization and for water and nutrient cycling.
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INTRODUCTION

Microbes are nearly ubiquitous in the atmosphere, including in the air that we and other animals
breathe. It has been estimated that billions of microbes are descending from the atmosphere
at all times of every day (Weisberger, 2018). Typical microbes include viruses, fungi (free-
living, lichenized, and mycorrhizal), archaea, bacteria (cyanobacteria, chemoheterotrophic, and
diazotrophic), algae including diatoms, and bryophytes (mosses, liverworts, and stoneworts)
(Koskella, 2020; Warren and St Clair, 2021). Some microbes reproduce sexually, but most rely
primarily on asexual means of reproduction (Warren et al., 2019). Common forms of asexual
reproduction among microorganisms include replication, fragmentation, binary fission, cloning,
budding, mitotic cell division, asexual sporogenesis, etc. Many of the asexual propagules, and
even some of the mature microorganisms are very small, measured in microns (millionths of a
meter). Given their small size and weight, microbes and/or their propagules are easily lifted into the
atmosphere (Després et al., 2012; Fröhlich-Nowoisky et al., 2016) at least as high as the stratosphere
(DasSarma et al., 2020). They are dispersed aerially over extensive distances (Mayol et al., 2017;
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Reche et al., 2018), including intercontinentally and
interhemispherically (Prospero et al., 2005). Microbes are often
accompanied by vast clouds of dust from the Earth’s arid areas
(Griffin, 2020; Hu et al., 2020).

As microbes and their propagules return to the Earth’s
surface, they may be deposited onto bare soil where they can
be incorporated into biological soil crusts (Belnap and Lange,
2001). Where bare soil is absent, as in tropical rainforests, the
microorganisms occupy the duff or litter layer (Tripathi et al.,
2016). Deposited microbes are very abundant, ranging up to 107

living cells of bacteria alone per square centimeter of surface
area (Lindow and Brandl, 2003). Airborne microorganisms may
alternatively fall onto lava beds (Lavoie et al., 2017), mine tailings
(Gypser et al., 2016), or sand dunes (Smith et al., 2004). They may
land on bodies of freshwater (Benson et al., 2019) or saltwater
(Ul-Hasan et al., 2019). Some may land on snow (Yakimovich
et al., 2020), glaciers (Anesio et al., 2017), rocks (Coleine et al.,
2021), stone monuments (Li et al., 2016), gravestones (Villanueva
et al., 2019), building roofs and facades (Barberán et al., 2015), or
animals (Kaup et al., 2021). Others may be inhaled by humans or
other animals (Barberán et al., 2015).

Given the theme of this special issue, many microbes and/or
their propagules are known to fall from the atmosphere and
land on trees where they become epiphytic residents of the
phyllosphere, i.e., the aboveground parts of plants exposed to
the atmosphere (Koskella, 2020). It can be logically concluded
that all plants have epiphytic microbes. Microorganisms have
been documented on coniferous trees and shrubs (Neitlich
and McCune, 1997; Sevgi et al., 2019) and broad-leaved
trees and shrubs (Wallace et al., 2018; Herrmann et al.,
2021), fruit trees (Michavila et al., 2017; Janakiev et al.,
2019), and nut trees (Pardatscher and Schweigkofler, 2009;
Valverde et al., 2017).

In addition to trees, all other plants have a phyllosphere
occupied by microorganisms (Partida-Martínez and Heil, 2011),
including grasses and grains (Aydogan et al., 2020; Bowsher
et al., 2021), ferns (Jackson et al., 2006), vegetables, fruits, and
ornamental flowers (Lopez-Velasco et al., 2011; Mamphogoro
et al., 2020), as well as cacti and other desert plants (Fonseca-
Garcia et al., 2016; Flores-Nuñez et al., 2020). This includes trees

and other plants in all climates from tropical rain forests (Kim
et al., 2012), to hyperarid deserts (Al-Ashhab et al., 2021), to frigid
areas such as Antarctica (Cid et al., 2017). Epiphytic microbes
are even known to occur on emergent seagrass (Agawin et al.,
2016). While microbes are precipitated onto exposed tree and
other plant surfaces, their arrival my vary spatially and seasonally
(Lighthart, 1997; Grady et al., 2019).

FUNCTIONAL ROLES OF EPIPHYTIC
MICROBES

Epiphytic microorganisms are dispersed passively by wind
(Cusimano et al., 2016) and are often accompanied by great
clouds of dust (Gannet Hallar et al., 2011). However, as dust
particles coalesce and become heavier, and as windspeeds subside,
the airborne microorganisms and accompanying dust particles
are precipitated back to Earth (Itani and Smith, 2016).

Epiphytic microbes may have either positive or negative
impacts on their hosts (Rastogi et al., 2013). Bacteria, fungi, and
viruses are often antagonistic pathogens, although some may act
as mutualists of the host, promoting plant growth and tolerance
of environmental stressors (Stone et al., 2018). As an example,
the bacterium Pseudomonas syringae, a well-known plant
pathogen, is also a biocontrol against plant viruses and other
plant bacteria (Passera et al., 2019). Epiphytic microorganisms
also fix or consolidate plant nutrients, particularly nitrogen
(Fürnkranz et al., 2008), thus promoting growth of the host
plant. Phyllosphere microorganisms can promote plant growth
in other ways as well (Wagi and Ahmed, 2017; Yurimoto
et al., 2021). Phyllosphere bacteria may also alter susceptibility
to insect herbivory (Wielkopolan and Obrȩpalska-Stȩplowska,
2016). Others have been shown to induce tolerance to drought
stress (Kumar Devarajan et al., 2021).
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