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Due to the great structural and species diversity of tropical forests and limitations of

the methods used to estimate aboveground biomass, there is uncertainty in quantifying

its carbon sequestration potential. Measuring carbon sequestered in the terrestrial

ecosystem and monitoring its dynamics is one of the key objectives in sustainable

development goals. Synthetic Aperture Radar (SAR) has evolved as a key satellite

technology in measuring and monitoring terrestrial carbon sink stored as biomass in

plants. This study attempts to model forest above-ground biomass (AGB) using a

random forest machine-learning approach where the predictor variables are from C-band

(Radarsat-2), L-band (ALOS-2/PALSAR-2), and multi-temporal spaceborne LiDAR data

from the GEDI platform. Training and validation data for the machine learning approach

are obtained from the field measured inventory campaigns to evaluate the modeled forest

biomass accuracies. The results show that variables from L-band (HH, HV), C-band

(HV), and canopy height from the GEDI LiDAR platform performed effectively to model

forest AGB with the coefficient of determination (R2) of 0.81 and root mean squared

error (rmse) of 19.35 Mg/ha (%rmse – 17.17). In the case of single frequency SAR

data, the analysis shows that the model derived from the L-band SAR data and LiDAR

performed comparably better than the combination of C-band SAR and LiDAR data

with an R2 of 0.78 and rmse of 21.36 Mg/ha (%rmse – 18.94). The results, thus,

demonstrate the potential of SAR data (both single frequency and multiple frequencies)

in combination with GEDI LiDAR data in effectively modeling AGB over highly biodiverse

tropical forest regions.

Keywords: multi-frequency SAR, LiDAR, tropical forest, random forest regression, kriging

1. INTRODUCTION

Forests are major carbon sinks in the terrestrial ecosystem that accounts for almost 72% of
terrestrial carbon storage in woody biomass and soil (Malhi et al., 2002). Measuring the capacity
of the terrestrial carbon sink is a crucial input in the carbon budget, whose measurement so far is
challenging and have wide uncertainties due to its complex nature (Houghton et al., 2009). Remote
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sensing technology has evolved as a key tool in measuring
and monitoring forests (Gibbs et al., 2007; Rodrí-guez-Veiga
et al., 2017) in the past couple of decades. Particularly, Synthetic
Aperture Radar (SAR) has shown the highest sensitivity in the
retrieval of forest biophysical parameters such as canopy height
(Feng et al., 2017; Khati et al., 2017), stand volume (Askne and
Santoro, 2007; Kim, 2012), above-ground biomass (Mitchard
et al., 2009; Thapa et al., 2015; Behera et al., 2016), leaf area
index/plant area index (Stankevich et al., 2017), and in forest
disturbance monitoring (Musthafa and Singh, 2019; Musthafa
et al., 2020).

SAR backscatter is the most used parameter in the forest
above-ground biomass retrieval approach. The accuracy of the
biomass retrieval algorithms depend on the forest type/structure,
terrain slope, and frequency of SAR data utilized (Sun et al.,
2002; Lu, 2006; Shugart et al., 2010). Several studies have
shown the improvement in forest above-ground biomass
estimation accuracy with other SAR derived parameters such
as texture (Kuplich et al., 2005; Thapa et al., 2015), ratio,
and polarimetric/interferometric coherence (Chowdhury et al.,
2014; Thiel and Schmullius, 2016). A combination of SAR data
acquired in multiple frequencies has shown improvement in
biomass retrieval accuracy in different forest types (Ranson and
Guoqing Sun, 1994; Dobson et al., 1995; Saatchi et al., 2007;
Cartus et al., 2017; Santi et al., 2017).

Incorporation of canopy height is reported to improve the
forest AGB retrieval algorithm in many forest types. Canopy
height derived from InSAR/Pol-InSAR data (Kumar et al., 2012;
Khati et al., 2017) in combinationwith SAR backscatter and semi-
empirical models has performed better in biomass estimation
in boreal forests (Santoro et al., 2002; Askne and Santoro,
2007, 2012; Askne et al., 2013), sub-tropical forests (Kumar
et al., 2012; Behera et al., 2016) and in tropical forests (Cartus
et al., 2012). Although the results obtained have high accuracy
with the addition of Pol-InSAR derived canopy height to SAR
backscatter, the acquisition of such suitable Pol-InSAR data
for all forested regions is difficult. Because the accuracy of
canopy height obtained from the Pol-InSAR technique depends
on the value of vertical wavenumber (kz) (Kugler et al., 2015;
Khati et al., 2017) thereby limiting the possibility of acquiring
suitable Pol-InSAR pairs for the global forested regions. The
other complementary remote sensing technology, LiDAR, which
provides a highly accurate 3-dimensional structure of the forests,
have gained momentum in the last decade.

The launch of spaceborne missions ICESat in 2003, ICESat-
2 in 2018, and GEDI in 2019 have provided billions of LiDAR
footprints over the planet’s vegetated surface, facilitating accurate
canopy height estimation. LiDAR data measures the three-
dimensional structure of forests and is used to measure canopy
height accurately and estimates biomass with low uncertainty.
However, the LiDAR data is available as strips for the limited
region for airborne missions and is discontinuous for spaceborne
missions (Narine et al., 2019; Dubayah et al., 2020; Duncanson
et al., 2020) that pose a grave source of uncertainty in biomass
estimation. LiDAR canopy height, in combination with other
remote sensing techniques, is successfully used to estimate forest
AGB with high accuracy levels (Dhanda et al., 2017; Nandy

et al., 2021). A combination of spectral variables from Sentinel-
2 and ICESat-2 data is used to interpolate canopy height using
a random forest algorithm by Nandy et al. (2021) that provided
an improved estimate of forest height and AGB in sub-tropical
forests. However, such similar studies utilizing SAR and LiDAR
data for forest AGB estimation in the species-richWestern Ghats
located in the tropical regions is very limited. In this study, an
attempt is made to model forest above-ground biomass in a
highly biodiverse region ofWestern Ghats using the combination
of random forest machine learning environment and multiple
frequency SAR data (C- band and L-band), and GEDI LiDAR
data. This study is the first attempt to map the forest canopy
height and forest above-ground biomass using the combination
of SAR and GEDI LiDAR data in tropical forests in India.

2. MATERIALS AND METHODS

2.1. Study Area
The test site “Shivamogga forest division” is located at the
Western Ghats section between 13o35’ to 14o10’ N and 75o5’
to 75o45’ E in Karnataka, India. The forest division has five
different forest types—Southern tropical wet evergreen forests,
Southern tropical semi-evergreen forests, South tropical moist
deciduous forests, Southern tropical dry deciduous forests and,
South tropical Scrub forests. The topography of the study area is
slightly undulating, with an elevation variation ranging from 534
to 1464 m above mean sea level. Climatic conditions of the study
area represent a typical tropical regime with an annual mean
temperature of 24.2o C, and annual precipitation of 1042 mm,
with most of the rain occurring during the southwest monsoon
between June and September.

Shivamogga forest division is subdivided into six ranges
(Agumbe, Ayanur, Mandagadde, Ripponpet, Shankar, and
Thirthahalli) for sustainable management practices based on the
forest types occurrence. The study site is located in one of the
biodiversity hotspots, have high flora and fauna diversity and
habitat for many endangered species. Among the five forest
types, we have chosen a part of the study area comprising
moist deciduous forest (medium biomass region), mixed dry-
deciduous/scrub forest (low biomass region), and semi-evergreen
forest (high biomass region) in this investigation. Dominant
tree species present in the study area are Axle wood tree
(Anogeissus latifolia), Pink casia (Casia javanica), Chichamaram
(Dalbergia sisoo), Eucalyptus (Eucalyptus grandis), Venthekku
(Lagerstroemia lanceolata), Teak (Tectona grandis), Vadamarutu
(Terminalia paniculata), Indian blackberry (Syzygium cumini),
and Burma Ironwood (Xylio xylocarpa). Figure 1 shows the
extent of the Shivamogga forest division that intercepts ALOS-
2/PALSAR-2 and Radarsat-2 data. The locations of the field
survey plots are shown as green circles. The forest photographs
captured during the field visits specifying the forest types is
shown in Figure 2.

2.2. Data
2.2.1. Ground Reference Data
The in-situ measurements of the test site are collected during
the field campaigns conducted in the dry season (March-April)
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of 2019 and 2020. For this study, we have measured forest
parameters at 103 (31.6×31.6 m each) observation plots. In-situ
forest parameters such as tree height, tree stem circumference
at breast height (CBH), species information, and the number

FIGURE 1 | Shivamogga forest range image acquired by ALOS-2/PALSAR-2

(HV polarization), Karnataka. Green color circles represent field measured

above-ground biomass plot locations and black dots shows the spatial

distribution of GEDI footprints (showing transects of footprints after filtering).

of trees are measured for each sample plot. All trees with
circumference greater than 10 cm are measured to derive forest
height and biomass in this study. The species-specific volumetric
equations developed by Forest Survey of India (1996) are used to
estimate the individual tree volume. Further, tree stem biomass
is obtained by multiplying tree volume with its wood specific
gravity (Chowdhury et al., 1958) and biomass expansion factor
(BEF) (Haripriya, 2000). The sum of tree biomass within each
sample plot provides a plot-level above-ground biomass estimate.
In this study, the field plots that intercept both the ALOS-
2/PALSAR-2 and Radarsat-2 acquisitions are considered for
biomass modeling. The mean and standard deviation of biomass
and stand height in the study area is 125.54 ± 60.90 Mg/ha
and 16.07 ± 6.77 m, respectively. The statistics of various forest
parameters collected during the field campaigns is shown in
Table 1.

2.2.2. SAR Data
Over Shivamogga, L-band ALOS-2/PALSAR-2 data and C-band
Radarsat-2 data was acquired in 12-January-2019 and 08-March-
2019. The ALOS-2/PALSAR-2 data is acquired in fine-resolution
dual-polarized strip-map mode and provided in complex SLC

TABLE 1 | Summary of forest parameter statistics collected during field

campaigns (SD represents standard deviation).

Forest parameter Minimum Maximum Mean SD

Stand height (m) 2.75 29.89 16.07 6.77

Stem volume (m3) 22.39 479.80 194.17 95.81

AGB (Mg/ha) 15.24 319.58 125.54 60.90

Trees per plot 14 248 67 48

FIGURE 2 | Photographs showing different forest types-(A) and (B) Dry deciduous or scrub forest, (C) and (D) Moist deciduous forest, and (E) and (F)

Semi-Evergreen forest. The date of acquisition of the photographs is provided at the bottom right of each photo.
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(single look complex) format. The L-band data obtained has HH
andHV polarization, with range and azimuth spacing of 4.29 and
3.40 m, and incidence-angle varying between 28.53o and 33.95o.
The Radarsat-2 C-band acquired with FQ18 beam (Fine quad
Polarization beam) over the study site have a range and azimuth
resolution of 4.73 and 4.96 m, and the incidence angle range
between 37.35o and 38.86o is obtained in SLC format. The details
of the SAR data is given in Table 2.

2.2.3. LiDAR Data
Global Ecosystem Dynamics Investigation (GEDI) LiDAR
operates from the Japanese Experimental Module’s Exposed
Facility (JEM-EF) on the International Space Station (ISS). GEDI
LiDAR illuminates the earth surface using three laser pulses with
a wavelength of 1064 nm at 242 Hz. The footprints of the GEDI
laser pulse is approximately 25 m in diameter. GEDI swath has
eight ground tracks with 60 m along-track resolution and 600
m across-track resolution. In this study, Level 2A (L2A) product
that provides footprint-level elevation and canopy heights are
used. The canopy height is calculated from the received waveform
by subtracting the highest LiDAR wave return elevation from the

TABLE 2 | The characteristics of SAR data utilized in this study.

SAR sensor Date of acquisition Polarization Incidence angle

ALOS-2/PALSAR-2 12-Jan-2019 HH,HV 31.24

Radarsat-2 08-Mar-2019 HH, HV, VH, VV 38.10

ground return’s elevation. The L2A product also includes height
metrics, which measure height above the ground at each energy
quantile in the received waveform (Dubayah et al., 2020). The
GEDI LiDAR data used in this study is acquired between April
2019 and August 2021.

2.3. Method
SAR data acquired by ALOS-2/PALSAR-2 (L-band) and
Radarsat-2 (C-band) and LiDAR footprints acquired by the
GEDI platform are used to analyze the potential of combining
these two data-sets for improvement in forest biomass retrieval.
Random forest machine learning regression is used to develop
biomass models. The overall approach followed in this research is
shown in Figure 3, and the detailed methods are provided below.

2.3.1. SAR Data Pre-processing
The data from ALOS-2/PALSAR-2 and Radarsat-2 are obtained
in SLC format. The pre-processing of SAR data involves
radiometric calibration, normalization of backscatter using
incidence angle (Small et al., 2010) [see Equation (1)], Multi-
looking, terrain doppler correction, and co-registration of C-
and L- band SAR data. The Radarsat-2 image is multi-looked
with six looks in azimuth and four looks in range direction to
generate ground range pixel of 30.23 m, and ALOS-2/PALSAR-
2 image is multi-looked with eleven looks in azimuth and six
looks in range direction to generate 33.82 m ground range pixel.
The multi-looked images are geocoded using SRTM 1 Arc Sec
DEM and resampled to 30 m pixel spatial resolution. The terrain
corrected L- band and C- band data is further co-registered for

FIGURE 3 | Flow chart showing the approach followed in the development of multi-frequency SAR and multi-temporal LiDAR data based AGB models.
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multi-frequency SAR analysis.

γ o
=

σ o

cosθ
(1)

In equation 1, γ o denote topographically corrected backscatter,
σ o represents radiometrically calibrated backscatter, and θ

indicate local incidence angle.

2.3.2. LiDAR Data Pre-processing
GEDI LiDAR footprint data acquired over Shivamogga are
obtained in Level -2 processed format fromNASA EARTHDATA
access portal (information to access data is provided in
the URL (https://lpdaacsvc.cr.usgs.gov/services/gedifinder). The
downloaded level 2A (L2A) GEDI canopy height product is
processed using the rGEDI package (Silva et al., 2020) in R
Software. Canopy relative height metrics (RH0 to RH100) and
canopy flag are extracted from the L2A GEDI product. The
canopy metric RH100 is considered as the canopy height in this
study. The LiDAR data is filtered to remove GEDI footprints
that have uncertainty in canopy metric estimation (all LiDAR
footprint data with canopy flag 0 are removed from this analysis).
Based on the field campaign analysis, LiDAR footprints with
canopy height less than 5 m and more than 40 m are excluded
from the study, considering the range of stand height in the
study area. Total GEDI footprints acquired over Shivamogga was
39,622, and after filtering the data to remove uncertain footprints,
we obtained 21,405 GEDI footprints spatially distributed across
Shivamogga (see Figure 1 for visualizing the spatial distribution
of GEDI footprints).

2.3.3. Interpolation of GEDI Canopy Height Using the

Geostatistical Method
Geostatistics is an advanced geographic interpolation technique
that predicts unknown sample values by considering the area’s
characteristics surrounding the point of interest. By considering
the spatially auto-correlated nature of the forests (Watham
et al., 2016), an attempt is made to interpolate canopy height
from GEDI LiDAR footprints using the spatial interpolation
technique ordinary kriging. Considering the high density of
GEDI footprints spatially distributed evenly across the study site
in the form of strips, we implemented simple spatial modeling
instead of widely used multi-variate geostatistical methods.

The geostatistical analysis is performed in ArcGIS (ver 10.1).
The semi-variance analysis is performedwith the Gaussianmodel
to characterize the spatial auto-correlation of LiDAR footprint
measurements. The interpolated forest stand height obtained
from the simple kriging method is validated using 88 field sample
plots and root mean squared error estimated.

2.3.4. Forest Aboveground Biomass Modeling
Random forest regression machine learning technique is used
to model forest above-ground biomass. Three sets of different
models with varying predictor variables are developed and is
shown in Table 3. The first model is generated using only
single-frequency SAR data (Separately for C-band and L-band)
as predictor variables. At the same time, the second set of
models utilize co-registered multi-frequency SAR data (from

TABLE 3 | Predictor variables used in the Random forest regression algorithm for

forest aboveground biomass estimation in Shivamogga forest. HGEDI represents

the canopy height obtained from GEDI L2A product.

Model sets RF Model parameters

Set 1 : Single-frequency SAR C-HH, C-HV

L-HH, L-HV

Set 2 : Multi-frequency SAR L-HH, L-HV, C-HH

L-HH, L-HV, C-HH, C-HV

Set 3 : Single/Multi C-HH, C-HV, HGEDI

frequency SAR and LiDAR L-HH, L-HV, HGEDI

L-HH, L-HV, C-HH, HGEDI

L-HH, L-HV, C-HH, C-HV, HGEDI

C-band and L-band) as predictor variables. The third set of
models is developed from SAR (both single-frequency andmulti-
frequency) and LiDAR data. In this study, 75% of the ground
samples are used for training, and the rest, 25% of samples, are
used for validation. The study compares the models using rmse
values to find the best performing models. In this study, various
nomenclature representing forest above-ground biomass such
as AGB or forest biomass or biomass are interchangeably used
throughout this research paper.

3. RESULTS

3.1. Analyses of C-Band and L-Band SAR
Backscatter and Its Saturation Limit
SAR backscatter from ALOS-2/PALSAR-2 and Radarsat-2 data
was extracted for the geolocations of field measurement AGB
plots. Scatter plots were used to relate field measured forest
above-ground biomass and SAR backscatter from C-band and
L-band, and a logarithmic relation curve is fit between them.
The saturation limit is defined similar to Englhart et al. (2011),
where the slope of the curve is estimated, and the saturation
limit is set to the curve slope less than 0.1 dB. The logarithmic
relationship betweenmeasured forest above-ground biomass and
SAR data is shown in Figures 4A–D. The slope analysis resulted
in a 74 Mg/ha saturation limit for C-band HH backscatter and
61 Mg/ha for C-band HV backscatter (see Figures 4A,B). The L-
band SAR backscatter showed a higher saturation limit with 120
Mg/ha for HH polarization and 168 Mg/ha for HV polarization
(see Figures 4C,D).

3.2. Interpolation of Forest Height From
LiDAR Footprint
GEDI LiDAR platform receives the transmitted waves and
measures three-dimensional properties of forest structure in an
evenly distributed spatial extent. The forest regions without the
LiDAR footprint lacks measurement and causes gaps in LiDAR
outputs. These measurement gaps are filled using the spatial
interpolation technique. A simple kriging method was used to
interpolate canopy height metric RH100 spatially and forest stand
height predicted for the forest region. In previous studies, the
univariate kriging technique has not performed well in predicting
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FIGURE 4 | Saturation limit of SAR backscatter with forest above-ground biomass. (A) and (B) shows the scatterplot of HH and HV backscatter of C-band data from

Radarsat2 acquired on 08-Mar-2019, (C) and (D) shows the saturation limit of L-band data from ALOS-2/PALSAR-2 acquired on 12-Jan-2019.

forest variables (Watham et al., 2016) due to the lower number
of measurements available for geostatistical modeling. However,
the high density of GEDI LiDAR footprints over the study
area provides an opportunity to overcome the above drawback.
The forest canopy height interpolation using the simple kriging
technique performed better with an R2 of 0.77 and root mean
squared error of 4.71 m. The spatial prediction map of forest
canopy height for the study site and its validation scatterplot with
a 1:1 line and 20% error limit is shown in Figure 5. The result
shows a slight overestimation in canopy height for forest stands
with a height less than 15 m. This overestimation might be due to
the undulating terrain in the study area and might also be due to
the significant gaps in LiDAR footprints across-track direction.

3.3. Forest Above-Ground Biomass
Modeling
The random forest regression technique modeled the forest
aboveground biomass using different variables. Initially, the
model was developed with single-frequency SAR data from
C-band and L-band data with HH and HV polarization
channels as predictor variables. Then the model developed
included predictor variables from multi-frequency SAR data
and a combination of co-registered multi-frequency SAR and
interpolated LiDAR canopy height data. The results obtained are
shown in the following subsections.

3.3.1. Forest AGB From Single-Frequency and

Multi-Frequency SAR Data
Single-frequency SAR data backscatter from C-band Radarsat-2
and L-band ALOS-2/PALSAR-2 were used as predictor variables
in the retrieval of forest above-ground biomass. A random
forest regression model was developed with a nTree (Number
of decision trees) of 500 and out-of-bag (OOB) error estimated
for the decision trees. The analysis shows that the OOB error
curve flattens after 200 decision trees. Then, the random
forest model was fine-tuned with nTree value of 200 and
the forest above-ground biomass model was developed with
75% training samples. Modeled forest above-ground biomass
is validated using the rest of 25% of testing samples. Results
obtained show that the model developed from L-band SAR
backscatter performed better with a %rmse of 25.06 than the
C-band data, which performed with a %rmse of 32.08 (see
Figures 6A,B).

SAR data (HH and HV polarization only) from Radarsat-
2 and ALOS-2/PALSAR-2 are co-registered to perform a
multi-frequency SAR analysis for forest above-ground biomass
estimation. The random forest regression algorithm used the
co-registered multi-frequency SAR data as predictor variables.
Similar to analysis in single-frequency SAR, a random forest
regression algorithm is developed, and variable importance
for the multi-frequency SAR data is estimated. For this
multi-frequency analysis, the order of variable importance in
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FIGURE 5 | Validation of simple kriging interpolated GEDI forest stand height. The solid black line shows a 1:1 line and the dotted lines indicate a 20% error limit.

FIGURE 6 | Validation of modeled forest above-ground biomass derived from Random Forest regression models on (A) L-band backscatter, (B) C-band backscatter,

(C) combination of L-γ 0
HH, L-γ

0
HV , and C-γ 0

HV , and (D) combination of L-band and C-band backscatter. Dotted lines show the 20% error limit.
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FIGURE 7 | Validation of modeled AGB using multi-frequency SAR data and interpolated LiDAR canopy height data. The model performance of different

combinations is shown in (A) L-band SAR data and LiDAR, (B) C-band SAR data and LiDAR, and (C,D) showing the combination of C- and L-band SAR with LiDAR

data. The dotted lines show a 20% error limit.

descending sequence for the model developed is L-HV, L-HH, C-
HV, and C-HH. The addition of C-HV backscatter to L-band data
improved the estimation accuracy with a decrease of relative rmse
(%rmse) from 25.06 to 23.59% (see Figure 6C). Further addition
of C-HH polarization further improved the estimation accuracy
with a %rmse of 22.67 (Figure 6D). Estimating forest biomass
from this multi-frequency model improved the estimation
accuracy compared to single-frequency SAR-based estimation.

3.3.2. Combining LiDAR and Single/Multi-Frequency

SAR Data for Forest AGB Retrieval
Interpolated GEDI LiDAR canopy height raster image of the
study site (see section 3.2 Interpolation of forest height from
LiDAR footprint) was co-registered with multi-frequency SAR
data, and their values co-located to field measurements are
extracted. Seventy-five percent of these extracted values are used
to train the random forest regression algorithm. Similar to the
results obtained in section Forest AGB from single-frequency
and multifrequency SAR data, variable importance among the
training samples is estimated. The canopy height layer showed
the highest significance among the variables, followed by L-HV,
L-HH, C-HV, and C-HH for biomass estimation. As elaborated
in section Forest AGB from single-frequency and multifrequency
SAR data, number of trees were fine tuned to 200 following

the analysis of OOB error. Figures 7A–D shows the modeled
biomass estimates obtained from this hybrid stack.

The inclusion of canopy height in the random forest
model improved the above-ground biomass estimation in
single-frequency and multi-frequency SAR-based methods. The
modeled biomass is validated with the ground truth testing
data and their relative rmse (%rmse) estimated. Among the
single-frequency SAR and LiDAR data combination, L-band
data performed better with a relative rmse of 18.94%, while
the C-band data resulted in a relative rmse of 21.13%. By
comparing the modeled biomass estimates from L-band data
(see Figures 6B, 7B), integration of canopy height reduced the
relative rmse from 25.06 to 18.94%. The modeled biomass
from multi-frequency SAR and canopy height reduces the error,
thereby improving the estimation accuracy. The validation of
the modeled above-ground biomass resulted in a relative rmse
of 17.17% (Figure 7C) for L-HH, L-HV, C-HV, and GEDI,
and 19.61% (Figure 7D) for all bands of L-band and C-band
data along with GEDI canopy height. Removal of the least
important variable among the predictor variable improved the
accuracy in multi-frequency SAR and GEDI models. At the
same time, no such improvement is observed in the multi-
frequency SAR based model (see Figures 6C,D). A forest above-
ground biomass map is generated for the best performing
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FIGURE 8 | Forest aboveground biomass map generated from the best

performing RF model with predictor variables - L-γ 0
HH, L-γ

0
HV , C-γ

0
HV , and GEDI

canopy heights.

model with the least relative rmse of 17.17% is shown in
Figure 8.

The biomass map shows the spatial distribution of different
densities of biomass across the study site. Low biomass
spatial distribution is observed in the east side and the study
site’s peripheral borders. This might be due to enhanced
anthropological pressure since these areas have settlements
bordering. Also, despite being a protected forest, the peripheral
regions show signs of forest degradation, while a high biomass
range is observed in the intact forest regions of the study site.

4. DISCUSSION

This study analyses the potential of the combination of SAR
data acquired in different frequencies and LiDAR footprints
in retrieving forest above-ground biomass over tropical forest
regions. Forest biomass is retrieved from L-band ALOS-
2/PALSAR-2 data and C-band Radarsat-2 data individually and
combinedly. Further, the SAR and LiDAR data were integrated,
and models were developed using a random forest machine-
learning algorithm.

The results obtained shows L-band data showed high
estimation accuracy than C-band data similar to the earlier
observations in other tropical forest regions (Nizalapur et al.,
2010). SAR backscatter from L-band and C-band interacts with
different parts of the trees. The high-frequency C-band data

mainly interacts with leaves and tertiary branches, while the
low-frequency L-band data interacts with secondary branches
and tree trunk (Le Toan et al., 1992; Ranson and Guoqing Sun,
1994; Englhart et al., 2011). Joshi et al. (2017) analyzed the
causes for the difference in backscatter and saturation limit and
observed that the backscatter signals tends to decrease with an
increase in vertical canopy opacity, stem density, and understorey
vegetation, which results in lower sensitivity towards forest
biomass. Even though the study area has high species diversity
consisting of 66 different tree species with varying vertical canopy
height, which favors low backscatter and low saturation limit,
the climatic conditions during the acquisition of SAR data favor
abscission (leaf-fall). This leafless condition, along with dry
climatic conditions, results in low canopy density and negligible
understory vegetation, which increases the SAR backscatter and
results in high sensitivity towards forest biomass. This low
canopy density condition resulted in considerable surface-trunk
inter-action in C-band HH polarization and so high saturation
limit than the C-HV band. The saturation limit of 74 and 61
Mg/ha for HH and HV polarization of C-band data is reported in
this study concurs with the previous observations made in Indian
tropical forests where the saturation limit was observed between
60–70 Mg/ha (Nizalapur et al., 2010). However, L-band data
showed high saturation limit (120 Mg/ha for HH polarization
and 168 Mg/ha for HV polarization) than other reported studies
over tropical forests where the saturation limit varied between
50 to 150 Mg/ha for HV polarization (Nizalapur et al., 2010;
Englhart et al., 2011; Sandberg et al., 2011).

The forest above-ground biomass estimated using single
frequency SAR data showed L-band data performing better
than C-band data (see Figures 6A,B). This is because of the
canopy penetration capability of the L-band signal and its
inter-action with secondary branches and the main trunk
where the majority of the biomass is stored. Whereas C-band
signals mostly interact with secondary and tertiary branches
and saturate with an increase in canopy density, thereby less
sensitive to biomass retrieval. Existing literature (Englhart et al.,
2011; Cartus and Santoro, 2019) showed that combining low
and high-frequency SAR data improves the forest biomass
estimates since the combination accounts for more interaction of
SAR signal towards forest biomass components such as leaves,
tertiary branches, secondary branches and main trunk. Forest
aboveground biomass retrieval accuracy improved by combining
C-band and L-band data (see Figures 6C,D). In the random
forest regression algorithm, the importance of the predictor
variables was estimated, and for this analysis, C-HH polarization
showed the least importance in the multiple frequency SAR
data based above-ground biomass modeling. However, removing
the least important variable has not improved the result.
In contrast, the removal of C-HH polarization increased the
relative rmse from 22.67% to 23.59%. This phenomenon is
because HH polarization mainly interacts with the surface-trunk
backscattering component, which accounts for the long vertical
structure where most of the biomass is stored.

Canopy height was provided as an input to the random
forest algorithm along with single or multiple frequencies SAR
data to model forest above-ground biomass in this study. The
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FIGURE 9 | (A) Showing the scatter plot for ground truth points in the non-GEDI footprint region (26 points) and (B) shows the validation plot for ground truth located

in the vicinity of GEDI footprints (62 points).

canopy height of the study site was obtained from the GEDI
LiDAR platform. The filtering of the GEDI data was performed
to remove the sources of error at the pre-processing stage.
Since the GEDI platform measures the canopy properties at
the footprint level, it has gaps in across-track and along-
track directions. These gaps are filled with interpolated values
using the geostatistical univariate simple kriging method. Even
though previous studies showed lower performance due to low-
density sampling points (Watham et al., 2016), the current study
performed comparatively better because of dense GEDI spatial
distribution and spatial auto-correlation of forests. The overall
accuracy of the interpolated canopy height performed better
with a rmse of 4.71 m. In order to analyze the accuracy of
interpolated canopy height at those areas where GEDI footprints
are unavailable, we performed a geospatial analysis in which
field AGB points farther than 500 m from GEDI footprints were
segregated. A comparison of height validation in terms of rmse is
performed for these segregated points and for those ground truth
points which have a set of GEDI footprints in their vicinity. There
were 26 estimates present in the segregated zone and 62 points in
the GEDI footprint zone. The scatter plot for these two sets of
height validation is shown in Figures 9A,B.

The validation of interpolated GEDI in regions having LiDAR
footprints within 500 m vicinities and otherwise shows that the
error in the model is stable, meaning the interpolated canopy
height from geostatistical kriging has less error deviation across
the study site. Our rmse values is similar to what (Guerra-
Hernández and Pascual, 2021) reported (rmse = 4.45 m) and
higher than the values showed by Silva et al. (2021) (rmse =
3.7 m). The overall rmse obtained in this study is high because
of the heterogeneous canopy condition (high species diversity)
and varying topography of the study site. This study reflects
that the inclusion of forest canopy height with backscatter from
either single/multiple frequencies provided better accuracy for
forest biomass prediction. The variable importance analysis of
the predictor variables in random forest regression shows the
canopy height as the most important variable in explaining
forest above-ground biomass. Previous literature has emphasized
using multi-temporal SAR data to eliminate the effects due to

environmental conditions (Englhart et al., 2011; Cartus and
Santoro, 2019); it has not been implemented in this study due
to the unavailability of Radarsat-2 data over the study area.
However, incorporation of canopy height to the biomass model
(L-HH, L-HV, C-HV) improved the relative rmse from 23.59%
to 17.17% (see Figures 6C, 7C). Even for all the polarization
combinations, incorporation of LiDAR data have improved the
accuracy of the biomass estimation; from 32.08% to 21.13% for
C-band, 25.06% to 18.94% for L-band, and 22.67% to 19.61% for
all channels of L- and C-band data, respectively (see Figures 6,
7). The longer wavelength L-band data combined with GEDI
data provided better results with rmse less than 20%, which is an
acceptable error range for the NISAR mission.

In most studies, where LiDAR data is used to calibrate with
field biomass, the relationship obtained estimates biomass at
the LiDAR footprint level. Further, these calibrated footprint
level biomass is used as ground truth samples and further
used in modeling biomass using SAR data. In these studies,
the spatial resolution of LiDAR footprints, field plots, and SAR
data might cause edge-effect when their spatial resolution is
smaller (Berninger et al., 2018). The current study reduces the
uncertainty associated with spatial resolution of satellite imagery
and field plots for forest biomass estimation as the GEDI LiDAR
footprints are converted into a continuous height layer by
interpolation and then coregistered with SAR data. The error due
to smaller pixel size is limited to geolocation error of field plots
caused by the horizontal accuracy of GPS receiver. Therefore,
larger field plots (≥ 1ha) should be planned in future field
campaigns in order to reduce the errors due to coregistration and
spatial averaging.

5. CONCLUSION

The study has successfully demonstrated the quantification of
forest AGB in one of the highly diverse tropical hotspots in the
Western Ghats in India. The study showed that the combination
of L-band SAR data (HH and HV polarization), C-band (HV
polarization), and GEDI LiDAR canopy heights have high
sensitivity to forest biomass. Analysis of the impact of canopy
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height error bias on forest above-ground biomass estimation will
be considered in future studies. The approach developed would
serve as one of the frameworks in the upcoming time series
dual-frequency SARmissionNISAR and other higher wavelength
SAR missions ALOS-4 and BIOMASS. More research is required
in analyzing the utility of multi-temporal and multi-frequency
SAR data for forest biomass estimation in very high biomass
regions of the tropical forest. The inclusion of canopy height has
shown promising improvement in forest aboveground biomass
estimation. However, more research is required to integrate
canopy height variables from different LiDAR missions like
ICESat-2, GEDI and upcoming MOLI to improve the accurate
estimation of forest biomass.
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