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Replicated Spatial Point Pattern
Analyses for Ecological Inference: A
Tutorial Using the RSPPlme4
Package in R
Robert Bagchi* , Michael C. LaScaleia, Valerie R. Milici and Dipanjana Dalui

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States

The analysis of spatial point patterns has greatly advanced our understanding of
ecological processes. However, the methods currently available for analyzing replicated
spatial point patterns (RSPPs) are rarely used by ecologists. One barrier to the use
of RSPP analyses is a lack of software to implement the approaches that have been
developed in the statistical literature. Here, we provide a practical guide to RSPP
analysis and introduce the RSPPlme4 R package that implements the approaches we
discuss. The methods we outline use a linear modeling framework to link variation in the
spatial structure of point patterns to discrete and continuous explanatory covariates.
We describe methods for linear models and mixed-effects models of RSPPs, including
approaches to estimating confidence intervals via semi-parametric bootstrapping. The
syntax for model fitting is similar to that used in linear and linear mixed-effects modeling
packages in R. The RSPPlme4 package also allows users to easily plot the results of
model fits. We hope that this tutorial will make methods for RSPP analysis accessible
to a wide range of ecologists and open new avenues for gaining insight into ecological
processes from spatial data.

Keywords: K-function, spatial structure, mixed-effects model (MEM), R, ecological statistics, replication

INTRODUCTION

The spatial arrangement of organisms influences population and community dynamics (Bolker
and Pacala, 1997; Law and Dieckmann, 2000). In turn, many ecological processes leave a spatial
signature that can be used to detect and quantify those processes (Murrell and Law, 2002; Wiegand
and Moloney, 2004; Law et al., 2009; Wiegand et al., 2021). For example, seed dispersal syndromes
can be detected from the clustering of trees (Seidler and Plotkin, 2006) and local conspecific
negative density dependence, a signal of stabilizing coexistence, can be indicated by a decrease in
spatial clustering of adult trees relative to juveniles (Getzin et al., 2008; Bagchi et al., 2011). Spatial
analyses are particularly useful for understanding sessile organisms, such as trees, for which spatial
structure may be particularly influential.

The distributions of sessile organisms through space are often represented using spatial point
patterns: the spatial locations of individuals (e.g., latitude and longitude). These points can be
associated with additional information about the individual organisms (referred to as “marks”), in
which case the data are referred to as marked point patterns. A large array of statistical techniques
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exist for analyzing spatial point patterns (Ripley, 1977; Illian
et al., 2007; Wiegand and Moloney, 2010; Baddeley et al.,
2015) and are available to ecologists. These methods encompass
descriptive statistics (e.g., K functions and related statistics)
and sophisticated modeling approaches (e.g., Cox and Gibbs
point process models). Readily available statistical software
(e.g., Programita, Wiegand and Moloney, 2010; the R package
spatstat, Baddeley and Turner, 2005) facilitate the use of
these techniques for ecological analyses.

The majority of analytical techniques used in the ecological
literature are limited to individual spatial point patterns – usually
referring to a single population sampled across a continuous
area (e.g., the distribution of red maple trees in a single forest).
Although analyses often include multiple populations from
different species or sites, the standard approach is to analyze
each population independently and then aggregate or compare
the results of these individual analyses to draw general inferences
(Condit et al., 2000; Bagchi et al., 2011). This approach has proved
fruitful, but also constrains analysts in several ways.

First, traditional spatial point pattern analyses require large
sample sizes (tens of individuals), which excludes data from
rare species or small plots. This can limit the generality of
inferences because they only apply to abundant species. This
limitation is problematic for analyses of communities that
include many rare species, such as tropical forests (ter Steege
et al., 2013). Second, inferences about groups of point patterns
(e.g., multiple populations across sites and species) should
account for both variation among replicates and uncertainty
about the statistics estimated from each individual point
pattern. Measures of uncertainty around aggregated statistics
would ideally incorporate both levels of uncertainty, but most
ecological analyses discard the uncertainty from individual point
patterns when calculating aggregated statistics. Third, many
ecological applications of spatial point pattern analyses compare
summary statistics to simulations from null models (Wiegand
and Moloney, 2004). Although this approach can be very effective
and allows considerable flexibility in defining the null model, the
actions of defining, coding and simulating from a null model
can be resource and time intensive as well as challenging for less
experienced programmers.

Replicated Spatial Point Pattern (RSPP) analyses provide one
approach that avoids many of the limitations of analyses of
single patterns (e.g., a contiguous set of points from a single
species at a single site). Several papers in the statistical (Diggle
et al., 1991; Baddeley et al., 1993; Landau and Everall, 2008) and
the ecological literature (Bagchi and Illian, 2015; Ramón et al.,
2016) have outlined approaches for analyzing RSPPs. Briefly,
these approaches consider the summary statistics from each point
pattern as a replicate and relate variation among replicates to
predictors (both continuous and discrete) using a linear model
framework. RSPP models can be applied to data without (Diggle
et al., 1991; Baddeley et al., 1993; Ramón et al., 2016) or with
(Landau and Everall, 2008; Bagchi and Illian, 2015) dependence
structures in an analogous way to linear and linear-mixed effects
models, respectively. These techniques weight the contribution of
each replicate spatial point pattern to overall inferences according
to sample size (e.g., number of individuals, area sampled or a

combination of both). They can theoretically include spatial point
patterns comprising only two individuals (i.e., one pair), even
if such sparse patterns would contribute correspondingly little
to the overall inference (although several sparse patterns may
contribute substantially when taken together).

Like linear models, RSPP models estimate parameters and
their associated confidence intervals, describing the effect of
predictors on summary statistics of interest (e.g., K-functions).
For example, dispersal distance of wind-dispersed seeds of many
tropical trees increases with the area of their wings (Augspurger,
1986; Smith et al., 2015). As a result, the spatial clustering of
dispersed seeds may be inversely related to wing area, which
would result in K-functions that rise more steeply for species
with small wing area than for those with large wing area. In
this case, the parameter for wing area in an RSPP model would
be negative. Parameter uncertainty is generally estimated using
semi-parametric bootstrapping. Because most statistics used to
describe spatial point patterns are functions of spatial scale
rather than single scalar numbers, bootstrapping algorithms need
to preserve the dependence structure arising from measuring
functions at several spatial scales simultaneously. Preserving the
dependence structure in the bootstrapping algorithm avoids the
issues associated with point-wise comparisons of K-functions
(Loosmore and Ford, 2006).

Although RSPP analyses offer the opportunity to tackle many
ecological questions, they have been used sparingly to date (but
see for example, Riginos et al., 2005; Bagchi et al., 2018). Software
for analyzing RSPPs is available (e.g., spatstat, Baddeley
and Turner, 2005, has some capacity for RSPP analysis), but
explanations of the available approaches tend to be quite technical
even in the ecological literature (e.g., Bagchi and Illian, 2015;
Ramón et al., 2016). In particular, explanations of the approaches
with accompanying examples and code are hard to come by. In
this article, we aim to fill this gap by providing a tutorial on
the use of RSPP analyses, including straightforward explanations
of the options, their rationale and code to implement these
analyses using the R package RSPPlme4 (Bagchi, 2020). We
avoid technical explanations and refer readers seeking a more
formal introduction to Bagchi and Illian (2015), Ramón et al.
(2016) or the statistical literature (Baddeley et al., 1993, 2015;
Diggle et al., 1991, 2000; Landau and Everall, 2008).

METHODS

This tutorial will use the R language, with the add-on
package RSPPlme4 (Bagchi, 2020), which is available
from GitHub. Once its dependencies are installed
(spatstat, lme4, abind, and tidyverse), the
package can be installed using the devtools package with
devtools::install_github (“BagchiLab-Uconn/
RSPPlme4”). Users will only have to do this once unless they
wish to upgrade their version of R or the package. In this tutorial
we also use the packages ggplot2 (Wickham, 2016) and
tidyverse (Wickham et al., 2019).

The models described here relate the K-function of a point
pattern to predictors associated with the point pattern. The
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K-function [K(r)] of a point pattern summarizes the density of
neighboring points that occur within a distance r of a typical
point, normalized by the plot area (A) and the product of
the densities of focal (n/A) and neighboring points [(n-1)/A]
(Figure 1). The K-function can be written as

K(r) =
A

n(n− 1)

n∑
i6=j

n∑
i

eij · I(dij ≤ r)

where I(.) is an indicator function that equals 1 when the distance
between points dij is less or equal to r and is zero otherwise. The
term eij is an edge correction function (Ripley, 1977; Diggle, 2003;
Baddeley et al., 2015) that corrects for unobserved neighborhoods
that lie beyond the edge of the study area. Note that throughout
this tutorial we use a “border” edge correction, which takes the
value 1 for focal individuals greater than a distance r from the
edge and 0 otherwise (because only part of the neighborhoods of
these individuals are inside the plot). With this correction, points
within a distance r of the edge do not contribute to the estimate
of K(r) as focal individuals. However, points that do not qualify
as focal individuals are still included as neighbors (i.e., they
can be part of the neighborhood of other focal individuals that
are themselves greater than distance r from the plot boundary).
When points are located homogeneously and independently,
which can be considered the null hypothesis, the K-function takes
the form K(r) = π r2.

FIGURE 1 | Examples of contrasting spatial point patterns (A) simulated on
square, 100 × 100 unit plots, and their corresponding summary statistics (B:
K-function, C: L-function). The gray shaded regions represent 95% simulation
envelopes around the expected K-function [K(r) = πr2 ] or L-function
[L(r) = r] under Complete Spatial Randomness (CSR). Clustered spatial point
patterns, when points are closer together than expected under CSR, are
indicated by K-functions greater than πr2 and L-functions greater than r.
Inhibited patterns, when points are further apart than expected under CSR,
are indicated by K-functions less than πr2 and L-functions less than r.

Once the K-functions of the replicate point patterns have
been computed, the models relate the values of K(r) at each
distance (r) to the predictors, using separate linear models or
linear-mixed effects models for each distance. At this stage, the
models at each distance are independent of each other, except
for sharing the same set of predictors. The dependence among
distances is accounted for when calculating confidence intervals
through bootstrapping (Bagchi and Illian, 2015). The outcome of
the analysis is a set of functions that describe how each predictor
affects the K-function at each distance (r). Positive values indicate
that increasing values of the predictors are associated with
increased clustering; negative values of the function indicate that
increasing the predictor is associated with decreased clustering.

In the first section, we will present examples applied to
simulated data sets of increasing complexity. In the second
section, we will apply the methods to a data set available
within the spatstat package (Baddeley and Turner, 2005): the
Lansing plot data set.

Simulated Data
Spatial point patterns usually include information about the
locations of individuals (x, y coordinates). We simulate data
on square plots, with each side one unit long (units here are
arbitrary). In all simulations we generate 100 spatial point
patterns (replicates), each with a different average density of
points. Throughout this tutorial we will consider spatial point
patterns generated from homogeneous point processes, which do
not have gradients in average point densities. Code for simulating
spatial point patterns is shown in Box 1.

Models Without Covariates
A straightforward question to ask of a set of spatial point patterns
might be what the average K-function is across the replicate
patterns. For example, we might want to test whether red maple
trees from multiple populations are generally clustered [i.e.
K(r) > πr2] or inhibited [i.e. K(r) < πr2]. The mean K-function
can be found by fitting an intercept-only model using the code

mod1.1 <- klm(ppx1 ∼ 1, hyper = dat,
r = seq(0, 0.1, 0.02),

correction = “border”,
weights_type = “nx_A”)

The function requires a formula with a point pattern
object (class “ppp” from spatstat) as the response. The
hyper argument specifies the hyperframe containing the data
for the model. Example code in which data are converted
into a ppp object and a hyperframe is provided in Box
2 and the supplementary material. The user must specify
the sequence of distances (r) at which K(r) should be
modeled, the edge correction to be applied (correction),
and the type of weights to be used in the model fitting
(weights_type). The sequence of distances must begin at
0 and it is recommended that the maximum distance at
which K(r) is estimated and modeled does not exceed 1/4 the
shortest plot dimension because estimates of K(r) at greater
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BOX 1 | Generating spatial point patterns with spatstat (Baddeley and Turner, 2005) in R. We simulate a data set of 100 observations from two covariates (f, 100
discrete values sampled from two levels; x, 100 continuous values drawn from a uniform distribution), and a grouping variable, gr (by binning each sequence of 10
cases into one of 10 groups).
n <- 100

dat <- hyperframe(x = runif(n = n, min = 0, max = 10),

f = sample (c(“a”, “b”), size = n, replace = TRUE),

gr = rep(1:10, each = n/10)

We simulate spatial points using functions in spatstat. The densities of points in the plots (plot dimensions are 1 unit × 1 unit) are randomly drawn from a uniform
distribution between 20 and 100. The code returns a list of spatial point patterns, each of class ppp.
(a) Clustering varies with covariates: We can simulate clustered point patterns as realizations of a uniform Thomas cluster process (using the spatstat function
rThomas). In the uniform Thomas cluster process, a set of “parent” points are generated from a poisson process with density σ. Offspring points are simulated
around each parent point, with the number of offspring per parent drawn from a poisson distribution with mean σ, and the displacement of each offspring from its
parent drawn from a normal distribution with mean 0 and standard deviation σ. The angle from parent to offspring is drawn from a uniform distribution between 0 and
180◦. In this example, we make σ a linear function of the covariates where it is larger for f = “a” than f = “b” and increases with x (so group b and higher x is
associated with less clustered points).
lin_pred1 <- model.matrix(∼ f + x,

data = as.data.frame(dat, warn = FALSE)) %∗% c(0.02, 0.05, 0.01)

dat$ppx1 <- lapply(lin_pred1, function(sigma)

rThomas(kappa = runif(n = 1, min = 3, max = 10),

mu = 5, sigma = sigma))

(b) Adding group effects:
We also allow σ to vary among groups by drawing a difference (from a normal distribution) between the mean σ and the σ in each group. Variation in σ among groups
can be included by multiplying the linear predictor by a group specific number (σ must be positive, so the group-effect must be too).
ranef <- exp(rnorm(n = 10, mean = 0, sd = 0.2))

lin_pred2 <- lin_pred1 ∗ ranef[dat$gr]

dat$ppx2 <- lapply(lin_pred2, function(sigma)

rThomas(kappa = runif(n = 1, min = 3, max = 10),

mu = 20, sigma = sigma))

distances can be biased (Ripley, 1976). Edge corrections are
defined by the spatstat package and we use the “border”
correction here because it is fast and can be applied to plots of
arbitrary shape. Other corrections, for example, Ripley’s isotropic
correction (Ripley, 1976) are slower and have restrictions on
plot dimensions but discard less information. These other
edge corrections can be used in the RSPPlme4 package by
specifying them instead of the “border” correction (e.g.,
correction = “isotropic”). The RSPPlme4 package
offers various options for weights_type and a sensible default
is to weight by the number of points in each replicate (nx;
Diggle et al., 1991). Other options weight by the number of
point pairs (nx2; Baddeley et al., 1993) or, when analyzing
bivariate point patterns (the distribution of points of one type
around another) the number or density of point pairs (nxny or
nxny_A; Landau et al., 2004). For a fuller discussion of weighting
options see Bagchi and Illian (2015).

It is worth pointing out one practical pitfall with fitting
these models. Some edge corrections (e.g., the border correction)
eliminate focal points that lie too near (specifically, <r) the
edge of the plot. When point patterns with very few points are
included in analyses, this process can lead to replicates with
no pairs of points (<2 points), resulting in errors. To avoid
this issue, the default settings on the model fitting functions
internally filter out point patterns which have no pairs of
points remaining after edge corrections and give warnings
with the row numbers of the offending point patterns. Users
who want more control can turn this feature off by setting
remove_zero_weights = FALSE.

There are print and plot methods for the resulting R
object, but these are rarely interpretable without some measure of

uncertainty. The confidence interval around the model’s estimate
of the K-function can be estimated with:

mod1.1_ci <- confint(mod1.1, nboot = 500,
level = 0.95, iseed = 4,321).

Confidence intervals are calculated using a semi-parametric
bootstrapping approach (Landau and Everall, 2008; Bagchi
and Illian, 2015). Note that the method estimates frequentist
confidence intervals, not a simulation envelope (see Baddeley
et al., 2014 for a discussion of the difference). The user must
specify the number of bootstrap samples and can optionally
specify the level of the confidence interval (the default is 95%
confidence intervals as in this example). The random number
seed can be set with the iseed argument to allow results to
be reproducible.

There are print and plot methods for the resulting object. For
example,

print(mod1.1_ci)
, , (Intercept)

0.02 0.04 0.06 0.08 0.1

est 0.0023 0.0094 0.021 0.036 0.054

lwr2.5% 0.0022 0.0093 0.021 0.036 0.054

upr97.5% 0.0023 0.0095 0.021 0.036 0.055

The numbers in the column headings provide the distances (r)
at which K(r) is estimated, with the rows containing the estimates
and confidence intervals. The object can be plotted with

plot(mod1.1_ci)
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BOX 2 | Running a replicated spatial point pattern on spatstat.data::lansing. The lansing object maps the spatial distribution of five tree species in a
single square plot, plus a sixth “misc” mark that we do not use. We drop data on this miscellaneous species and any duplicated plots below. We also rescale the plot
to units of meters.
lansing <- spatstat.data::lansing

lansing <- subset(lansing, marks ! = “misc”, drop = T)

lansing <- lansing[!duplicated(lansing),]

lansing <- spatstat.geom::rescale(lansing, 1/280)

We divide the data into 16 subplots and generate a list of ppp objects, with one ppp for each subplot and species combination.
subplots <- 16

tess <- quadrats(lansing, nx = sqrt(subplots)) # define quadrats

mm <- split(lansing, f = lansing$marks) # split by species

pppList <- lapply(mm, split, f = tess) # split by quadrat

pppList <- lapply(pppList, setNames, nm = 1:subplots) # define names

Finally, we create a hyperframe where the columns are the fixed effects (in this case, tree species or “marks”), the random effects (in this case the subplot ID) and the
ppp objects.
pppList <- unlist(pppList, recursive = F)

catVariables <- str_split(names(pppList), pattern = “\\.”)

catVariables <- as.data.frame(do.call(“rbind”, catVariables))

colnames(catVariables) <- c(“marks”, “subPlotID”)

# Set hickory as intercept because it has a large sample size.

catVariables$marks <-

relevel(as.factor(catVariables$marks), “hickory”)

hf <- as.hyperframe(catVariables, pppx = pppList)

The hyperframe is now ready to be used in a klmer function.
The Supplementary Information includes additional examples on point patterns created by artificially increasing or decreasing the clustering of trees from the
Lansing data set.

The result is a ggplot2 object, allowing additional
formatting using ggplot2 functions. For example, in Figure 2
we have formatted the plot, modified the y-axis label and added
a curve with the expected K-function under complete spatial
randomness (πr2 added to the plot as a dotted line using
geom_function). The solid line shows the estimated mean
K-function across the 100 point patterns. The confidence interval
is represented with a gray shaded region, which is very narrow in
this case. The confidence intervals will be wider, and hence more
visible, in subsequent figures.

Models With Covariates
The key value of the approach lies in the ability to link variation
in spatial clustering to covariates of interest. Clustering in the
simulated point patterns (see Box 1) was influenced by a discrete
variable, f (where f = a had a smaller standard deviation, σ, than
f = b) and a continuous variable x (σ increased with increasing x).
Increasing the parameter σ increases the deviation of offspring
points around the center of the cluster (the parent point), so
lower σ (f = a and lower values of x) will be associated with
increasingly clustered point patterns [i.e., K(r) will increase more
rapidly over closer distances]. To quantify the effect of these
covariates on K(r), we can fit the following model and compute
and plot (Figure 3) confidence intervals for the coefficients with:

mod1.2 <- klm(ppx1 ∼ f + x, hyper = dat,
r = seq(0, 0.1, 0.01),
correction = “border”,
weights_type = “nx_A”)

mod1.2_ci <- confint(mod1.2, nboot = 500,
level = 0.99, iseed = 9876).

The only substantial difference from the first model is the
inclusion of f and x in the formula. We have also estimated (and
modeled) K(r) at a finer resolution of distances and computed
99% confidence intervals in this example. Figure 3 shows that
clustering is reduced when f = b and as x increases, which is
consistent with the simulations where both terms widened the
dispersal kernel around parent points.

It might also be useful to plot predictions from the model. For
example, we might want to visually compare the K-functions for

FIGURE 2 | A plot of the K-function predicted by an intercept-only klm model
fitted to 100 replicate point patterns. The dotted line is the expected
K-function under complete spatial randomness. The gray shaded area around
the solid line represents the 95% confidence interval.
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FIGURE 3 | The parameter estimates from the models as functions of distance. The lines show the effect of each covariate on K estimated at a given distance, with
99% confidence intervals indicated with gray shading. The plots indicate that the K-function is decreased (and so points are less clustered) when f = b and as x
increases.

the different levels of f. The confint function includes a newdata
argument that allows the user to specify covariate values for
which predictions (and confidence intervals) are required. Code
to get predictions at f = a and f = b at specific values of x (at x = 1,
5 and 10) is

nd1 <- expand.grid(x = c(1, 5, 10),
f = c(“a”, “b”))
mod1.2_ci <- confint(mod1.2, nboot = 500,
level = 0.99, iseed = 9876,
newdata = nd1)
preds1.2 <- as.data.frame.table
(mod1.2_ci$predictions)
preds1.2[, c(“x”, “f”)] <-
preddat[as.numeric(preds1.2$Var1),
c(“x”, “f”)]
preds1.2 <-
pivot_wider(preds1.2, names_from = Var3,
values_from = Freq) % > %
rename(“distance” = “Var2”) % > %
select(-Var1) % > %
mutate(distance = as.numeric
(as.character(distance)))
K2L <- function(k) sqrt(k/pi)
ggplot(preds1.2,
aes(x = distance, y = K2L(est),
ymin = K2L(lwr), ymax = K2L(upr),
group = as.factor(x))) +
geom_ribbon(alpha = 0.2,
aes(fill = as.factor(x))) +
geom_path(aes(color = as.factor(x)))
+ facet_wrap(∼f) +

Which gives us Figure 4. Note the use of the transformation
to rescale the y axis to plot an L-function rather than K-function
[where, L(r) =

√
(K(r)/π) ]. The L-function is less visually

dominated by larger distances than the K-function, which
aids readability. We have added some further formatting for
aesthetics and labeling.

Mixed Effects Models
The analyses in the previous sections assumed that the replicate
point patterns were independent of each other. Dependency

FIGURE 4 | Plot of predictions at new combinations of covariate values. The
plots show that the L-functions are predicted to be higher (more clustered)
when f = a (A) than when f = b (B) and to decrease as x increases.
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among replicates can arise, for example, from proximity in space,
time and genetic relatedness. If unaccounted for, dependence
among replicates reduces estimates of uncertainty spuriously,
leading to exaggerated confidence in parameter estimates and,
as a consequence, inferences. Mixed-effects models (Pinheiro
and Bates, 2000; Bolker et al., 2009) have become the standard
approach for addressing dependence in linear models.

The second set of point patterns in the simulated data
(ppx2), was influenced by group-level effects – specifically, the σ

parameter was multiplied by a group-specific positive value. The
group-level effects can be accounted for by fitting mixed-effects
models of the K-functions using the klmer function.

mod2 <- klmer(ppx2 ∼ 1 + f + x +
(1| gr), hyper = dat,
r = seq(0, 0.1, 0.01),
correction = “border”,
weights_type = “nx_A”)

The formula argument uses the syntax of the lme4 package
(Bates et al., 2015). The rest of the arguments are identical to
the klm function.

Confidence intervals can be calculated using confint, which
has similar arguments to the equivalent function for klm. For
simplicity, we have dropped the level argument, which means
the default 95% confidence intervals will be estimated. One
difference is the capacity of the confint function for klmer
objects to use parallel computation (by specifying ncore > 1).
Parallelization of the bootstrapping is very helpful because the
process can be quite time consuming with large datasets.

mod2_ci <- confint(mod2, nboot = 500,
ncore = 4)

Once the confidence intervals have been computed they can
easily be printed or plotted. For example, with

plot(mod2_ci)

The negative effect of both f = b and x on clustering is once
again apparent (Figure 5).

The Lansing Dataset
We use a dataset on spatial distributions of five tree species
in Lansing Woods, MI, United States (Gerrard, 1969) as an
example of how replicated point pattern analysis can be applied
to observed data. The Lansing dataset contains information
on locations of trees on a 19.6 acre square plot with the
species identification of each individual associated with its point
as a mark (i.e., the dataset is a marked point pattern). The
original data set is not a replicated point pattern, so we split
it into subplots to demonstrate the technique. Such splitting
of continuous data into replicate patterns has some advantages
(e.g., it allows the user to generate confidence intervals), but
care is needed to satisfy the assumption that the subplots are
independent of each other (e.g., subplots are sampled to be
separated by at least some minimum distance) Box 2 provides
details on how the data were arranged into the correct structure
to enable analysis.

Once the dataset is prepared, we fit the model with
the klmer function.

mod_sm <- klmer(formula = pppx ∼ 1
+ marks + (1| subPlotID),
r = 0:15, hyper = hf,
correction = “border,”
na.action = “na.omit,”
weights_type = “nX_A”)

We can make predictions of the K-function for each species
and calculate the confidence intervals around the parameter
estimates (Figure 6) and predictions (Figure 7).

preddat <- expand.grid
(marks = levels(hf$marks))

mod_sm_cis <- confint(mod_sm,
level = 0.95, newdata = preddat,
nboot = 99, ncore = 4,
iseed = 1234)

The resulting parameter estimates and confidence intervals
can be plotted using plot(mod_sm_cis). Alternatively, they
can be converted into a plot-ready tibble using the function
makePlotData_klmerci, and formatted further by the user
(see Supplementary Information).

From Figure 6 we can see that hickory, the reference level
in the model, is slightly more clustered than that expected
under complete spatial randomness. The other panels show the
difference between each species and hickory, suggesting little
difference between the species (although black oak is marginally
more clustered at distances > 8 m). A formal test of differences
among species can be run with

anova(mod_sm, term = “marks”,
dists = 1:15, nboot = 499, ncore = 4,

iseed = 1234)

Which gives us

Distances = 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15

T p

1.784031 0.064000

And confirms that the differences among species are,
marginally, not significant. It is possible to specify alternative
distance ranges, although any choice should be made a priori
(Loosmore and Ford, 2006; Baddeley et al., 2014).

A plot of the predictions of the L-function of each species
(Figure 7) shows us that some species, like black oak and maple,
are consistently clustered [L(r) > r]. No species is consistently
inhibited [L(r) < r]. Red oak and white oak indicate some
clustering at short distances (r < 6 meters).
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FIGURE 5 | Parameter estimates and their confidence intervals for simulated replicated spatial point patterns calculated using the klmer and confint functions.
Estimates for both f = b and x are negative, which indicate that they have a negative effect of spatial clustering.

FIGURE 6 | Fixed-effect estimates from the klmer model fitted to the Lansing data set. The intercept term (hickory) shows a small amount of clustering relative to
the expectation under complete spatial randomness πr2 (indicated on the first panel with a dotted line). The other panels show the differences between the
K-function for each of the other species and hickory.

DISCUSSION

Spatial patterns offer insight into many ecological questions.
Although ecologists have access to a wide variety of methods
to analyze spatial point patterns (Wiegand and Moloney, 2004;
Law et al., 2009), few of the available methods explicitly deal
with replication. Statistical techniques for analyzing RSPP have
existed in the statistical literature for some time (Diggle et al.,
1991, 2000; Baddeley et al., 1993; Landau and Everall, 2008),
but have been used sparingly in ecological applications (but see

Riginos et al., 2005; Bagchi and Illian, 2015; Ramón et al., 2016;
Bagchi et al., 2018). We believe that the paucity of RSPP analyses
in the ecological literature is partly due to a lack of software.
Filling that gap is our goal in this article. We introduce the
RSPPlme4 package in the R programming language with
worked examples of analyses with and without random effects.

It is worth considering how the RSPP methods we present
might simplify the job of interrogating spatial point patterns for
information about ecological patterns and processes. Analyses
of spatial point patterns in ecology have generally taken a null
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FIGURE 7 | A plot of the predictions from the klmer model for each species in the Lansing data set. Here we have plotted the corresponding L-functions, a
rescaling of the K-function [L(r) =

√
K(r)/π )]. Using this rescaled statistic, it is easier to see the deviations of species distributions from the expectation under

complete spatial randomness [dotted line, L(r) = r].

model testing approach, where an observed summary statistic
is compared to distribution of that statistic generated under
a null model (Condit et al., 2000; Getzin et al., 2008; Bagchi
et al., 2011). The null model approach is very flexible because
computer simulations can be customized to capture complex
aspects of the data generation process (Wiegand and Moloney,
2004). However, the null-model workflow requires a reasonable
level of programming expertise, and also encourages a null
hypothesis testing approach that is frequently criticized (e.g.,
McShane et al., 2019). Alternative null models often require
substantial changes to the underlying code, which can require
additional programming and run time. Null models also require
greater complexity to account for uncertainty in estimates of the
summary statistics and variation among samples.

The RSPP modeling method, in contrast, takes a parameter
estimation approach, which is increasingly familiar to ecologists.
Parameter estimates can be used for hypothesis testing (e.g.,
checking if confidence intervals overlap zero), but also allow
more nuanced inference about how a unit increase in a predictor
alters the spatial structure of the population. Variation among
samples and groups is explicitly estimated, and this variation
can be informative in its own right (Gelman and Hill, 2006).
Once the data are formatted appropriately, the complexity of

code for fitting models is comparable to fitting generalized
linear models. The user needs to make decisions about the
appropriate distance range, edge correction, and weights type,
but specifying those options is straightforward. The fact that
parameter estimates and predictions are functions rather than
single scalar numbers and summary statistics are outcomes
of, rather than inputs to, the data generation process, makes
interpretation harder. These complicating features of the RSPP
analysis methods described here, however, are shared with null
model approaches (Loosmore and Ford, 2006; Baddeley et al.,
2014). There is a trade-off between the flexibility of the null
model approach to specify details of the data generation process
and the ease of using the familiar linear model framework
to quickly specify a large range of possible relationships.
Ultimately, the combination of both methods provides greater
flexibility for researchers to address questions about the spatial
structure of populations.

There are a variety of ways in which the methods we outline
here could be extended further. We have limited our discussion to
homogeneous point processes, where the mean density of points
is constant over the study area. The approach can be extended to
inhomogeneous point processes, where point densities vary along
gradients by using inhomogeneous K-functions in the models
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(Baddeley et al., 2000, 2015; Diggle et al., 2007). One potential
complication in expanding to inhomogeneous patterns is that
the local density for computing the inhomogeneous K-function
generally has to be estimated from the same data, which can result
in very low power (Baddeley et al., 2014). A second extension of
the approach would be to allow for more complex correlation
structures among replicates. The inclusion of random effects
helps account for the dependence among replicates in the same
group, but does not allow for a continuous gradation of the
dependency among individuals. For example, the correlation in
the responses between replicates might decrease with the time
between observations, as might be captured by a continuous
auto-regressive model (Pinheiro and Bates, 2000). Third, we
do not explicitly consider analyses of marked point processes,
although marks (information on individual points) can be used
to divide the point pattern into replicates (see the analyses of the
Lansing data set). Finally, the software in RSPPlme4 (version
0.2.0) used in this tutorial is still in an early stage of development,
so testing, identifying and removing bugs, and expanding the
functionality and usability of the package are important tasks for
the near future.

In this article, we have tried to demonstrate that the process
of fitting models to RSPP data can be relatively straightforward.
There is still much that we do not know about the spatial
structures of populations and communities, the processes that
generate them and how they vary with traits, ontogeny and
environmental context. It is our hope that introducing these
methods for RSPP analysis will accelerate our progress towards
filling these gaps in our understanding.
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