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Concerns over the capacity of the world’s existing agricultural land to

provide food for the global population under climate change and continued

biodiversity loss have set the stage for a prevailing narrative of inherent

tradeoffs with agricultural production. Coffee, a major export of tropical

countries, offers a unique opportunity to examine how different management

practices can lead to a variety of outcomes in food security, ecosystem

services, and biodiversity conservation. Our study examined this intersection

to identify tradeoffs and synergies using compiled data from Puerto Rico. At

the island level, we analyzed data on coffee yield and planted area under

shade or sun management. At the farm level, we analyzed management

variables (percent shade cover, maximum canopy height, ground cover, and

food crop richness), non-provisioning ecosystem services variables (total farm

carbon storage, soil organic carbon storage, coffee plant carbon biomass, and

hurricane resistance and resilience), and biodiversity variables (ant, bird, and

lizard richness and abundance). At the island level, we found that planted area

was the most significant predictor of total production, suggesting no obvious

tradeoff between production and shade management in coffee farms. At the

farm level, canopy cover of shade trees was negatively correlated with ground

cover and positively correlated with food crop richness, suggesting a synergy

between agroforestry and subsistence food production. We detected mostly

synergies associated with ecosystem services, biodiversity conservation, and

agroforestry management and no tradeoffs among ecosystem service and

biodiversity parameters. Shade canopy cover significantly increased total

carbon storage, coffee plant biomass, hurricane resistance, and bird species

richness. Shade canopy height had a similar positive effect on total farm

carbon storage while food crop richness had a positive effect on farm

resilience following Hurricane Maria. Ground cover was positively associated
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with soil carbon storage and pest-controlling lizard abundance. Tradeoffs

related to agroforestry management included an inverse relationship between

ground cover and hurricane resistance and more dominance of an invasive

ant species in farms with higher shade canopies. We discuss the implications

of practicing agroforestry principles in this smallholder coffee system and

highlight opportunities to contribute to more diversified food production

systems that support biodiversity and ecosystem services.

KEYWORDS

agroforestry, ecosystem services, biodiversity conservation, food security, synergies
and tradeoffs, Hurricane Maria, Puerto Rico, shade coffee

Introduction

Home to almost 3 million inhabitants, Puerto Rico produces
specialty coffee with congenial flavor profiles that are a product
of both the dedicated livelihoods of smallholder farmers and
the cultural significance of the drink. Ever entwined, the
history of coffee and agricultural production in Puerto Rico has
evolved alongside ever-changing social-political environments
and colonial transitions since the 16th century. Under present-
day jurisdiction by the U.S. Government, agriculture for
local consumption has greatly diminished and the island has
grown increasingly reliant on imported food and processed
supermarket goods (Diaz, 2016) leaving food prices and supply
vulnerable to disruptions from natural disasters and top-down
trade policies such as the Jones Act (García-López, 2018;
Rodríguez-Díaz, 2018). In addition, many of the agricultural
support programs in Puerto Rico cater more to large scale,
high-input farming operations (Perfecto et al., 2009; Félix and
Holt-Giménez, 2017) than those that are more agroecological
and aligned with the principles of food sovereignty, according
to farmers (Diaz and Hunsberger, 2018). Compared to “sun,”
or conventional coffee growing operations, agroecological, or
“shade,” coffee farms are often managed as agroforestry systems
with a variety of shade trees (e.g., Inga spp., Andira inermis,
Guarea spp.), fruit trees, and food crops (e.g., citrus, avocado,
plantains, and a variety of tubers) grown for sale or consumption
by farming households in addition to coffee (Rice, 2008; Cerda
et al., 2017; Perfecto et al., 2019; Stratton et al., 2020).

The conservation and ecosystem service benefits of
agroforestry management in coffee production include in-
farm biodiversity conservation (Philpott et al., 2006; Bos
et al., 2007; Hajian-Forooshani et al., 2014; Cely-Santos and
Philpott, 2019), the creation of a high-quality agroecological
matrix that facilitates migration of wildlife between forest
fragments (Perfecto et al., 2007, 2019; Jha et al., 2014; Perfecto
and Vandermeer, 2015), increased soil drainage and water
retention (Lin, 2010; Cannavo et al., 2011), partial mitigation of
temperature and climate fluctuations (Campanha et al., 2004;
Lin, 2007; de Souza et al., 2012; Jha et al., 2014; Rice, 2018)

improved soil quality (de Souza et al., 2012; Thomazini
et al., 2015), enhanced carbon storage (De Beenhouwer et al.,
2016; Denu et al., 2016), and reduced incidence of coffee
pests and pathogens (López-Bravo et al., 2012; Rice, 2018;
Vandermeer and Perfecto, 2019). Previous studies have also
reported co-benefits, or synergies, between ecosystem services
and biodiversity conservation such as greater carbon storage
and higher tree diversity in coffee farms under agroforestry
management than in more intensively managed coffee systems
(Häger, 2012; De Beenhouwer et al., 2016; Cerda et al., 2017;
Guillemot et al., 2018).

Along with the synergies, however, tradeoffs in agroforestry
coffee production compared to conventional production may
also exist in the form of increased disease spread (Schroth et al.,
2000; Avelino et al., 2020; Durand-Bessart et al., 2020), reduced
or more variable coffee yields (Campanha et al., 2004; Vaast
et al., 2016; Durand-Bessart et al., 2020), and changes in the
predator-prey dynamics of pests and biological control agents
that are still under study (Staver et al., 2001; Hajian-Forooshani
et al., 2016; Beilhe et al., 2020). Yet, one of the greatest threats
to Puerto Rico’s coffee-growing operations comes from climate
change and amplified hurricane frequency and severity. Under
mid-high climate warming scenarios, Fain et al. (2018) predicted
an acceleration of warming and drying trends in the coffee-
producing region of Puerto Rico and a 47% loss of areas
with optimal temperature, precipitation, and soil conditions for
growing coffee. Additionally, other climate change effect models
predict substantial increases in the intensity and frequency
of the most intense tropical cyclones in the Atlantic (Elsner
et al., 2008). Following the landfall of Hurricane Maria in
September of 2017 (Category 4), sustained wind speeds of 155
mph (National Weather Service, 2017) inflicted widespread
damage to shade trees and surrounding forest, as expected for
a hurricane of this caliber (Perfecto et al., 2019), along with
significant disruption to the island’s weak infrastructure and the
lives of vulnerable communities (Morris et al., 2018; Kwasinski
et al., 2019; Orengo-Aguayo et al., 2019; Ma and Smith, 2020;
Yabe et al., 2020). Interviews with farmers also revealed a
devastating loss of the coffee harvest, severely damaged coffee
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plants, and damage to most other crops as well (Perfecto et al.,
2019), including those intended for local consumption and
distribution. With widespread devastation to social, economic,
and ecological systems in Puerto Rico, the damage inflicted
by Hurricane Maria underscores the link between biodiversity
conservation, ecosystem services, and food security within the
coffee agroforestry system.

In this study, we leveraged a variety of compiled data
from Puerto Rico at the island and farm levels to identify
trade-offs and synergies in the agroforestry system compared
to conventional production. At the island level, we analyzed
data on coffee yield and planted area under shade or sun
management. At the farm level, we analyzed continuous
management variables (percent shade cover, maximum canopy
height, percent ground cover, and food crop richness),
ecosystem services variables (total farm carbon storage, soil
organic carbon storage, coffee plant carbon biomass, and
hurricane resistance and resilience [determined by NDVI]),
and biodiversity variables (ant, bird, and lizard abundance).
At the regional scale, we predicted that farms classified as sun
coffee operations would produce higher coffee yields than the
more shaded, agroforestry coffee systems. At the local scale,
however, we predicted that more shaded, agriculturally diverse
coffee farms would be more strongly associated with ecosystem
service provisioning (e.g., hurricane resistance and recovery,
carbon storage) and biodiversity (e.g., anole lizards, birds, and
ants). We discuss the implications of producing Puerto Rican
coffee with agroforestry practices and highlight opportunities
for maximizing biodiversity, ecosystem services, and food
security based on our findings. Additional understanding of the
associated tradeoffs and synergies in this system generated by
our study will help inform further development of agroforestry
management strategies that support both ecosystem functioning
and local livelihoods.

Materials and methods

Study area

Our study was conducted in Puerto Rico with regional
data (from the Caribbean Climate Hub, US Department of
Agriculture)1 spanning most of the island’s geography and local
data collection concentrated in the central coffee-producing
region on the central and western part of the Cordillera Central.
Average annual temperature and precipitation within the region
range from 22 to 26◦C, and from 904 to 2,439 mm, respectively.
According to the Web Soil Survey (NRCS, 2005), soil taxonomy
is predominantly Ultisol with some farms under Inceptisol
and Oxisol classification. Following the Holdridge Life Zones

1 https://www.climatehubs.usda.gov/hubs/caribbean

classification, the study area includes subtropical moist forest,
subtropical wet forest, and lower montane wet forest. Coffee
farms in this study included a range of management strategies
from more conventional (i.e., no shade trees or low density
of shade trees) to more agroecological (i.e., medium to high
density of shade trees) and produced coffee as their primary
crop (mostly Coffea arabica but some Coffea canephora). Many
of the farms also produce plantain (Musa x paradisiaca L.) and
orange [Citrus sinensis (L.) Osbeck]. According to the USDA
2017 Census of Agriculture (USDA-NASS, 2020), 76 percent of
the farms are family-owned and with sizes of 7 ha or less.

Data sources

In this study, two data sets were used with analysis divided
into regional and local levels because production data was
not available at the local scale. For regional-scale coffee yields
(island-wide), we used the USDA Caribbean Climate Hub data
set (see below). For local-scale vegetation and carbon storage
metrics, we used data collected for 68 farms within a 100 m2

plot (10 m× 10 m). Locations for the 100 m2 plots were selected
by speaking to farmers directly about their land and walking
the extensive trail systems to get a sense of the abundance
and distribution of features. Plots were established in locations
qualitatively determined to be representative of the overall
farm. From those 68 farms, we selected 25 farms throughout
the coffee production region of Puerto Rico (effectively from
the municipality of Orocovis in the center to Las Marias in
the west). These 25 farms were selected as representative of
the management types, based on shade cover and geographic
position, and sampled for the biodiversity of ants and anole
lizards. Bird data was obtained from a separate data set of bird
surveys conducted on 67 farms in the same region from which
the 68 farms were sampled, though not necessarily on all those
same farms. We matched the first and last names of the farmers
from the bird data set to unique regional codes recorded in
the vegetation and carbon estimate data which allowed us to
merge bird survey data for 46 farms into a compiled data set
that included all of our other variables (Figure 1).

Regional data

Island-wide coffee production data (n = 351) was obtained
from the USDA Caribbean Climate Hub (2016) based on
surveys with farmers and included: municipality, scientific name
(Coffea spp.), management type (a binary classification: shade or
sun-grown), production (kg), the area planted with coffee (ha),
harvested area (ha), and geographic point locations for the most
recent year available (2016) (Figure 2). Yield was calculated by
dividing values for coffee production (kg) by area harvested (ha)
from the Climate Hub dataset.
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FIGURE 1

Graphic showing overlap of datasets used in this study. Island scale data came from the USDA dataset of 352 coffee farms across Puerto Rico
and included data only on farm size, region, yield, and management (discreet measures). Farm scale data was pieced together from three
existing datasets from different studies and included data on carbon storage, vegetation, ants, lizards, birds, and management (continuous
measures). These datasets overlapped for some farms, but not all.

Regional data statistical analysis
Island-level yield data were analyzed in R version 1.3.1093

(R Core Team, 2020). Instances of 0 kg harvest on a
non-zero harvested area (N = 58) were omitted as well
as the top 3 yield outliers of the square-root transformed
normally distributed dataset (z-score > 3). We ran the
linear mixed model analysis using the lme4 package version
1.1-26 (Bates et al., 2014) including coffee yield as the
dependent variable and added fixed effects of planted area
and sun or shade management. We included the region
in which farms were located as a random effect. The
model specification was as follows: Yield (ha) ∼ Planted
Area (ha) + Management Type (sun or shade) + (1|
Farm Region). Significance was calculated using the lmerTest
package (Kunzetsova et al., 2017), which applies Satterthwaite’s
method to estimate degrees of freedom and generate p-values
for mixed models.

Local data

Ant sampling
Ant sampling was conducted in the 25 farms selected for this

study. During December 2018 and January 2019, we visited each
of the farms and placed five tuna fish baits directly on the stem
(or stems) of each of the 20 coffee plants selected randomly from
the 10 m × 10 m plot, which was chosen to reflect the basic
management style of the farm. Thus, we placed a total of 100
arboreal baits in a representative area of 100 m2 on each of 25
farms, waited for 40 mins, and then checked each bait for ants,
recording the species present at each bait (no counts of numbers

of foragers). For further ant sampling details, see Perfecto and
Vandermeer (2020b).

Lizard sampling
Lizards were sampled in the same 25 farms and the same

20 randomly selected plants where the ants were sampled.
Sampling took place monthly from May 2019 to July 2019. Two
observers visited each coffee plant, slowly approaching the bush
from opposite sides, and spent 2 mins carefully searching all
branches for lizards. The numbers and identities of the lizards
observed were recorded for each plant.

Bird surveys
From the original 68 farms used to conduct the vegetation

survey to estimate carbon storage (see below), 58 farms were
selected as representative of the habitat types, based on shade
cover and geographic position. Three avian surveys were
conducted at each of the 58 farms between March and June 2018.
This period encompassed the breeding season of avian resident
species in Puerto Rico (Gleffe et al., 2006), thereby minimizing
changes in detectability throughout the season (Thompson,
2002). Birds were surveyed using fixed-radius point counts in
which two observers recorded all bird species detected visually
or by sound, within 50 m of the center of the station for 10 mins
(for a more detailed methodology see Irizarry et al., 2021).
Though the survey points were not conducted within the exact
100 m2 plots used for the rest of the data collection, the first
and last names of farmers were used to match survey locations
to farm sites representing the same general area. All surveys
were conducted between 0600 and 1000 h under favorable
weather conditions.
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Vegetation data and farm management
Vegetation data were obtained for the same 25 farms and

100 m2 plots used for the ant and lizard sampling. Farm
vegetation was assessed between February and August 2018:
about 5 months after Category 4 hurricanes Irma and Maria
made landfall in September 2017. The 100 m2 plots were
established to avoid lot edges and ensure representation of the
general farm management. Respective GPS coordinates were
recorded at the center of each plot. All trees, coffee shrubs, and
Musa plants with a diameter at breast height (DBH, measured
1.3 m above the ground) > 3 cm were measured and identified.
When trees could not be identified in the field, samples were
taken for identification in the laboratory.

Percent canopy cover was measured using the application
Canopy App (University of New Hampshire, 2014; Brush et al.,
2017; Barreiros, 2019; Perfecto and Vandermeer, 2020a) and
averaging five measurements: one at the center of the plot and
each of the four plot corners. Given that sites were selected
to be characteristic of overall farm management, we used
the average shade across the plot to be representative of the
shade from tree canopies (excluding coffee plants) on the farm
overall. Maximum canopy height was recorded in each plot and
ground cover was estimated for the farm by randomly placing a
1 m × 1 m square at five different locations (center and four
corners) in the 100 m2 plot and recording the percentage of
bare ground. Food crop richness was also surveyed within each
100 m2 plot based on the number of crops, including fruit trees,
that were recorded from each plot.

Hurricane damage and recovery rate
To quantify the impact of the hurricanes and the recovery

from them at the farm scale, we used the NDVI pre and
post-hurricane to create a variety of metrics (Figure 3A).
Post-hurricane NDVI was calculated in Google Earth Engine
(Gorelick et al., 2017) from the USGS Landsat 8 Surface
Reflectance Image Collection by first applying a 1 km buffer
around the center point of the 100 m2 plots within the
25 representative farms for which vegetation, ant, and lizard
surveys were conducted. A cloud mask was applied to the
images by searching through the points where the “Pixel_qa”
band (a pixel quality assessment band provided by the Surface
Reflectance image collection) in Landsat had a corresponding
value of 322, which indicated clear terrain and low confidence
cloud and cirrus interference.

For the hurricane impact analysis, we defined five variables:
Hurricane Resistance, Recovery NDVI, Time to Recovery,
Recovery Velocity, and 1NDVI (Figure 3B). In step with Hu
and Smith (2018), analysis of damage from Hurricane Maria,
we interpreted the differences between pre-and post-hurricane
NDVI values to indicate damage to a farm associated with
Hurricane Maria. The lowest NDVI value following Hurricane
Maria’s landfall in Puerto Rico between September and October
2017 was selected as the “Hurricane Resistance” variable.

FIGURE 2

Spatial distribution of shaded (green circles) and unshaded
(yellow circles) coffee farms in Puerto Rico from the Caribbean
Climate Hub (n = 351).

Conceptually, Hurricane Resistance captures the deviation from
pre-hurricane NDVI levels and indicates the ability of a given
farm to withstand or resist, hurricane damage. Therefore, a
lower Hurricane Resistance value suggests that the farm can
better resist hurricane damage, while a higher value suggests
that the farm is more susceptible to hurricane damage. In
the NDVI time series chart, we observed that NDVI dropped
immediately following the hurricane, then gradually increased
back up to a higher value (Recovery NDVI) before resuming
seasonal fluctuation patterns. The Time to Recovery variable was
defined as the period between the lowest NDVI value and the
Recovery NDVI (highest NDVI value post-hurricane). Because
the Landsat 8 satellite has a visiting frequency of 16 days, Time
to Recovery values were discretized to 48, 64, and 80 days.
1NDVI was defined as the difference between Recovery NDVI
and the lowest NDVI value. Recovery velocity was defined as
301NDVI/time to. The multiplication factor of 30 was included
to convert the units from (NDVI)/day to (NDVI)/month.
Conceptually, Recovery Velocity captures hurricane resilience
by measuring how quickly a given farm can repopulate green
areas and return to its natural state after incurring damage
from Hurricane Maria. The higher the recovery velocity, the
more resilient the farm is. See Vargas de Mendonça (2021) for
a repository of the code and data used in the NDVI analysis.

1NDVI = RecoveryNDVI − Resistance

Recvelocity =
1NDVI

Recovery days × 30

Carbon storage
Carbon storage data was obtained from the same study

of 68 coffee farms in the central rural region of Puerto Rico.
Data was collected following hurricane Maria between February
and August 2018. Above and below ground carbon stocks were
estimated for all citrus trees, shade trees, coffee shrubs, and
banana plants within the 100 m2 plots (see Supplementary
Table 1). For trees and shrubs with the main stem that forked
below 1.3 m DBH (naturally or by pruning), all secondary
stems were measured. Secondary stem basal areas were added
to calculate individual basal area (BA). Soil organic carbon
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FIGURE 3

(A) Mean NDVI time series from 25 farms in Puerto Rico from 2013 to 2019. (B) Mean NDVI time series in the year that Hurricane Maria hit the
island, showing the drop in NDVI.

content was estimated from soil core samples taken from the
same plots and added to the total above and below ground
plant carbon stock estimates to calculate the total farm carbon
storage. Though carbon storage in other systems is impacted
by pruning of both coffee and shade trees at 5–6 and 1-year
intervals, respectively, pruning in Puerto Rico is generally more
infrequent for coffee and even more rare for shade trees due to
the high cost of labor on the island.

Allometric equations were used to estimate aboveground
biomass (AGB) and coarse root biomass (CRB). For AGB
of shade trees, citrus trees, and bananas and plantains
(Musa × paradisiaca), validated models from the literature
were applied (see Supplementary Table 1). To estimate AGB of
coffee shrubs, an allometric model based on BA was developed
using destructive sampling of 29 coffee shrubs. The coarse
root biomass density (CRB) for shade trees, citrus trees, and
coffee shrubs was estimated using a model developed by Cairns
et al. (1997). To convert AGB and CRB into our measure of
total carbon in the biomass (AGCB and CRCB, respectively),
the carbon content was assumed to be 50% for woody plants
(Brown, 1997) and 46% for Musa plants (Danarto and Hapsari,
2016). All C stocks were expressed in Mg C ha−1.

Local data statistical analysis
Since we did not have access to yield data for the same farms

from which we collected ecosystem service and biodiversity
data, we examined relationships with management variables
(i.e., percent canopy cover, maximum canopy height, ground
cover, and crop richness) to look for potential trade-offs and
synergies. Specifically, we divided our analyses into three
conceptual groups: (1) relationships among management
variables, (2) management effects on ecosystem services and
biodiversity, and (3) relationships among ecosystem services
and biodiversity. Management effects on ecosystem services
and biodiversity were analyzed through a series of linear
regressions with management variables as the independent

variable. We explored interactions among an informed selection
of the ecosystem service and biodiversity variables through a
correlation analysis that could capture significant nonlinear
relationships and used non-parametric Spearman rank
correlations because many of our variables were not normally
distributed (see Supplementary Information for a table of
results). Given that this study synthesized data from multiple
studies, using a generalized linear mixed model approach
was not feasible due to the low overlap in farm data for the
explanatory variables of interest, hence our use of correlations.

Results

Yield and agroforestry versus
conventional production at the
regional level

In our linear mixed model that incorporated the area
planted with coffee, management type did not have a significant
effect on coffee yields (p = 0.165, df = 237). Additionally,
planted area arose as a significant predictor of yield (p = 0.094,
df = 234) suggesting that there was no clear relationship between
yield and management type after accounting for regional
variation and farm size.

Management variables, ecosystem
services, and biodiversity at the local
level

Relationships among management variables
Among the four management variables we analyzed

(percent canopy cover, maximum canopy height, ground
cover, and food crop richness), two significant associations
arose (Figure 4). Percent canopy cover from shade trees
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was positively associated with food crop richness (r = 0.289,
p = 0.015), including bananas, tubers, citrus, peppers, plantains,
pumpkin, legumes, and sweet potatoes in addition to coffee,
indicating a possible synergy between agroforestry management
and farm-level food production. Food crop richness within
a single 100 m2 plot varied from 0 to 3 different crops
(excluding coffee) for all farms surveyed for carbon storage.
Percent canopy cover was negatively associated with percent
ground cover (r = −0.235, p = 0.025). However, ground
cover was a problematic variable given that it could be
driven by direct management practices (i.e., weeding, herbicide
application) or an associated effect of management (i.e., a very
dense canopy cover).

Management effects on ecosystem services
and biodiversity

Our results suggest that agroforestry management variables
(i.e., percent canopy cover, maximum canopy height, ground
cover, and food crop richness) had mostly positive effects on
ecosystem services (summarized in Figures 5, 6). Higher percent
canopy cover was associated with higher total coffee plant
carbon storage (R2 = 0.138, p = 0.001), total farm carbon storage
(R2 = 0.140, p = 0.001), and hurricane resistance (R2 = 0.201,
p = 0.021). Higher maximum canopy height was also positively
associated with total farm carbon storage (R2 = 0.250, p = 0.009).
While more ground cover did provide soil carbon storage
benefits (R2 = 0.104, p = 0.006), it was negatively associated with
hurricane resistance (R2 = 0.194, p = 0.024), though this could
be partially explained by the negative relationship between shade
and ground cover, therefore indicating that shaded areas were
able to better resist against hurricane damages. Finally, food
crop richness was positively associated with higher hurricane
resilience (quicker recovery to pre-hurricane NDVI values)
(R2 = 0.243, p = 0.016).

Management practice metrics including percent shade
canopy cover, maximum canopy height, and percent ground
cover had clear positive effects on some biodiversity variables
with only one potential tradeoff. Bird species richness tended
to be higher in farms with higher percent shade cover
(R2 = 0.094, p = 0.035). Notably, many of the tropical bird
species observed on the farms were species endemic to Puerto
Rico including the Puerto Rican Emerald (Riccordia maugeaus),
Puerto Rican Flycatcher (Myiarchus antillarum), Puerto Rican
Lizard-Cuckoo (Coccyzus vieilloti), Puerto Rican Oriole (Icterus
portoricensis), Puerto Rican Spindalis (Spindalis portoricensis),
Puerto Rican Tody (Todus mexicanus), Puerto Rican Tanager
(Nesospingus speculiferus), Puerto Rican Vireo (Vireo latimeri),
Puerto Rican Woodpecker (Melanerpes portoricensis), and
the Puerto Rican Bullfinch (Loxigilla portoricensis). Anole
abundance tended to be higher on farms with more ground
cover (R2 = 0.177, p = 0.031). Ant species richness observed on
coffee plants decreased with higher shade canopies (R2 = 0.165,
p = 0.039) which could be considered a tradeoff, but the

FIGURE 4

Shows the Spearman Rank correlations for management
variables considered in the coffee system studied. Black data
points indicate non-significant relationships, yellow data points
indicate a positive significant relationship, and red data points
indicate a significant negative relationship (p < 0.05).

FIGURE 5

Summary table of management effects on ecosystem services
and biodiversity. Red indicates a positive relationship and blue
indicates a negative relationship. This panel contains a scatter
plot matrix of the correlations condensed in this table.

effect on individual species of invasive ants (i.e., Wasmannia
auropunctata, Solenopsis invicta, Monomorium floricola, and
Tapinoma melanocephalum) was mixed.
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Relationships among ecosystem services and
biodiversity conservation

Among the ecosystem service and biodiversity variables we
analyzed, several statistically significant synergies arose with
no evidence of tradeoffs (Figure 7). Total farm carbon storage
was positively related to both soil organic carbon storage
(r = 0.341, p = 0.003) and total coffee plant carbon storage
(r = 0.330, p = 0.004) which was not surprising given the
contribution of soil carbon and coffee plant carbon to the
calculation of overall farm-level carbon storage. Conversely,
the positive association between SOC and coffee plant carbon
biomass (r = 0.239, p = 0.04425), two distinct metrics, is
ecologically meaningful and suggestive of synergy between
ecosystem services and robust coffee bushes that may produce
favorable yields. Interestingly, preliminary data exploration did
not indicate a negative relationship between coffee plant carbon
biomass and shade tree carbon biomass which could imply a
lack of appreciable competition for light and water. Total farm
carbon storage was also positively associated with hurricane
resilience, a metric that indicates how fast the farm recovered
after the hurricane impact (r = 0.435, p = 0.037), suggesting
that cultivated areas with more woody vegetation tended to re-
establish more quickly following Hurricane Maria. Evidence of
a crossover synergy between ecosystem services and biodiversity
was supported by the positive association of soil organic carbon
and lizard abundance on individual coffee plants (r = 0.443,
p = 0.018).

Discussion

Relationship between coffee yield and
agroforestry versus conventional
production at the regional level

At the regional scale, there was no obvious tradeoff in yield
between agroforestry and conventional coffee production. Even
though the farms in our study spanned a large geographic area
subject to regional microclimates and varied in operational size
from around 240 ha to less than one ha, we found no significant
difference between the yields for sun and shade coffee. This
is in contrast to previous studies such as a meta-analysis
of 26 locations by Jezeer et al. (2017) which reported lower
yields in shaded agroforestry coffee production compared to
conventionally produced coffee, despite higher cost-efficiency.
Though we could not directly analyze trends between shade
level and yield per hectare without a continuous measure of
shade, the literature suggests there may be a positive effect on
yield at intermediate levels of shade (Elevitch et al., 2009; Piato
et al., 2020) or that some of the variation may be driven by
other factors such as coffee plant density (Wang et al., 2015).
Growing coffee in a shaded agroforestry environment may also

increase the quality which can have a substantial net benefit
for the price (Bote and Struik, 2011), especially when coupled
with certifications such as Bird Friendly, Rainforest Alliance,
Fair Trade, or other economic incentives that directly benefit
farmers (Perfecto et al., 2005; Philpott et al., 2007). For example,
Iverson et al. (2019) propose a multifunctional approach specific
to coffee farms in Puerto Rico that combines certification
premiums with carbon payments to increase the profitability
of more biodiverse farms. Without a clear tradeoff in yield at
the regional scale, our results also provide local-scale evidence
of benefits to biodiversity conservation and ecosystem services
associated with higher shade cover that could be incorporated
into economic policies supportive of local livelihoods.

Local synergies between management,
ecosystem services, and biodiversity
conservation

Our study illustrates synergies between shade cover and a
variety of ecosystem services and biodiversity variables such as
bird richness, carbon storage in soil and plant biomass, and
resistance to hurricane damage with no evidence of tradeoffs
among our ecosystem service and biodiversity conservation
measures. At the local scale, we found that farms with
more shade cover and higher shade tree canopies (continuous
measures of agroforestry management), were associated with
more biodiversity and ecosystem service provisioning. Coffee
bushes under more dense shade tree canopies tended to have
greater biomass both above and below ground, similar to
findings by Campanha et al. (2004), suggesting no obvious
tradeoff with coffee plant growth and perhaps even yield with
certain shade tree intercroppings (Boreux et al., 2016). This
idea is supported by research from Soto-Pinto et al. (2000) who
reported an increase in coffee yield up to 38% shade cover
and no effect of shade on yield up to 50% shade. Our study
also identified a synergy between soil organic carbon storage
and coffee plant carbon storage that could be driven by a
combination of higher microbial activity, more nutrient release
in the soil, and greater water infiltration contributing to higher
soil quality, as Cannavo et al. (2011) and de Souza et al. (2012)
reported for coffee agroforestry systems in Brazil and Costa Rica.
This could enable larger coffee plants to grow and potentially
contribute to higher yields or different flavor profiles, though
the relationship between coffee plant size, bean quality, and
yield depends on how resources are allocated within the plant
(Steiman et al., 2011; Bote and Jan, 2016). With the high cost of
labor limiting the pruning of shade trees in Puerto Rico, coffee
plants under agroforestry management may have the capacity to
follow these trends of greater yield at intermediate shade levels
and benefits to bean quality at high shade levels.

Though our island-wide data showed no relationship
between management type and yield, a relationship between
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FIGURE 6

Scatter plots for all of the management effects on ecosystem service and biodiversity conservation studied. Black indicates a non-significant
relationship, red indicates a negative significant relationship, and yellow indicates a positive significant relationship (p < 0.05).

yield and shade may have been detected with a continuous
measure of shade or another measure of productivity such
as yield per coffee plant. The synergy between agroforestry
management and biodiversity conservation was most apparent
for birds in our study (many endemic to Puerto Rico), with more
shade cover being associated with higher bird species richness
as other studies have reported (Philpott and Bichier, 2012;
Buechley et al., 2015), though we did not examine community
composition. Our study also detected a positive relationship
between percent ground cover and lizard abundance which
could be the result of lizards using herbaceous vegetation in
the coffee farms for cover from predators. In another study
conducted in Puerto Rico, Monagan et al. (2017) reported a
negative relationship between coffee intensification and lizard
abundance, with higher lizard abundance in shade coffee
farms compared to sun coffee farms. We did not find such a
relationship. On the contrary, our study found more lizards
in farms with more ground cover, which was correlated with
lower shade cover. It is possible, however, that increased ground
cover from low-lying vegetation found in the less shaded
farms facilitated lizard movement between coffee plants thereby
increasing their detected abundance.

The synergies between shade, ground cover, and carbon
storage reported in our study highlight the opportunity for
agroforestry management to play a role in climate change
mitigation efforts that seek agents for carbon storage, including
plant and soil biomass. Additional synergies may also be
realized by policies that prioritize land with high biodiversity
value, such as the more shaded farms in our study, which
offer higher carbon storage benefits than conventional systems

(Reside et al., 2017; Middendorp et al., 2018). Agroforestry
management of coffee farms, therefore, could support efforts
to mitigate climate change through carbon sequestration while
bolstering the stability of coffee production in the face of a
warming climate by including shade trees that minimize heat
stress and reduce high-velocity winds from hurricanes for which
the risk is greatest during the harvest season (Lin, 2007; de
Souza et al., 2012; Rice, 2018). The benefits of agroforestry
management to long-term coffee production and farmer
livelihoods are further compounded by the synergies between
shade cover and resistance to hurricane damage and that of
food crop richness and hurricane resilience. Regional studies
have identified land cover type, terrain, slope orientation, and
vegetation complexity as significant determinants of hurricane
damage severity that could be mediated by agroforestry
management practices such as planting shade trees to slow
hurricane winds and protect lower strata coffee bushes (Philpott
et al., 2008; Hu and Smith, 2018; Mariño et al., 2018). Our
analysis suggests that more shaded farms suffered less damage
from Hurricane Maria’s impact and farms growing a variety
of crops recovered faster. Considering the contribution of
percent canopy cover to lower annual soil erosion rates in other
systems (Zuazo and Pleguezuelo, 2009), agroforestry presents
dual benefits for coffee farming in Puerto Rico, including higher
resistance to hurricanes and lower damage due to erosion.
Factors such as tree size, root depth, cohesion, and mean tensile
root strength supported by management decisions to include
shade trees or additional crops may offer opportunities for
maximizing soil conservation and protection against hurricanes
(De Baets et al., 2008; Ali, 2010; Hwang et al., 2015).
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FIGURE 7

Scatter plots for all of the ecosystem service and biodiversity conservation variables in the coffee system studied. Black data points indicate
non-significant relationships and yellow data points indicate a positive significant relationship (p < 0.05).

Local tradeoffs between management,
ecosystem services, and biodiversity
conservation

Our analysis identified only three negative relationships:
between percent canopy cover and percent ground cover;
percent ground cover and hurricane resistance; and maximum
canopy height and ant richness. The negative relationship
between percent canopy cover and ground cover is not
surprising since heavier shade can help regulate the herbaceous
vegetation in the understory. Indeed, weed control is frequently
cited as one of the benefits of shade cover in coffee agroforestry
systems (Staver et al., 2001, 2020; Soto-Pinto et al., 2002).
In this study, we included ground cover as a management
variable that indirectly measures the control of weeds by either
chemical or mechanical methods because of the heavy use

of herbicides among Puerto Rican coffee farmers (informal
conversations with farmers). Despite that, we detected a negative
relationship between percent canopy cover and percent ground
cover, suggesting that ground cover is a result of the shade
level rather than an indirect measurement of weed management.
We also found that hurricane resistance decreased with ground
cover, however, this could simply be a reflection of the negative
relationship between shade and ground cover. Since farms that
had higher shade levels also had higher hurricane resistance and
lower ground cover, it follows that we would detect a negative
relationship between ground cover and hurricane resistance.

The decrease in ant richness with taller shade canopies
could also be considered an ecosystem service tradeoff
partially explained by the dominance of the invasive “fire ant”
Wasmannia auropunctata, which disrupts farmworkers with
its painful bite and is commonly observed on citrus trees
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intercropped with coffee plants. Though Wasmannia are a
known biocontrol agent of the coffee berry borer and the
coffee leaf miner, both prolific pests in Puerto Rico, they have
also been found to deter Anole lizards, another generalist pest
predator, with their bite (Perfecto and Vandermeer, 2020a;
Perfecto et al., 2021). It is not fully understood how Wasmannia
interacts with other species in the ant community, such as
Solenopsis invicta, and how those interactions are mediated
by management practices such as agroforestry (Perfecto and
Vandermeer, 2020b), but our results indicated that less shaded
farms with more groundcover had more Anoles. Therefore,
though our findings suggest a tradeoff between ant species
richness and shade, future research on the interactions between
biocontrol agents and coffee pests in Puerto Rico could inform
low-input management strategies that minimize the effect of the
coffee berry borer and leaf miner while supporting biodiversity.
Due to the lack of yield data for the farms, we surveyed
for ants, lizards, birds, and vegetation, we were not able to
examine direct relationships between yield and our biodiversity
and ecosystem service measures. Future studies could collect
this data through relatively simple questionnaires that could
be combined with other tools such as the Household Dietary
Diversity Survey (Swindale and Bilinsky, 2006) to explore
further linkages between management, yield, and food security.

Food security and agroforestry
management

Our study also illustrated relationships that may indicate
potential synergies between agroforestry management and food
security in Puerto Rico. Though we did not include direct
metrics of food security, we believe that smallholder food
crop production is an important dimension of the food
security discussion. Furthermore, reporting on food crops
in coffee farms challenges the false perception among many
agroecologists and food security advocates in Puerto Rico that
coffee production does not contribute at all to food production
since coffee is not a food crop and may take productive
land away from growing food. Within the farms included
in our study, we found higher food crop richness, including
bananas, tubers, citrus, peppers, plantains, pumpkin, legumes,
and peas in coffee farms with more shade cover suggesting
that agroforestry management may also be a means to provide
households with local food resources while supporting local
biodiversity. This idea is consistent with Frison et al. (2011)
and Jha et al. (2014) who argue that agrobiodiversity resulting
from management strategies such as agroforestry, can provide
sustainable social, political, and economic benefits to food
security while delivering “agricultural intensification without
simplification.” Informal surveys of walking trails within farms
(data not included in this article) revealed a great diversity of
fruit trees and food crops such as guava, breadfruit, coconut,

mango, loquat, soursop, avocado, and star apple which may
supplement the diets of farmers and their families, though
further research is needed to quantify the nutritional value
of local production and understand its role in household
consumption, as some studies have already done in other
farming communities (Remans et al., 2011; Blesh and Wittman,
2015; Valencia et al., 2019; Stratton et al., 2020). In addition, it
is important to consider that fruits and tubers comprise much
of the non-coffee crops grown on the farms in this study, so
additional subsistence would need to be purchased or planted
to ensure a complete diet that meets micro-and macronutrient
needs. Nevertheless, our results support the idea that coffee
farms under agroforestry management do have the potential to
reduce some level of food insecurity in farming households and
provide fresh, potentially organic produce at a low cost. Given
that some farms in our study produced up to 12 food crops
in addition to coffee, opportunities also exist to leverage the
spatial analysis power of Geographic Information Systems (GIS)
software to map out potential distribution pathways for small-
scale production of food crops on the island. This, combined
with qualitative interviews with farmers, could build on the
literature connecting agroforestry farming practices to food
sovereignty in agricultural communities.

Conclusion

In sum, our analyses present exploratory insights into
the synergies and tradeoffs between agroforestry management,
biodiversity conservation, and ecosystem services at regional
and local scales of coffee production in Puerto Rico. Though
several of the associations we report for management, ecosystem
service, and biodiversity data are limited to correlations and
relationships between measured proxies, we intend to provide
a basis for future, more direct studies of the complex,
interconnected processes in this system that may be less
restricted by the availability of existing data. In our study,
we found few tradeoffs and several synergies resulting from
shaded coffee production, including benefits to carbon storage,
resistance and resilience to hurricane damage, and bird and
lizard conservation. At the island level, we found no evidence of
a significant tradeoff in yield between shade and sun-managed
coffee farms after isolating the effects of planted area and region.
Among ecosystem services and biodiversity conservation, we
identified synergies among carbon storage sinks, between total
farm carbon storage and hurricane resilience, and between pest-
controlling lizard abundance and soil organic carbon storage
with no evidence of tradeoffs. Though the explained variance
in our analysis remained relatively low in many cases, the
significant results (p < 0.05) we report illustrate broadly
associations with plausible mechanisms for which we encourage
further exploration of biodiversity and ecosystem services in
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agroforestry systems. Finally, we discussed the advantages
of agroforestry management to household and regional food
security and highlighted opportunities and the need for future
research in supporting areas such as food sovereignty.
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