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As the application of allometry continues to expand, the variability in the

allometry exponent has generated a great deal of debate in forest ecology.

Some studies have reported counterintuitive values of the exponent, but the

sources of such values have remained both unexplored and unexplained.

Therefore, the objectives of our analyses were to: (1) uncover the global

patterns of allometric variation in stem height with stem diameter, crown

radius with stem diameter or stem height, crown depth with stem diameter,

crown volume with stem diameter, crown depth with crown diameter,

aboveground biomass with stem diameter or height, and belowground

biomass with aboveground biomass; (2) assess variations in allometry

parameters with taxonomic levels, climate zones, biomes and historical

disturbance regimes; and (3) identify the sources of counterintuitive values

of the allometry exponents. Here, we provide novel insights into the tight

allometric co-variations between stem and crown dimensions and tree

biomass. We also show a striking similarity in scaling across climate zones,

biomes and disturbance regimes consistent with the allometry constraint

hypothesis. We show that the central tendency of the exponent is toward

2/3 for the scaling of stem height with diameter, crown dimensions with

stem diameter and height, 5/2–8/3 for the scaling of aboveground biomass

with stem diameter, and 1 for the scaling of belowground biomass with

aboveground biomass. This is indicative of an integrated growth regulation

acting in tandem on growth in stem diameter, height, crown dimensions

and biomass allocation. We also demonstrate that counterintuitive values of

the exponent arise as artifacts of small sample sizes (N < 60), measurement

errors, sampling biases and inappropriate regression techniques. We strongly

recommend the use of larger sample sizes (N > 60) and representative

samples of the target population when testing hypothesis about allometric

variation. We also caution against conflation of statistical artifacts with

violations of theoretical predictions.
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Introduction

Variety of biological systems display striking regularities,
which often take the form of power laws characterized by
scale invariance and universality (Enquist et al., 1999; Enquist
and Niklas, 2001; Brown et al., 2002; Marquet et al., 2005).
Allometric scaling of biological traits with the body size of
organisms is one such example (Enquist et al., 1999; Brown
et al., 2002). As originally defined by Huxley and Teissier
(1936), allometry designates relative changes in one dimension
(1Y/Y) in relation to a second dimension (1X/X), usually
the body size of an organism. In order to avoid confusion,
Huxley and Teissier (1936) agreed to consistently use the
term allometry and the conventional power law formula
Y = αXβ.

Despite wide variations in their growth forms and life
history characteristics, plants exhibit a striking regularity
in allometric scaling in form and function with changes
in body size (Enquist et al., 1999; Kerkhoff et al., 2005;
Kerkhoff and Enquist, 2006). At the individual plant level,
allometric constraint arises probably because the growth of
the whole “trait complex” is under a common (integrated)
growth regulation. A growing body of evidence also suggests
that allometric constraints at an individual plant level have
implications for the structure and dynamics of plant populations
and ecosystems (Enquist et al., 2003; Kerkhoff et al., 2005;
Kerkhoff and Enquist, 2006). As such, analysis of allometric
scaling can help in identifying general principles that apply
across a wide range of scales and levels of organizations
(Marquet et al., 2005). Historically, disturbance regimes have
shaped the development of specific adaptations in plants. For
example, geoxylic life forms (underground trees) and thick,
corky bark have evolved in response to frequent fires in
savannas (Maurin et al., 2014). On the other hand, tropical
rain forests are pyrophobic, and often do not have specific
adaptations against fire. Forest disturbance regimes such as
fire are changing in response to global environmental change
(Sommerfeld et al., 2018). Therefore, analyses of allometric
trajectories with the changing disturbance regimes can facilitate
better understanding of the impacts of climate change or land
use changes.

Analysis of allometric scaling can also facilitate our
understanding of patterns of resource allocation in forests.
Traditionally, allocation in plants has been conceptualized as a
ratio-driven process (Weiner, 2004), which is at the core of the
optimal partitioning theory (Qi et al., 2019). While this theory
has been a cornerstone of many studies in plant ecology and
evolution, its generality has been questioned, and more recently,
the allometric biomass partitioning theory was proposed to
predict how plants partition their metabolic production based
on the constraints of body size (Niklas and Enquist, 2002;
Weiner, 2004; Mccarthy and Enquist, 2007). Consequently,
allometric models are now widely used for prediction of forest

biomass and carbon stocks (Chave et al., 2014; Sileshi, 2014).
More recently, the application of allometric models has gained
increasing interest in remote sensing surveys of forest biomass
at landscape and regional scales (Blanchard et al., 2016).

Allometric scaling is described by a power law function:

Y = αXβε (1)

or its linear form as:

ln (Y) = ln(α) + β
(
lnX

)
+ ε (2)

where ln(α) is the intercept or offset of the line at ln(X) = 0 and
β is the scaling exponent. Historically, β has been assumed to be
constant and independent of α in Equation 1. Voje et al. (2013)
have also shown that β may be difficult to change on short time
scales. On the other hand, the interpretation of ln(α) has been
less clear and its variability remains poorly understood.

As the application of allometry continues to expand, the
variability in β has generated debates in forest ecology and
biomass estimation literature (Sileshi, 2014). Allometric theories
suggest that β tends to be a multiple of 1/3 or 1/4, and
various hypotheses have been proposed to explain this pattern.
An exponent of 1/3 is attributed to geometric scaling, i.e.,
area–volume ratios, whereas 1/4 is attributed to metabolic
scaling imposed by transport of substances via branching
networks (West et al., 1997, 2002; Enquist et al., 1999). Many
studies (see Blanchard et al., 2016; Jucker et al., 2022) have
opined that β is shaped by the environmental conditions of
the stand, the individual trees, and by the diversity of tree
communities. Others have argued that systematic departures
from allometric scaling expectations may indicate particular
disturbance processes (Kerkhoff and Enquist, 2006; Tredennick
et al., 2013). Yet, in others it is said to vary with the
taxonomic level of investigation. For example, the taxon-
level effect hypothesis (Promislow et al., 1992) posits that β

increases in both magnitude and statistical significance with
increasing taxonomic level. Some studies have also reported
counterintuitive values of β including negative values where
positive values are expected. For example, for the crown depth to
stem diameter allometry, Panzou et al. (2021) reported β values
of −0.314 and −0.541 for Australian forests and American
savannas, respectively, where β is expected to be a positive value
falling between 1/2 and 1. For crown diameter to stem diameter
allometry, Panzou et al. (2021) also reported β values of −0.087
for American forests, −0.125 for American savannas, −0.160
for Asian forests, −0.414 for Australian forests and −0.024 for
Australian savanna where β is expected to be between 1/2 and 1.
The sources of these counterintuitive values have remained both
unexplored and unexplained.

Past studies in forest ecosystems have focussed on a single
allometric relationships in specific sites or regions, for example,
pan-tropical variability in biomass (Chave et al., 2014) or tree
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crown allometry (Shenkin et al., 2020; Panzou et al., 2021). In
almost all studies, inferences were based on point estimates, and
little is known about the distributions of allometry parameters.
Understanding parameter distributions and the sources of
variability is critical because these parameters hold the key
for (1) accurate estimation of forest biomass and carbon
stocks and (2) interpreting scaling relationships and how they
vary with taxonomic lineages, biomes or disturbance regimes.
Therefore, the objectives of the present analyses were to: (1)
uncover the global patterns of allometric variation in stem
height with stem diameter, crown radius with stem diameter
or stem height, crown depth with stem diameter, crown
volume with stem diameter, crown depth with crown diameter,
aboveground biomass with stem diameter, and belowground
biomass with aboveground biomass; (2) assess variations in
allometry parameters with taxonomic levels, climate zones,
biomes and historical disturbance regimes; and (3) identify the
sources of counterintuitive values of the allometry exponents
with a focus on statistical artifacts. A statistical artifact is a
spurious finding that results from biases in the collection or
analysis of data. Our key hypotheses are: (1) the allometry
exponents systematically vary with taxonomic levels, divergence
time and climate zones; (2) trees adapted to different biomes and
disturbance regimes have different allometry exponents; (3) the
tallest, hyper-emergent and short-statured tree species follow
different allometric trajectories.

Materials and methods

Definitions, context, and scope of
analysis

There are many fundamentally different approaches of
defining and classifying climate zones and biomes. To reduce
ambiguity in our analyses, we defined climate zones and
biomes based on the current literature. We also identified and
defined disturbance regimes within these well-defined climate
zones and biomes.

Climate zones

For the definition of broad climate zones, we followed the
FAO classification used for global forest resources assessment
and reporting (FAO, 2012). This classification identifies five
major zones, namely tropical, subtropical, temperate, boreal
and polar zones (FAO, 2012). The tropical zone is within the
area bounded by latitudes of 23.5◦ north and 23.5◦ south. The
subtropical zone is applied to the two belts between the tropics
(± 23.5◦) and 35◦ north and south of the equator. Temperate
zones fall in the latitudes of 35–50◦ north or south, and have
well-defined seasons with a distinct winter. The boreal zone falls

between 50 and 60◦ north. When testing our first hypothesis, we
grouped the data according to the above classification based on
the geographic coordinates of the study sites in the databases.

Terrestrial biomes

The biome is an important construct for organizing
knowledge about terrestrial ecosystems, for examining diversity-
productivity relationships, modeling historical distributions and
shifts following climate change. We followed the IUCN Global
Ecosystem Typology (Keith et al., 2022), which recognizes
seven terrestrial biomes: (1) tropical-subtropical forests (T1); (2)
temperate-boreal forests and woodlands (T2); (3) shrublands
and shrubby woodlands (T3); (4) savannas and grasslands
(T4); (5) deserts and semi-deserts (T5); (6) polar-alpine biomes
(T6); and (7) intensive land-use (T7) biome. Each of these
biomes is characterized by different ecosystem functional groups
described in detail in Keith et al. (2022). The present analysis
was limited to T1, T2, T3, and T4 as these have trees as the
main or co-dominating components. Deserts and semi-deserts
and polar-alpine biomes were deemed outside the scope of this
analysis. Although some samples may have come from T7, it was
difficult to assign them with confidence in the existing databases.

Disturbance agents and regimes

A disturbance regime is defined as the combination of
disturbance agents and disturbance attributes that characterize a
particular landscape or region (Burton et al., 2020). Disturbance
interactions are an important part of the disturbance regime
(Burton et al., 2020; Sturtevant and Fortin, 2021). The main
disturbance agents in forest ecosystems consist of abiotic
(e.g., fire, drought, wind, snow, and ice) and biotic (e.g.,
insects and pathogens) agents (Fischer et al., 2013; Stephens
et al., 2013; Sturtevant and Fortin, 2021). According to a
recent systematic review of disturbance interactions studies
(Sturtevant and Fortin, 2021), the most frequently investigated
natural disturbance agent was fire accounting for 65% of
studies, followed by wind (38%), insects (37%), water imbalance
(drought or flooding; 15%), mammalian browsing/grazing
(10%), and mass movement including erosion, debris flows,
landslides and avalanche (7%). Accordingly, the focus of this
analysis was on fire, wind and insects as disturbance agents.

Fire is an important natural disturbance factor in many
boreal forests, in savannas and high mountain dry-land
ecosystems (Fischer et al., 2013). Low-severity fire regimes are
typified by frequent low-intensity fires where surface fuels are
charred or consumed while damage to overstory canopy is
minimal (Giunta et al., 2016). In contrast, high-severity fire
regimes are characterized by transitions from surface fuels
into the crowns of trees, consuming a majority of overstory
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vegetation (Giunta et al., 2016). On the other hand, mega-fires
are defined as fires covering an area exceeding 10,000 ha arising
from single or multiple related ignition events (Stephens et al.,
2013; Linley et al., 2022). Megafires occur in a range of biomes,
but were most frequently reported in temperate-boreal forests
and woodlands biomes (Linley et al., 2022). Species that grow
in areas where low-severity fires occur frequently have special
adaptations like thick bark (e.g., Pinus ponderosa), the ability to
re-sprout after fire or store seeds on the tree until a fire occurs
(Fischer et al., 2013) or geoxylic life forms in African savannas
and Brazilian Cerrado (Maurin et al., 2014). Many savanna trees
in Africa and eucalypts in Australian are dependent on fire for
regeneration (Tng et al., 2012). These kinds of adaptations are
missing in tropical rainforests and temperate forests, which do
not naturally experience frequent fires (Tng et al., 2012; Fischer
et al., 2013).

The primary effects of wind include damage and breakage to
the tops of crowns, branches, uprooting, and snapping of trees
(Giunta et al., 2016). Wind thrown trees can also create suitable
habitat for bark beetles or increase the fuel load (Giunta et al.,
2016). Wind damage risk increases with increase in height, and
trees are known to adjust their growth pattern to their local wind
environment (Jackson et al., 2021).

Remarkable among insects as disturbance agents are the
bark beetle outbreaks causing large-scale transformations of
forest landscapes in the northern hemisphere (Giunta et al.,
2016; Hlásny et al., 2021). The European spruce bark beetle (Ips
typographus) is the primary outbreak species in Europe causing
as much as 8% of all tree mortality in Europe (Hlásny et al.,
2021). Its damage to Norway spruce (Picea abies), its primary
host, has been historically very high in the temperate latitudes
than in boreal forests (Hlásny et al., 2021). A similar trend occurs
in western Canada and the USA, where tree mortality due to
the mountain pine beetle (Dendroctonus ponderosae) exceeds 28
million ha (Hlásny et al., 2021). In the USA, a rise in bark beetle
activity since the early 1990s has occurred across a range of forest
types (Giunta et al., 2016). The Douglas-fir beetle (Dendroctonus
pseudotsugae) is the primary insect pest of interior Douglas-fir
(Pseudotsuga menziesii) forests (Giunta et al., 2016). Another
example of insect outbreaks, is aspen (Populus tremuloides)
defoliation by forest tent caterpillars (Malacosoma disstria) in
North America. For the present analysis, we focussed on tree
species affected by the bark beetles and forest tent caterpillar
outbreaks.

Allometries analyzed

For this analysis we chose allometric scaling between (1)
stem height and stem diameter (H–D); (2) crown radius and
stem diameter (CR–D) or stem height (CR–H); (3) crown
diameter with stem diameter (CD–D), (4) crown depth with
stem diameter (Cdep–D), (5) crown volume with stem diameter

(Cvol-D); (6) crown depth with crown diameter (Cdep-CD);
(7) aboveground biomass and stem diameter (A–D); and (8)
belowground biomass and aboveground biomass (A-B).

Stem diameter, height, and crown dimensions
Understanding the relationship between H, D, and crown

dimensions is fundamental in understanding the structure of
forest stands, tree architecture and niche partitioning within a
forest ecosystem and in the estimation of biomass and carbon
storage (Hulshof et al., 2015; Blanchard et al., 2016). There are
four allometric scaling hypotheses (geometric, stress, elastic, and
metabolic) predicting different exponents for the H–D, CR–
D, and CR–H scaling in trees (Table 1). Hypotheses based on
geometric and dynamic growth arguments predict β to be 1
(Table 1), whereas the stress similarity hypothesis predicts β to
be approximately 1/2. On the other hand, the elastic similarity
hypothesis and the metabolic scaling theory (MST) predict
β to be approximately 2/3 (West et al., 1997; Enquist et al.,
1999). The elastic similarity hypothesis posits that for trees to
resist buckling under their own mass, longer stems need to
be proportionally thicker, and hence D should scale with H as
the power of 2/3 (Osunkoya et al., 2007). It also posits that
tree height is limited by either gravity or wind damage risk
(Jackson et al., 2021). The MST assumes metabolic scaling under
optimized tree architecture and resource transport (West et al.,
1997).

Height growth and crown development are known to be
driven by competition for light; but why emergent and hyper-
emergent trees continue to grow after escaping competition is
not fully understood (Jackson et al., 2021). It is also not clear
whether or not H–D, CR–D, and CR–H allometric trajectories
differ between hyper-emergent and short-statured species.
Therefore, we estimated the allometry parameters to understand
their patterns of variation with taxonomic levels, biomes and
disturbance regimes. In all instances, we used publicly available
data from the Tallo database1 built by Jucker et al. (2022). This
database contains 498,838 standardized records of D, H, and
CR for 5,163 tree species in 1,453 genera and 187 families from
61,856 globally distributed sites covering all the climate zones
(Jucker et al., 2022). We conducted five different sets of analyses
focussing on entries for which taxonomic identity was available
in this database. We excluded entries without genus, family, and
division names.

In the first set of analyses, we compared Gymnosperms
and Angiosperms using the point estimates as well as the
distributions of allometry parameters of the H–D, CR–D, and
CR–H scaling (Figures 1, 2, Table 2, and Supplementary
Table 1). We also compared the allometry exponents of
selected families, genera and species within Gymnosperms and
Angiosperms in order to understand patterns of variation

1 https://doi.org/10.5281/zenodo.6637599
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TABLE 1 Allometric scaling relationships among stem height, diameter at breast height, various crown dimensions and tree biomass and the
theoretical expectations of the exponent of the geometric similarity, constant stress similarity, elastic similarity, and metabolic scaling theory (MST).

Allometric scaling Geometric similarity Stress similarity Elastic similarity and MST

Stem height (H) with stem diameter (D) H = aD1 H = aD1/2 H = aD2/3

Crown radius (CR)† with stem diameter (D) CR = aD1 – CR = aD2/3

Crown radius (CR)† with stem height (H) CR = aH1 – CR = aH2/3

Crown depth (Cdep) with stem diameter (D) Cdep = aD1 – Cdep = aD2/3

Crown depth (Cdep) with crown diameter
(CD)

Cdep = aCD1 – Cdep = aCD2/3

Crown area (CA) with stem diameter (D) CA = aD2 – CA = aD4/3

Crown volume (Cvol) with stem diameter (D) Cvol = aD3 – Cvol = aD2

Aboveground mass (A) with stem diameter
(D)

A = aD3 A = aD5/2 A = aD8/3

Aboveground mass (A) with stem height (H) A = aH3 A = aH5 A = aH4

Aboveground (A) with belowground mass (B) – – A = aB1

†Crown radius (CR) and crown diameter (CD) have the same theoretical exponent. – No explicit predictions are available.

TABLE 2 Variations in the OLS estimates of the allometry exponents of stem height with diameter at breast height (H–D), crown radius with
diameter at breast height (CR–D) and crown radius with stem height (CR–H) scaling with taxonomic levels and climate zones.

Climate zones and taxonomic levels Exponent (CI)* Sample size

H–D CR–D CR–H H–D CR–D CR–H

Gymnosperms all 0.66 (0.66, 0.67) 0.71 (0.70, 0.71) 0.38 (0.37, 0.39)‡ 102899 77794 77480

Pinaceae all 0.67 (0.66, 0.67 0.72 (0.72, 0.73) 0.38 (0.37, 0.39)‡ 90765 71635 76149

Pinus all 0.63 (0.62, 0.64) 0.75 (0.74, 0.76) 0.40 (0.39, 0.40)‡ 66451 57455 57455

Pinus boreal 0.71 (0.70, 0.71) 0.77 (0.76, 0.78) 0.91 (0.90, 0.93) 7697 5497 5422

Pinus temperate 0.71 (0.70, 0.72) 0.72 (0.71, 0.73) 0.37 (0.37, 0.38)‡ 55674 50817 50637

Pinus subtropical 0.75 (0.74, 0.76) 0.64 (0.62, 0.66) 0.68 (0.65, 0.71) 2916 978 978

Pinus tropical 0.60 (0.55, 0.64) 0.83 (0.75, 0.91) 1.14 (1.00, 1.28) 164 163 163

Pinus sylvestris all 0.58 (0.57, 0.59) 0.78 (0.77, 0.79) 0.46 (0.44, 0.47)‡ 17966 15294 15039

P. sylvestris boreal 0.70 (0.69, 0.70) 0.77 (0.75, 0.78) 0.92 (0.90, 0.94) 7312 5244 5169

P. sylvestris temperate 0.66 (0.64, 0.67) 0.71 (0.70, 0.72) 0.26 (0.25, 0.28)‡ 10654 10050 9870

Angiosperms all 0.56 (0.56, 0.57) 0.65 (0.64, 0.65) 0.70 (0.69, 0.71) 333557 212145 211044

Fagacea all 0.44 (0.43, 0.45)‡ 0.78 (0.78, 0.79) 0.65 (0.64, 0.66) 85510 77319 76773

Quercus all 0.40 (0.40, 0.41)‡ 0.84 (0.83, 0.84) 0.74 (0.73, 0.74) 69083 64033 64020

Quercus boreal 0.59 (0.56, 0.62) 0.68 (0.63, 0.72) 0.92 (0.82, 1.02) 510 414 414

Quercus temperate 0.38 (0.37, 0.38)‡ 0.86 (0.85, 0.86) 0.76 (0.75, 0.77) 64859 61583 61570

Quercus subtropical 0.64 (0.62, 0.65) 0.62 (0.59, 0.64) 0.69 (0.65, 0.73) 3207 1518 1518

Quercus tropical 0.52 (0.48, 0.55) 0.67 (0.63, 0.71) 0.90 (0.83, 0.98) 518 518 518

Quercus rubra all 0.58 (0.56, 0.61) 0.71 (0.65, 0.76) 0.71 (0.66, 0.75) 888 479 479

Quercus rubra boreal 0.61 (0.44, 0.78) 0.88 (0.55, 1.43) 0.88 (0.57, 1.19) 20 7 7

Quercus rubra temperate 0.53 (0.51, 0.56) 0.70 (0.64, 0.76) 0.70 (0.66, 0.75) 837 466 466

Quercus rubra subtropical 0.74 (0.68, 0.81) 1.08 (0.42, 1.69) 1.08 (0.47, 1.70)† 31 6 6

*Values in parentheses are 95% CI estimated using bootstrapping with 9,999 replicates. Values in red represent either imprecise (wide 95% CL)† or biased downward (attenuation bias)‡ .
Bold values represent the division level estimates.

with taxonomic levels and to test the validity of the “taxon-
level effect” hypothesis (Supplementary Figures 1–4). For the
family level comparisons, we chose the families Pinaceae within

Gymnosperms and Fagaceae within Angiosperms because they
had larger sample sizes compared to all other families. Then we
chose the genera Pinus and Quercus because they had adequate
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sample sizes allowing further analyses at the species level. Within
each of these two genera, first we estimated the H–D, CR–
D, and CR–H allometry parameters for all species that had
sample sizes of 10 or more. Then, we compared Pinus species
with Quercus species in terms of the distribution of their H–
D, CR–D, and CR–H exponents (Supplementary Figure 4).
For further in-depth analyses, we chose Pinus sylvestris and

Quercus rubra as they occurred in different climatic zones in
the dataset. We produced point estimates and 95% confidence
intervals (95% CI) of the allometry exponents of these species
in the different climate zones (Table 2). We also made an in-
depth analysis of Pinus sylvestris populations in temperate zones
at the study level to identify factors associated with biases in
the allometry exponents (Table 3). Here, bias is defined as the

TABLE 3 Study-level variations in the OLS and RMA estimates (βOLS and βRMA) of the allometric scaling exponent of stem height with diameter at
breast height (H–D), crown radius with diameter at breast height (CR–D) and crown radius with stem height (CR–H) of Pinus sylvestris in the
temperate zone.

Allometry Ref. βOLS βRMA R2 Sample size
(N)

D range Probable
causes of bias

H–D 33 1.14 (0.37, 2.08)§ 1.35 (0.17, 2.48)§ 0.713 5 27–54 1, 3

62 −1.23 (−2.98, 0.56)‡
−2.20 (−5.26,
−0.51)‡

0.313 6 23–33 1, 3

17 0.65 (0.53, 1.49)† 0.68 (0.59, 1.86)† 0.914 7 3–37 1

66 0.41 (0.34, 0.50) 0.45 (0.37, 0.52) 0.830 15 7–18 1, 3

57 0.89 (0.77, 1.00) 0.94 (0.80, 1.04) 0.896 29 2–47 1, 3

15 0.52 (0.42, 0.63) 0.83 (0.73, 0.91) 0.393 190 5–50 2, 3

27 0.44 (0.41, 0.47) 0.75 (0.72, 0.78) 0.344 1436 7–70 2, 3

30 0.55 (0.49, 0.61) 0.74 (0.68, 0.80) 0.552 373 8–85 2, 3

35 0.75 (0.73, 0.76) 1.00 (0.99, 1.02) 0.563 7919 7–98 –

47 0.77 (0.73, 0.81) 0.91 (0.87, 0.94) 0.716 591 2–53 –

67 0.93 (0.69, 1.15) 1.28 (1.01, 1.51) 0.528 83 12–61 –

CR–D 33 0.10 (−3.56, 3.85)† 1.81 (−0.47, 7.23)† 0.003 5 27 1, 3

62 1.27 (0.90, 1.70)§ 1.33 (0.96, 1.70)§ 0.912 6 23–33 1, 3

66 1.55 (1.18, 1.88)§ 1.69 (1.34, 1.97)§ 0.841 15 7–18 1, 3

57 0.72 (0.44, 0.96) 0.85 (0.60, 1.05) 0.718 20 7–47 –

15 0.75 (0.64, 0.86) 1.05 (0.93, 1.15) 0.510 190 5–50 –

27 0.85 (0.80, 0.89) 1.11 (1.06, 1.15) 0.586 1180 7–70 –

30 0.90 (0.84, 0.97) 1.11 (1.03, 1.18) 0.657 368 8–85 –

35 0.69 (0.68, 0.71) 0.88 (0.87, 0.89) 0.615 7919 7–98 –

47 0.61 (0.54, 0.68) 0.85 (0.76, 0.92) 0.515 264 2–31 –

67 0.39 (0.25, 0.56) 0.73 (0.58, 0.85) 0.285 83 12–61 2

CR–H 33 0.51 (−0.67, 7.68)† 1.34 (0.93, 14.29)§ 0.145 5 1, 3

62 −0.22 (−2.86, 1.19)‡
−0.60 (−4.88, 1.81)† 0.134 6 1, 3

66 3.65 (2.98, 4.05)§ 3.76 (3.10, 4.25)§ 0.942 15 1, 3

57 1.48 (0.78, 1.97)§ 1.76 (1.05, 2.15)§ 0.723 20 1, 3

15 0.35 (0.18, 0.55) 1.27 (1.07, 1.43) 0.076 190 2

27 0.64 (0.55, 0.74) 1.55 (1.44, 1.63) 0.170 1000 2

30 0.63 (0.51, 0.74) 1.49 (1.32, 1.65) 0.179 368 2

35 0.44 (0.42, 0.46)§ 0.87 (0.86, 0.89) 0.256 7919 2

47 0.40 (0.31, 0.51) 0.91 (0.80, 0.99) 0.193 264 2

67 0.20 (0.04, 0.32) 0.57 (0.39, 0.71) 0.123 83 2

The Ref is the reference id in the Tallo database. Values in red represent biased estimates: †imprecise (wide 95% CL), ‡biased downward or §downward. Probable cause of bias: (1) small
sample size; (2) attenuation bias (measurement errors); (3) sampling bias (data truncation).
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systematic discrepancy between an estimator and its expected
values (Kelly, 2007) such as those in Table 1. Specifically, we
examined effects of sample sizes, attenuation bias and sampling
bias on the allometry exponent. Attenuation bias arises from
measurement errors (Hutcheon et al., 2010) and is indicated
by correlation coefficients (r) approaching zero where the true
population correlation coefficient (ρ) is known to be large. It
is also indicated by large discrepancies between ordinary least
square (OLS) and reduced major axis (RMA) estimates of β (see
section “Statistical analysis”).

In the second set of analyses (Table 4), we compared
H–D, CR–D, and CR–H allometric parameters of selected
genera occurring in high and low disturbance areas in
temperate climate. In a recent analysis, Sommerfeld et al. (2018)
reported that high disturbance landscapes were dominated
by the genera Picea, Abies, Pseudotsuga, and Pinus in the
northern hemisphere. Low disturbance landscapes were largely
dominated by broadleaved trees in the genera Nothofagus, Fagus,
and Acer (Sommerfeld et al., 2018). Accordingly, we produced
and compared the point estimates and the 95% CI of the
allometry exponents of these species.

In the third set of analyses, we compared the H–D,
CR–D, and CR–H allometry exponents of the tallest and
hyper-emergent trees species with medium and short-statured
tree species in biomes with different historical disturbance
regimes (Table 5 and Supplementary Table 2). We selected
ten species from the list of the world’s tallest tree species
available in Tng et al. (2012) including Sequoia sempervirens,
P. menziesii, Sequoiadendron giganteum, and Picea sitchensis
representing gymnosperms from North America; Eucalyptus
regnans, Eucalyptus globulus, and Eucalyptus viminalis from
Australia; Shorea faguetiana and Dinizia excelsa, which are the
tallest tropical Angiosperm from rainforest in Asia and South
America, respectively. Some of the species such as Eucalyptus
regnans, P. menziesii, and S. giganteum are historically subjected
to severe wildfires and are uniquely fire-resistant (Tng et al.,
2012; Giunta et al., 2016). These giants are at the extreme
tail of the tree height distribution and comparing them with
medium to short-statured trees in other biomes is expected
to provides an important case study for questions about
allometric variation. Specifically, we selected Pinus ponderosa,
a species adapted to low-moderate intensity fires in temperate
North America (Giunta et al., 2016), and Colophospermum
mopane, Combretum collinum, Combretum molle, Julbernardia
paniculata, Vachellia seyal, and Vachellia tortilis from tropical
savannas and woodlands in Africa. We also selected species
from tropical rain forests in Africa (Piptadeniastrum africanum),
Asia (Dryobalanops lanceolata, Parashorea tomentella, and
Shorea fallax) and temperate and boreal forests (Abies sibirica,
Acer platanoides, Fagus grandifolia, Fagus sylvatica, Nothofagus
solandri, P. abies, Populus tremula, and P. tremuloides), which
do not experience disturbances such as fire. We also included
P. abies and P. tremuloides, which have a history of bark

beetles and forest tent caterpillar outbreaks, respectively. When
selecting the various species, we also made sure that sample sizes
are adequate and the species broadly represent the biomes where
they occur.

In the fifth set of analyses, we compared allometric scaling
of tree crown dimensions with stem diameter across tropical
forests and savanna biomes in Africa, America, Asia, and
Australia. For this analysis, we used data from the Forest Plots
database2 provided by Panzou et al. (2020). Here, we compared
forests with savanna biomes across the tropics in terms of CD–
D, Cdep–D, Cvol-D, and Cdep-CD allometry (Figures 3, 4 and
Supplementary Table 3).

Aboveground biomass vs. stem diameter or
height

The allometric scaling of aboveground biomass with stem
diameter (A–D) and aboveground biomass with stem height (A–
H) is widely used to estimate aboveground carbon stocks as well
as changes through time (Zianis and Mencuccini, 2004; Sileshi,
2014). The theoretical values of the A–D scaling exponent are
3, 5/2, and 8/3 according to the geometric similarity, stress
similarity, and MST (Table 1). Similarly, the A–H exponents are
3, 5, and 4 according to the geometric similarity, stress similarity
and MST, respectively (Table 1). The exponent is perceived as
a distribution coefficient for the growth resources between A
and D or A and H. For this analysis, we used raw data from
Chave et al. (2014) to calculate allometry parameters per site
for a mixed species of trees from a total of 58 sites across
tropical Africa, Asia, and Americas. Then, we combined the
values of the A–D allometric parameters with our own collection
originally reported in Sileshi (2014). In total, there were 452
allometry exponents and their corresponding intercepts from
various climate zones. For the A–H allometry we only had the
58 sites from Chave et al. (2014).

Belowground biomass vs. aboveground
biomass

The partitioning of belowground plant biomass (B) with
respect to aboveground biomass (A) is a key adaptive strategy
of plants, which influences many functions in terrestrial
communities. Allocation of belowground biomass relative to
aboveground biomass has been traditionally analyzed using root
(R) to shoot (S) ratio, which quantifies the relative proportion
of growth resources allocated to roots versus shoots in a given
condition. As measurement of belowground biomass is time
consuming and expensive, allometric relationships have been
proposed to estimate B from A (Cairns et al., 1997; Kuyah et al.,
2016). At the level of individual plants, B has been shown to scale
nearly isometrically (β = 1) with A across a broad-spectrum of
vascular plants (Niklas, 2005; Cheng and Niklas, 2007).

2 https://doi.org/10.5521/forestplots.net/2020_8
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FIGURE 1

Comparison of gymnosperms with angiosperms in terms of the distribution of the allometric parameters of height with stem diameter (H–D),
crown radius with stem diameter (CR–D), and crown radius with stem height (CR–H) scaling. The distributions of exponents are shown in
(A,C,E), while intercepts are in (B,D,F). The box and whisker plots display the median and its 95% CI (notches), lower quartile, upper quartile,
extreme values, and outliers (O and *). Distributions in all cases are based on OLS estimates of the parameters for each genus.
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FIGURE 2

Comparison of climate zones in terms of the distribution of the allometric parameters of the scaling of height with stem diameter (H–D), crown
radius with stem diameter (CR–D), and crown radius with stem height (CR–H). The distributions of exponents are shown in (A,C,E), while
intercepts are in (B,D,F). The box and whisker plots display the median and its 95% CI (notches), lower quartile, upper quartile, extreme values,
and outliers (O and *). Distributions in all cases are based on OLS estimates of the parameters for each genus.
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TABLE 4 Comparison of the phylogenetic allometry exponents (βOLS) of the stem height to diameter (H–D), crown radius to diameter (CR–D), and
crown radius to stem height (CR–H) scaling in genera in high and low disturbance temperate forest biomes.

Disturbance
category

βOLS* Sample size

Genus H-D CR-D CR-H H-D CR-D CR-H

Low Acer 0.65 (0.63, 0.65) 0.57 (0.56, 0.59) 0.66 (0.64, 0.69) 11020 6761 6759

Fagus 0.61 (0.60, 0.62) 0.56 (0.55, 0.57) 0.64 (0.62, 0.66) 9758 8036 7581

Nothofagus 0.57 (0.55, 0.59) 0.69 (0.66, 0.71) 1.05 (1.01, 1.09) 1655 1483 1483

High Abies 0.84 (0.83, 0.85) 0.67 (0.65, 0.69) 0.64 (0.62, 0.67) 6011 3778 3764

Picea 0.82 (0.81, 0.83) 0.65 (0.64, 0.66) 0.61 (0.60, 0.63) 8807 5625 5592

Pinus 0.71 (0.70, 0.72) 0.72 (0.71, 0.73) 0.37 (0.37, 0.38)‡ 55674 50817 50637

Pseudotsuga 0.78 (0.77, 0.79) 0.57 (0.54, 0.59) 0.56 (0.53, 0.60) 1846 944 940

*Values in parentheses are 95% CI estimated using bootstrapping with 9,999 replicates. ‡Biased downward.

To tests our hypotheses, we collected values of the B–A
scaling exponent from the literature. We also analyzed datasets
from our own studies and our colleagues. The first dataset
consisted of biomass partitioning between shoot and root mass
in seedlings of the fruit tree Uapaca kirkiana in the Miombo
woodlands of Central Africa (Sileshi et al., 2007). The second
and third dataset consisted of B–A scaling of miombo woodland
trees in Zambia (Handavu et al., 2021) and Malawi (Kachamba
et al., 2016). The fourth and fifth dataset consisted of the B–
A scaling of Eucalyptus species in Kenya (Kuyah et al., 2013)
and four tropical bamboos in India (Singnar et al., 2021),
respectively. In all cases, we used the power function in the
natural logarithm domain: ln (B) = ln(α) + β

(
lnA

)
+ ε.

When β = 1, B and A vary isometrically. When β < 1, shoots
grow faster than roots, but allocation to roots is more than to
shoots when β> 1 (Robinson and Peterkin, 2019).

Statistical analysis

Estimation of allometry parameters
Since allometry parameters can widely vary with regression

techniques (Sileshi, 2014), initially we used non-linear
regression (NLR), robust regression analysis (RRA), ordinary
least square (OLS), reduced major axis (RMA), major axis
(MA) regression, and linear mixed effects model (LMM). NLR,
RRA, and OLS are called Model I regression while RMA and
MA belong to the Model II regression (see Supplementary
methods for details). We used the Paleontological Statistics
(PAST) package3 to fit NLR, OLS, RMA, and MA, and the SAS
system to fit LMM and RRA. We preferred the PAST package
because it gives bootstrapped confidence intervals on the slope
and intercept estimates (Supplementary methods). In the rest
of this manuscript, we will focus on OLS and RMA estimates

3 https://past.en.lo4d.com/windows

because they are more widely used in allometry (Hui et al., 2010;
Kilmer and Rodríguez, 2017). RMA is also preferred where it
is difficult to identify a variable as a dependent or independent
variable (Hui et al., 2010. Past studies have focussed on
comparing the empirical estimates of β with its theoretical
value or among biomes using the t-test or the 95% CIs. Such
comparisons are often fraught with errors due to low statistical
power arising from small sample sizes. To avoid this problem,
we analyzed the different datasets in two ways: (1) aggregated
at different scales, namely, taxonomic divisions, climate zones
and biomes; and (2) after disaggregating at the family and genus
levels to compare climate zones and biomes in terms of the
distribution of parameters. The first type of analysis involved
regression of data aggregated at the level of taxonomic divisions
(e.g., Gymnosperms vs. Angiosperms), climate zones (boreal,
temperate, subtropical, and tropical) or biomes (e.g., forests and
savannas) and comparing the point estimates and their 95% CI.
When comparing categories, we applied the Johnson-Neyman
technique (White, 2003) of first testing for homogeneity of
residual variances (Vε), followed by null hypothesis (Ho) tests
for equality of the slopes (Ho: β1 = β2) and intercepts (Ho:
α1 = α2). We used Bartlett’s test of equality of variance when
comparing the regression lines (Supplementary Table 5). We
directly compared the exponents using the 95% CI only when
P > 0.05. In all cases, we estimated the CIs using bootstrapping
with 9,999 replications implemented in the PAST statistical
package.

In the second type of analysis, we estimated the allometry
parameters after disaggregating at the family, genus and species
levels. Then, we compared taxonomic divisions and climate
zones in terms of the empirical distributions of the exponents
of H–D, CR–D, and CR–H scaling estimated at the family and
genus levels. The same way, we compared the genera Pinus and
Quercus after estimating the allometry parameters per species
(Supplementary Figure 4). In the case of crown allometries
(CD–D, Cdep–D, Cvol–D, and Cdep–CD), we estimated the
exponents per study site as species names were unavailable.
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FIGURE 3

Comparison of tropical forest and savanna biomes in terms of the distribution of allometric exponents of crown diameter with stem diameter
(CD–D), crown depth with stem diameter (Cdep–D), crown depth with crown diameter (Cdep–CD), and crown volume with stem diameter
(Cvol–D) scaling. The distributions of exponents for the different allometric relationships are given in (A–D). The box and whisker plots display
the median and its 95% CI (notches), lower quartile, upper quartile, extreme values and outliers (O and *).

Then, we created violin plots of the exponents and intercepts to
visualize their distributions among taxonomic divisions, climate
zones (Figures 1–4) or genera (Supplementary Figure 4).
In addition to the distributions, we complemented statistical
inference with comparisons of the medians and their 95% CI
(Supplementary Table 1). The 95% CI of medians are indicated
by the notches in the box plots (Figures 1–3). The medians of
two or more distributions are deemed not significantly different
if their 95% CIs overlap (Krzywinski and Altman, 2014).

Assessing the effect of sample size and
sampling bias on allometry parameters

In the analysis of P. sylvestris data (Table 3), we noted that
the allometry parameters were biased wherever sample sizes

(N) were <30 or when the samples consist of only small or
large trees. Earlier work (e.g., Green, 1991) has also shown that
unbiased estimates of regression parameters can be found only
when N > 50 + 8P, where P is the number of parameters to
be estimated. Therefore, we assessed the variations in allometry
parameters with sample size in two separate analyses. In the
first analysis, we categorized the estimated allometry parameters
of H–D, CR–D, CR–H, and A–D based on the corresponding
sample sizes into four classes: N < 10, 10–29, 30–60, and
>60. Then, we created violin plots of the allometry parameters
for each sample size class (Figures 3, 5 and Supplementary
Figure 2) using the plot function of the PAST statistical package.
In the second analysis, we explored the variations in the
empirical estimates of exponents with sample size using locally
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FIGURE 4

Comparison of forest and savanna biomes in terms of data quality in the allometric scaling of crown diameter with stem diameter (CD–D).
Breaks in the distribution of values in A and B indicate the bias in sampling towards D > 5 (B) and D > 10 (A) and data truncation. Red circles in
(C,D) are indicative of measurement errors. The red lines are OLS fitted lines.

weighted scatterplot smoothing (LOESS) implemented in the
PAST statistical package (Figure 5D). PAST estimates the 95%
confidence bands for the LOESS curves by bootstrapping using
9,999 random replications.

Sampling bias is said to exist if the data are truncated (left
or right) based on the diameter range in the database. Data
truncation arises from sampling only those individuals whose
size falls within a certain interval. Data are said to be left
truncated when the lower segment of the population has been
left out, for example, sampling predominantly large individuals
as in Figure 4C. Right-truncation implies leaving out the upper
segment of the population, for example excluding large sized
individuals. We categorized the estimated allometry parameters
of H–D and CR–D based on the minimum diameter (D) in the
dataset into two classes: minimum D < 10 and >10 cm. Then,

we created violin plots of the allometry parameters for minimum
D class (Supplementary Figure 3). To reduce the confounding
effect of sample size, we generated the plots for genera with
N > 30.

Relationships between allometry parameters
and divergence time

The objective of this analysis was to determine the
relationships between (1) divergence time and the exponent at
the family level, and (2) β and α in the various allometries. For
analysis of the trends in allometric trajectories with evolutionary
time, we obtained the divergence times (in million years
ago = MYA) for Angiosperm families from Li et al. (2019) and
Gymnosperm families from Lu et al. (2014). We explored the
trends in the exponents and intercept with divergence time using
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FIGURE 5

Variations in the distributions of the A-D allometric exponent (A) and intercept (B) with climate zones and sample size (C,D). The box and
whisker plots display the median and its 95% CI (notches), lower quartile, upper quartile, extreme values, and outliers (O and *). The medians of
two or more distributions are not significantly different if the 95% CIs overlap. In (D) the red and blue lines represent the LOESS trends and their
95% confidence bands.

LOESS implemented in the PAST statistical package (Figure 6).
We could not do the same analysis for genera as we did not find
the relevant divergence times of general.

Since the functional relationships between β and α were not
clear, we created scatter plots of β on ln(α) for the allometric
relationships analyzed at the different scales (Figure 7 and
Supplementary Figure 5). Then, we tested whether or not a
significant linear trend exists between β and ln(α).

Results

Stem diameter, height, and crown
dimensions

The distributions of the H–D, CR–D, and CR–H allometry
parameters revealed significant overlap between Gymnosperms

and Angiosperms (Figure 1 and Supplementary Figure 1).
When estimated at either the family or genus levels, the
median values of the exponents of Gymnosperms and
Angiosperms were also not significantly different from each
other (Supplementary Table 1). Similarly, there was significant
overlap between the distributions of exponents in the different
climate zones (Figures 2A, B). The median values also did
not significantly differ among climate zones (Supplementary
Table 1). Except for the extreme values and outliers, the
exponents predominantly fell within the range of theoretical
values in Table 1. The distributions of exponents were more
consistent with MST (β = 2/3) than the geometric (β = 1)
or stress similarity (β = 1/2) hypothesis (Figures 1, 2).
Values <1/2 or >1 were mostly artifacts of small sample
size (N) estimation (Figure 8 and Supplementary Figure 2).
All of the large outliers were associated with N < 10.
When sample sizes exceeded 60, estimates of the allometry

Frontiers in Forests and Global Change 13 frontiersin.org

https://doi.org/10.3389/ffgc.2022.1084480
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-05-1084480 December 20, 2022 Time: 12:19 # 14

Sileshi et al. 10.3389/ffgc.2022.1084480

FIGURE 6

Trends in the H–D, CR–D, and CR–H allometry parameters with the median divergence time (in MYA = million years ago) of Gymnosperm and
Angiosperm families. The trends in exponents are shown in (A,C,E), while trends in intercepts are in (B,D,F). The red and blue lines represent the
LOESS smoothing curve and it 95% confidence limits, respectively.

parameters [both β and ln(α)] fell in a narrower range
than when N < 30 (Figures 8A, C, E and Supplementary
Figure 2). The LOESS trend lines show that the exponents
tended to stabilize around the MST exponent as sample sizes
increased (Figures 8B, D, F). The minimum diameter in

the sample also had significant effects on the H–D, CR–
D, and CR–H exponents (Supplementary Figure 3). Across
climatic zones, the H–D exponent was smaller when the
minimum D was >5 cm compared to samples that include
smaller trees D < 5 cm. The distributions of exponents of
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FIGURE 7

Co-variation of the allometry exponents (β) with the intercepts (Inα) of height to stem diameter (H–D), crown radius to stem diameter (CR–D),
crown radius to stem height (CR–H), crown depth to stem diameter (CDep–D), crown diameter to stem diameter (CD–D), and crown volume
to stem diameter (Cvol–D) at the family (A–C), genus level (D–F), and sites (G–I). The red line represents the fitted line of the linear regression
of β on Inα.

H–D,CR–D, and CR–H allometry calculated at the species level
are shown here using Pinus and Quercus species as examples
(Supplementary Figure 4). As in the family- and genus-
level analysis above, the distributions of exponents were more
consistent with MST than the geometric and stress similarity
hypotheses.

When data were analyzed after aggregating at different
scales, the OLS estimate of the exponent was significantly
smaller for angiosperms (CI: 0.56, 0.57) than the theoretical
value of 2/3 but larger than 1/2. The exponent of gymnosperms
(CI: 0.65, 0.67) was consistent with MST (Table 2). On the

other hand, the RMA estimates for both angiosperms (CI:
0.75, 0.77) and gymnosperms (CI: 0.88, 0.89) were significantly
larger than 1/2 or 2/3 but smaller than 1. Further analysis
of the H–D and CR–D allometry did not reveal systematic
variations in the exponent with taxonomic levels (Table 2). In
the majority of cases the exponents were closer to 2/3 than
1/2 or 1. Unlike in Angiosperms, the exponents of the CR–
H allometry in Gymnosperms were mostly biased downward
(Table 2). The CR–H exponent was precisely biased downward
in P. sylvestris in temperate zones (Table 2). To see whether
different model fitting techniques will change the outcome,
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FIGURE 8

The effects of sample size on the variation in the H–D, CR–D, and CR–H allometric exponents (β). Distributions in (A,C,E) are based on OLS
estimates of the exponent for each genus. Each circle in (B,D,F) represents the estimate of the exponent of a genus. The box and whisker plots
display the median and its 95% CI (notches), lower quartile, upper quartile, extreme values, and outliers (O and *). In (B,D,F) the red and blue
lines represent the LOESS trend lines and their 95% confidence bands.

we compared non-linear regression, OLS, RRA, RMA, MA,
and LMM analysis of the CR–H scaling in P. sylvestris in
temperate zones. The non-linear regression exponent of 0.25

(CL: 0.24, 0.27), OLS exponent of 0.26 (CI: 0.25, 0.28), RRA
exponent of 0.32 (CI: 0.30, 0.34), and LMM exponent of
0.45 (CI: 0.43, 0.47) were significantly smaller than the MA
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exponent of 0.61 (CI: 0.58, 0.65) and RMA exponent of 0.85
(CI: 0.84, 0.87) for the same species. The discrepancies between
Model I (OLS and RRA) and Model II (RMA and RMA)
estimates are indicative of large errors in measurement of
H.

In-depth analyses of H–D, CR–D, and CR–H allometry in
P. sylvestris revealed how study-level estimates of the allometry
exponents can be biased by a combination of small sample sizes,
sampling bias and attenuation bias (Table 3). Attenuation bias
is more evident in CR–H and H–D than in CR–D allometry
indicated by the large discrepancies between OLS and RMA
estimates of the exponent (Table 3).

Comparisons of the allometry exponents of the H–D, CR–
D, and CR–H scaling in genera with high and low disturbance
regimes are summarized in Table 4. All genera in the high
disturbance regime had significantly higher H–D exponents
than those in low disturbance regimes. On the other hand, the
CR–D and CR–H scaling exponents did not show consistent
differences between trees growing in high and low disturbance
regimes (Table 4). Almost all of the exponent were significantly
higher than the stress similarity exponent and lower than
the geometric similarity exponent, but closer to the MST
exponent.

Comparison of the exponents of hyper-emergent trees
species with medium and short-statured species did not
reveal systematic variations (trends) with tree size (Table 5).
The H–D and CR–D exponents of hyper-emergent species
were in the same range as those of the medium to short
statured species (Table 5). For example, the H–D exponents
of S. sempervirens and S. giganteum (0.67) are statistically
indistinguishable from P. tremuloides (0.64), V. seyal (0.65),
and C. collinum (0.69) although they occur in different climate
zones, biomes and disturbance regimes (Table 5). Similarly,
the CR–D exponent of P. menziesii (0.57) is statistically
indistinguishable from Picea abies (0.57) and C. mopane
(0.63) despite the differences in the climate zones, biomes
and disturbance regimes (Table 5). The H–D and CR–D
exponents of almost all species in Table 5 did not conform
to the geometric similarity hypothesis (β = 1). With the
exception of E. regnans, the majority of the exponents fell
within the range of values assumed in stress similarity and
MST. In-depth analysis at the site level data indicated that
curious case of E. regnans arose due to aggregation of data
of varying quality (Supplementary Table 2). The probable
causes of the bias become clear when the data from each
Reference ID were analyzed separately (see Supplementary
Table 2 for details). These problems could not be remedied
by application of more sophisticated analyses such as robust
regression (Supplementary Table 2).

Comparisons of tropical forests with savanna biomes in
terms of CD–D, Cdep–D, Cdep–CD, and Cvol–D also revealed
broadly overlapping distributions of the exponents (Figure 3).
The distributions of exponents were closer to the MST

exponents than the geometric similarity and stress similarity
exponents (Figure 3). Comparison of the point estimates (and
CIs) of the exponents of CD–D also did not reveal systematic
variations with biomes or continents (Supplementary Table 3).
Where such differences exist, differences in sample size and
sampling bias seem to play a role. For example, the sample
size for American forests was 113 times larger than for
American savannas. The diameter range reflects sampling bias
toward larger trees in American forests than in the savannas.
Therefore, the comparisons among the forest and savanna
biomes are confounded by the differences in the diameter
ranges and sample sizes. Asian forests and Australian savannas
had exponents biased downward partly due to aggregation
of data of varying quality. Graphic comparison of CD–D
allometry in African and Australian forests and savannas reveals
further insights into the degree of sampling bias (Figure 4).
Sampling bias toward large trees is more evident in data
from Australian forests (Figure 4C) and African savannas
(Figure 4B). In four out of the seven African countries
the minimum D was 10 cm, while in the remaining three
countries the minimum D was 0.2–6.3 cm. These differences
are reflected in the two groups of data in Figure 4A.
Measurement errors are also evident in Figures 4C, D. Close
examination also revealed that data from one site in Asia
(Mala_8) was weighing down the exponent estimated for
the whole continent (Supplementary Table 3). The Mala_8
site had two populations with non-overlapping distributions,
one of which was of very poor data quality (Supplementary
Table 3).

Statistical tests of differences in Cdep–D, Cvol–D, and
Cdep–CD allometry between tropical forest and savanna biomes
are summarized in Supplementary Table 5. With the exception
of Cvol–D allometry, tropical forests and savannas did not
significantly differ in their exponents. In the case of Cvol–D, the
OLS estimate of the exponent was biased downward in tropical
forests than in savannas, but the RMA estimates are comparable
(Supplementary Table 5).

Aboveground biomass vs. stem
diameter or height

The distributions of the A–D exponents in the different
climate zones were significantly overlapping (Figure 5A). The
median value of the exponents – 2.32 (CI: 2.25, 2.36) in boreal,
2.35 (CI: 2.34, 2.39) in temperate, 2.40 (CI: 2.34, 2.47) in
subtropical and 2.42 (CI: 2.41, 2.48) in tropical zones – are
statistically non-significant. The median values of the A–H
exponents in the tropical biomes, where data were available,
was 3.45 (CI: 3.18, 3.77). In all cases, the distributions of
exponents were more consistent with the stress similarity
and MST exponents than the geometric similarity exponent
(Figure 5A). Tropical, subtropical and temperate regions had a
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large number of outliers of the A–D exponent. The total sample
size available for analysis had significant effects on the A–D
exponent (Figure 5C). There were large outliers when N < 30
than N > 60 trees (Figure 5C). The LOESS trend lines show that
the exponent tended to approach the MST exponent as sample
sizes increased (Figure 5C).

Belowground biomass vs.
aboveground biomass

The 95% CI of the B–A exponents shows that in the majority
of cases the exponent conforms with isometric scaling. The
exponents also did not systematically vary with climate zones
(Table 6). Except in a few cases, the RMA estimate of the B–
A exponent in the different climate zones did not significantly
differ from 1 (Table 6).

Trends in allometry parameters

The analyses did not reveal significant trends in the
allometry parameters of the H–D, CR–D, and CR–H scaling
along the divergence times of Gymnosperm and Angiosperm
families (Figure 6). Within Angiosperms the H–D allometry
exponent of the more recent (∼29 MY old) family Bignoniaceae
(β = 0.68) was not significantly different from those of the
older (113–125 MY old) families Magnoliaceae (β = 0.68) and
Winteraceae (β = 0.70). The H–D exponent of the more recent
(∼24 MY old) Angiosperm family Staphyleaceae (β = 0.53)
was also not significantly different from those of the older
(∼236 MY old) Gymnosperm families Araucariaceae (β = 0.54),
Podocarpaceae (β = 0.56), and Taxaceae (β = 0.44). The CR–D
and CR–H allometries followed trends similar to H–D.

The analyses also revealed significant negative correlations
between ln(α) and β in the allometries analyzed at the different
scales (Figure 7 and Supplementary Figure 4). As a result, when
ln(α) was biased upward, β was biased downward. We noted
significant positive correlations between the CR-D and CR–H
exponents (r = 0.647; P < 0.0001). Similarly, we observed a
positively correlation (r = 0.543; P < 0.0001) between H–D
and A–D exponents (Supplementary Figure 5) indicating tight
co-variations among D, H, CR, and biomass.

Discussion

Stem diameter, height, and crown
allometry

Our analyses have uncovered a tight co-variation among
stem height, diameter, crown dimensions and tree biomass,
consistent with allometric theory (e.g., Niklas and Spatz, 2004;

West et al., 2009). The various analyses did not reveal
evidence of systematic variations in the H–D, CR–D, and
CR–H allometry with taxonomic level, evolutionary time,
climate zones or biomes. These findings are consistent with
the allometry constraint hypothesis, which posits that the
evolutionary divergence of traits is restricted by integrated
growth regulation, and thus β remains constant at macro-
evolutionary timescales (Voje et al., 2013). The results are
also in agreement with those of Blanchard et al. (2016), who
found no significant variation in CA–D allometry across five
biogeographic areas. According to Blanchard et al. (2016),
the stability in CA–D allometry suggests that some universal
constraints are sufficiently pervasive to restrict the variation of
the exponent in a narrow range.

Unlike the H–D and CR–D scaling, the CR–H allometry
was more variable probably because both H and CR are
associated with greater measurement error than D (Ducey,
2012; Calders et al., 2015; Blanchard et al., 2016). Contrary to
recent reports (e.g., Shenkin et al., 2020; Panzou et al., 2021),
our analyses did not reveal significant differences in crown
allometry between savanna and forest biomes. Our analysis
also casts doubt over the notion that the H–D allometry
depends on the context in which a tree grows and hence the
exponent varies widely [references cited in Osunkoya et al.
(2007), Watta and Kirschbaum (2011), Fortier et al. (2015),
Hulshof et al. (2015), and Motallebi and Kangur (2016)].
Some of the past studies did not have adequate sample sizes
and/or did not adequately control for differences in sample
size and size-frequency distributions resulting in conflation of
statistical artifacts with violations of allometric relationships.
For example, Osunkoya et al. (2007), used small sample sizes
(10–39 trees) and found wide variability in the exponent of
the H–D scaling in 22 species. Watta and Kirschbaum (2011)
reported that the exponents of the H–D relationship ranged
between 0.73 and 1.43 across 84 plots, and this clearly violates
the assumptions underlying allometric relationships. However,
close examination of their report reveals differences in both
the diameter range (D < 10 cm vs. D > 10 cm) and sample
size between the two groups. Similarly, Fortier et al. (2015)
reported differences in H–D exponents between moderate and
high fertility sites. However, the diameter range of trees from
the moderate fertility site (D = 10–27 cm) was smaller than the
high fertility site (D = 20–38 cm) besides the very small sample
sizes used (12) at each site. Even if sample sizes were large, the
difference in the diameter range alone could have resulted in the
observed differences in exponents. Here, we do not claim that
the allometry exponent is static, but its variability is conflated
with sampling bias and low statistical power due to small sample
sizes. Unlike previous studies, our use of parameter distributions
reveals the reality better than point estimates and their 95% CIs
which are sensitive to differences in sample sizes and sampling
bias. Our inferences are also based on disaggregated data and
hence the agreement with allometry theory.
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In previous studies, inferences have been solely based on
point estimates and their 95% CI derived from aggregated
data. For example, in Panzou et al. (2021) complex LMMs
were implemented using aggregated data, which are prone to
violations of LMM assumptions. We suspect this is the source of
the counterintuitive values of the exponent reported in Panzou
et al. (2021) for the American forests, American savannas,
Asian forests, Australian forests and Australian savanna

(Supplementary Table 3). The problem with aggregated data is
that they are prone to contamination with poor quality data as
is the case with E. regnans (Supplementary Table 2) and Asian
forests (Supplementary Table 3). Data aggregation is known
to leave analyses vulnerable to aggregation bias or ecological
fallacy, i.e., drawing of false inferences about individual behavior
on the basis of aggregate level statistics (Pollet et al., 2015;
Salkeld and Antolin, 2020).

TABLE 5 Comparison of the allometry exponents (βOLS) of the stem height to diameter at breast height (H–D) and crown radius to stem diameter
(CR–D) scaling in nine of the world’s tallest and hyper-emergent tree species with medium to shorter tree species in different biomes.

Species (sample size) Biome EFG# Disturbance agent§ βOLS (CI)* Maximum†

H–D CR–D Height CR

Hyper-emergent

Dinizia excelsa T1.1 – 0.56 (0.47, 0.64) 0.85 (0.69, 1.12) 82.0 15.7

Shorea faguetiana T1.1 – 0.60 (0.42, 0.86) 0.93 (0.81, 1.05) 100.8 20.0

Picea sitchensis T2.1 – 0.74 (0.60, 1.11) 0.65 (0.30, 1.15) 96.0 5.6

Pseudotsuga menziesii T2.1 BB 0.74 (0.73, 0.75) 0.62 (0.60, 0.63) 99.7 9.1

Sequoia sempervirens T2.1 Fire 0.67 (0.60, 0.74) – 115.8 –

Sequoiadendron giganteum T2.1 Fire 0.67 (0.44, 0.72) – 83.8 –

Eucalyptus regnans T2.5 Fire 0.31 (0.27, 0.34)‡ – 99.5 –

Eucalyptus globulus T2.5 Fire 0.70 (0.68, 0.72) 0.78 (0.75, 0.80) 90.7 8.8

Eucalyptus viminalis T2.5 Fire 0.86 (0.80, 0.93) 0.71 (0.55, 0.95) 89.0 8.3

Medium to short-statured

Dryobalanops lanceolata T1.1 – 0.65 (0.54, 0.74) 0.57 (0.50, 0.66) 59.0 8.8

Parashorea tomentella T1.1 – 0.56 (0.45, 0.71) 0.69 (0.57, 0.81) 68.0 9.0

Piptadeniastrum africanum T1.1 – 0.48 (0.40, 0.56) 0.79 (0.52, 1.10) 57.3 20.1

Shorea fallax T1.1 – 0.69 (0.62, 0.76) 0.54 (0.45, 0.64) 49.0 7.9

Abies sibirica T2.1 – 0.92 (0.86, 0.98) 0.53 (0.41, 0.67) 28.7 2.8

Picea abeis T2.1 BB 0.82 (0.81, 0.83) 0.55 (0.54, 0.56) 48.4 9.8

Pinus ponderosa T2.1 Fire 0.78 (0.76, 0.81) 0.63 (0.59, 0.67) 49.2 6.1

Acer platanoides T2.2 – 0.59 (0.50, 0.68) 0.77 (0.56, 0.95) 31.3 6.6

Fagus grandifolia T2.2 – 0.72 (0.71, 0.74) 0.54 (0.49, 0.58) 41.3 8.0

Fagus sylvatica T2.2 – 0.44 (0.43, 0.46) 0.62 (0.60, 0.64) 55.2 12.8

Nothofagus solandri T2-2 – 0.55 (0.52, 0.57) 0.77 (0.73, 0.80) 34.5 8.7

Populus tremula T2.2 – 0.62 (0.60, 0.64) 0.62 (0.55, 0.69) 36.2 5.3

Populus tremuloides T2.2 TC 0.60 (0.59, 0.61) 0.66 (0.62, 0.70) 34.5 6.2

Julbernardia paniculata T4 Fire 0.53 (0.40, 0.64) 0.64 (0.58, 0.69) 22.4 12.7

Vachellia seyal T4 Fire, HB 0.65 (0.62, 0.66) 0.82 (0.77, 0.86) 7.5 6.6

Vachellia tortilis T4 Fire, HB 0.56 (0.51, 0.59) 0.66 (0.60, 0.72) 8.0 6.3

Colophospermum mopane T4 Fire, HB 0.56 (0.52, 0.62) 0.63 (0.57, 0.68) 9.9 4.5

Combretum collinum T4 Fire, HB 0.69 (0.58, 0.80) 0.89 (0.67, 1.07) 20.2 9.9

Combretum molle T4 Fire, HB 0.76 (0.41, 1.13) 0.73 (0.59, 0.88) 18.8 11.3

*Values in parentheses are 95% CI estimated using bootstrapping with 9,999 replicates. #Biomes: T1, tropical-subtropical forests biome; T2, temperate-boreal forests and woodlands
biome; T3, shrublands and shrubby woodlands biome; T4, savannas and grasslands biome. Coding of Biome-EFGs is as in Supplementary methods. §Disturbance agents: –, information
not available; BB, bark beetles; TC, tent caterpillars; HB, herbivores. †Maximum height (in m) and crown radius (in m) represent the highest value in the dataset. ‡Values in red represent
biased estimates; downward bias due to data aggregation (Supplementary Table 2).
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In a nutshell, the data does not support our hypothesis that
the allometry exponents systematically vary with taxonomic
levels, divergence time or climate zones. The data does not
also support our hypothesis that trees adapted to different
disturbance regimes have different allometry exponents.
Although disturbance regimes are said to be critical in driving
local to regional-scale variance in tree allometry relationships
(Wenyan et al., 2022), the evidence seems to be weak.
For example, Wenyan et al. (2022) found crown allometry
exponents that conform to theoretical predictions in gap forest
sites (created by cutting trees), and greater deviations from
theoretical predictions in unmanaged forest sites. Indeed, their
finding is contrary to the common notion that forests that have
undergone disturbance deviate substantially from theoretical
predictions.

Our initial hypothesis that hyper-emergent and short-
statured tree species follow different allometric trajectories was
also not supported. According to Osunkoya et al. (2007), H–
D scaling in understory species follows a geometric similarity,
while mid-canopy and emergent species follow stress–elasticity
similarity. Close examination of their reports revealed that some
of the heterogeneity in exponents is an artifacts of small sample
sizes and inferences based on point estimates.

Aboveground biomass vs. stem
diameter or height

Despite the wide variability in sample size and sampling
conditions, the A–D exponents did not significantly vary with
climate zones. They were also closer to the theoretical values of
5/2 and 8/3 for A–D allometry and 3–4 for A–H allometry. This
is consistent with Zianis and Mencuccini (2004) who noted that
there is a general convergence of the scaling exponents despite
the multitude of factors affecting tree growth in different sites.
Allometry theory (Enquist et al., 1999; Enquist and Niklas, 2002;
Niklas and Enquist, 2002) and empirical results (e.g., Kuyah
et al., 2013; Sun et al., 2022) also predict the same exponent
for the allometric relationships between the different biomass
components (i.e., stem, branch, foliage and root) and D. For
example, in our re-analysis of data from Kuyah et al. (2013),
the exponent was 2.50 for stem biomass to D allometry, 2.68
for branch biomass to D allometry, 1.87 for foliage biomass to
D allometry and 2.45 for root biomass to D allometry. Similarly,
in Sun et al. (2022) the exponent was 2.176 for stem biomass
to D, 2.334 for branch biomass to D, 1.578 for foliage biomass
to D and 2.063 for root biomass to D allometry although

TABLE 6 Variations in the OLS and RMA estimates of the exponent (βOLS and βRMA) of the allometry of belowground biomass with aboveground
biomass (B–A) in trees, bananas and bamboos across different climate zones and biomes.

Climate zone Species/Stand βOLS* βRMA* Sample size Source

Boreal/temperate Larix 0.51 (0.39, 0.63)§ 0.95 (0.72, 1.17) 53 1

Boreal/temperate Pinus 1.02 (0.97, 1.09) 1.11 (1.05, 1.18) 173 1

Boreal/alpine Picea abies 0.85 (0.77, 0.92) 1.03 (0.94, 1.12) 170 1

Temperate Mixed coniferous 0.75 (0.68, 0.81) 0.77 (0.70, 0.83) 8 1

Temperate Mixed deciduous 0.64 (0.60, 0.69) 0.82 (0.77, 0.88) 322 1

Subtropical Pinus 0.92 (0.85, 0.98) 1.08 (1.00, 1.15) 212 1

Subtropical Cunninghamia 0.93 (0.85, 0.99) 1.12 (1.03, 1.20) 150 1

Subtropical Cupressus 0.77 (0.55, 0.99) 1.09 (0.78, 1.40) 28 1

Subtropical Mixed coniferous 0.93 (0.88, 0.98) 1.11 (1.05, 1.17) 390 1

Subtropical Mixed evergreen 1.04 (1.01, 1.04) 1.06 (1.03, 1.06) 366 1

Subtropical Mixed 0.92 (0.55, 1.28) 1.08 (0.65, 1.50) 11 1

Subtropical Mixed woodland 0.88 (0.73, 1.08) 0.96 (0.80, 1.18) 17 2

Subtropical Mixed woodland 0.85 (0.79, 0.89) 0.86 (0.80, 0.91) 41 3

Tropical Eucalyptus 0.98 (0.95, 1.02) 1.00 (0.96, 1.03 48 4

Tropical Pseudostachyum 1.00 (0.97, 1.03) 1.00 (0.97, 1.03) 68 5

Tropical Melocanna 0.98 (0.95, 1.01) 0.99 (0.96, 1.02) 88 5

Tropical Schizostachyum 1.30 (1.18, 1.40) 1.38 (1.26, 1.49) 72 5

Tropical Dendrocalamus 1.22 (1.06, 1.36) 1.33 (1.15, 1.48) 55 5

Tropical Uapaca 0.92 (0.88, 0.95) 1.00 (0.96, 1.04) 259 6

Tropical Musa 0.79 (0.73, 0.84) 0.83 (0.77, 0.88) 158 7

1 = Cheng and Niklas, 2007; 2 = Handavu et al., 2021; 3 = Kachemba; 4 = Kuyah et al., 2013; 5 = Singnar et al., 2017; 6 = Sileshi et al., 2007; 7 = Laskar et al., 2020. *Values in
parentheses are 95% CIs. §Values in red represent biased estimates. The large discrepancy between OLS and RMA estimates indicates attenuation bias.
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biomass allocation to stem, branch, foliage, and root biomass
significantly differed. The exponent was also estimated at 2.196
for total woody biomass to D allometry, 2.235 for aboveground
woody biomass to D allometry (Sun et al., 2022). The closeness
of these figures indicate that the different biomass components
follow the same scaling rules and allocation patterns.

Our earlier review (Sileshi, 2014) and the present analysis
reveal that the exponents reported in the literature are biased
downward partly due to the small sample sizes used in individual
studies. Duncanson et al. (2015) showed that the use of small
sample sizes in allometric equations can result in positive bias
of ∼70% in the average site-level biomass estimates. In the past,
the limiting factor has been the time and resources needed for
destructive sampling of a large number of trees (Duncanson
et al., 2015). With the increasing availability of portable ground-
based LiDAR (Calders et al., 2015), data for large sample sizes
can be acquired quickly, including samples of very large trees
for which destructive sampling would be logistically impractical
(Duncanson et al., 2015).

The power function has been reported to perform equally or
even outperform other models in many situations (e.g., Sileshi,
2014; Sun et al., 2022; Wenyan et al., 2022). However, the
debates over perceived variability of β has been discouraging
practitioners from using simple power law models. As a result,
empirical models of statistically dubious quality continue to
proliferate the biomass estimation literature (Sileshi, 2014). Here
we have shown that the variability in β is mostly an artifact of
small sample sizes and sampling bias toward large trees. In forest
inventories, it is a common practice to measure trees above a
certain stem diameter, e.g., D > 5 cm or even >10 cm. Biomass
estimation models developed using trees with D> 10 cm tended
to overestimate the mean diameter (X) and ln(α) resulting in
underestimation of β (see Equation 4 below). Therefore, we
strongly recommend destructive sampling of trees including
smaller stem diameter (e.g., 2.5 cm) during the development
of biomass estimation models. We also recommend sampling
roughly equal number trees from each diameter classes to get
a truly representative sample of the size-frequency distribution
of the target population [see Kuyah et al. (2013)]. When these
statistical problems are remedied, the power law model could
provide a more convenient tool for predicting forest biomass
and carbon stocks at different scales. A model based on a
tested and established theory is more likely to be robust to new
information than those purely based on observed patterns and
correlations, which may prove unstable when new information
emerges.

Belowground biomass vs.
aboveground biomass

Our analysis indicates that belowground biomass scales
with aboveground biomass isometrically (β = 1) regardless

of the context. This is consistent with allometric theory
(Cheng and Niklas, 2007). This makes allometric models
a more powerful tool than the traditional use of root-to-
shoot ratios to predict belowground biomass. Root to shoot
ratios often vary across biomes, vegetation types, taxonomic
groups (Qi et al., 2019), growth stages and tree sizes (Peichl
and Arain, 2007; Kuyah et al., 2013; Mašková and Herben,
2018). For example, a global analysis by Qi et al. (2019)
found significantly higher root-to-shoot ratios in angiosperms
than in gymnosperms. Similarly, Peichl and Arain (2007)
and Mašková and Herben (2018) found decrease in root to
shoot ratios with time and substrate nutrients. In contrast,
a single allometric equation could predict total belowground
biomass from aboveground biomass across the entire age-
sequence (Peichl and Arain, 2007; Robinson and Peterkin,
2019).

Since there were not many datasets on changes in tree
biomass allocation with taxonomic levels, disturbance regimes
or stages of forest stand development, we were unable
to investigate the B–A allometry in more detail. Biomass
allocation also remains poorly documented in geoxyles, whose
biomass is disproportionately found belowground. Geoxyles
are plants with short-lived reproductive aerial branches and
woody underground structures (xylopodia) (Maurin et al.,
2014; Meller et al., 2022), and these are common in
regions with frequent fires such as African savannas and the
cerrado in Brazil (Maurin et al., 2014; Meller et al., 2022).
Geoxyles may provide the next frontier of research in biomass
allocation in biomes that experience frequent disturbance by
fire.

Sources of bias and spurious
exponents

In the literature, counterintuitive values of β have been
reported and in some cases such values have been used to
challenge predictions of allometry theories. For example, the
MST has been challenged by a number of forest ecologist
[see Shenkin et al. (2020) for details] for not providing
coherent explanations for the variability in β. In the following
sections we show how (1) spurious values of β can arise
as statistical artifacts; (2) β varies with ln(α), and (3) the
accuracy with which β is estimated depends on the sample
size (N), measurement errors, the representativeness of the
sample available for analysis and the regression technique
used.

The various analyses in this study and earlier studies
(e.g., Zianis and Mencuccini, 2004; Ducey, 2012; Sileshi,
2014; Zhang et al., 2016) have demonstrated an inverse
linear relationship between the exponent and the intercept.
This points to some kind of trade-off between ln(α) and
β. One possible explanation is the principle of optimality
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in biological design (Popescu, 1998). Since natural selection
leads to an economy of design, the parameter trade-off may
be regarded as a manifestation of an attempt to achieve
optimality. The observed co-variation between ln(α) and β is
consistent with the power-law relationship in the logarithmic
domain:

ln (α) = Y − Xβ (3)

where X is the mean of log(X) and Y is the mean of log(Y). From
equation 3 it follows that

β =
Y − ln (α)

X
(4)

This relationship implies that bias in ln(α) can result in
biased estimates of β. For example, data in Figures 2, 3,
5 revealed that β values that are biased in one direction
are associated with ln (α) values biased in the opposite
direction. From Equation 4 it follows that an upward bias
in ln(α) or X will result in a downward bias in β and
vice versa. Biases in X typically arise from small sample
sizes, sampling biases and measurement errors. For example,
sampling bias toward large trees will result in an upward bias
in X and ln(α), therefore a commensurate downward bias in in
β.

From Figures 5, 8 it is evident that β estimates tend to
be biased either downward or upward when sample sizes are
small. Our findings reinforce earlier reports that allometry
parameters are highly sensitive to sample size (Duncanson
et al., 2015). When N < 30, the 95% CI also tend to be
very wide, and cover different theoretical values of β (see
Table 3). This makes it difficult to distinguish between the
different theoretical predictions. Our review of the published
exponents indicates that site-specific biomass models were
particularly based on small sample sizes. For example, over
75% of the A–D scaling exponents in the literature were
estimated using N < 60, of which 43% were based on N < 30
trees. Therefore, it is not surprising that the median value of
the A–D exponents were smaller than the theoretical value
of 8/3 (Figure 5). To achieve sufficient statistical power,
we recommend the use of a minimum of 66 sample trees
when estimating parameters of the power law model following
the rule of thumb N > 50 + 8P proposed by Green
(1991).

The accuracy with which β is estimated in OLS regression
depends on the accuracy with which the X and Y variables
were measured. Measurement errors cause a pervasive problem
known as attenuation bias or regression dilution (Maroco,
2007; Hutcheon et al., 2010). OLS regression assumes that
the X-variable is measured without error. In reality, tree
dimensions such as D and H are measured with a great
deal of error (see Supplementary methods). In the presence

of measurement errors in X, estimators of the correlation
coefficient (r) do not converge to their true population values
(ρ) even if the sample size is infinitely large. Accordingly,
β will be biased downward because it is a function of
the correlation coefficient (r) between log(X) and log(Y),
their variances (VY and VX) and the covariance (i.e.,
COVX ,Y ):

β = r
√

VY

VX
= r

σY

σX
=

COVX,Y

VX
(5)

where σD and σY are the standard deviation of log(X) and
log(Y), respectively. Loken and Gelman (2017) showed that
with large N, adding measurement error will almost always
reduce the observed correlation (r) between X and Y. As such,
β becomes more precisely biased toward zero as sample sizes
increase (Maroco, 2007). From equation 5 it also follows that
the sign of β depends entirely on the sign of r or COVX ,Y since
σX , σY and VX are always positive. If the measurement errors
in X are very large, the sign of r tends to be negative. This is
probably why counterintuitive values of the exponent reported
in the literature emerge.

The accuracy with which of β is estimated also depends
on the representativeness of the sample of the underlying
population. P. sylvestris (Table 3), Australian savannas
(Figure 4) and E. regnans (see Supplementary Table 2) provide
vivid examples of how sampling bias result in biased estimates
of allometry parameters.

The various analyses (Tables 3, 6 and Supplementary
Table 3) show that different regression techniques can
lead to entirely different conclusions about the size of
β for the same dataset. These differences arise due to
the differences in the way in which measurement errors
and outliers are handled within the different regression
techniques (see Supplementary methods). At the different
scales of analysis, we have shown that the RMA estimates
of β are consistently larger than the OLS estimates, while
LMM estimates are usually smaller than OLS estimates
(Tables 3, 6 and Supplementary Tables 2, 3, 5). Elsewhere
RMA was also reported to overestimate the true regression
slope (Kilmer and Rodríguez, 2017). This is due to the
mathematical relationship between the OLS and the RMA
estimators of β. For r 6= 0, βRMA is the ratio between the
βOLS and r:

βRMA =
|βOLS|

r
=

SDY

SDX
=

√
VY

VX
(6)

βRMA is also the ratio of SDY to SDX (Sokal and Rohlf, 1995):
This implies that βRMA will be biased upward if r is biased

toward 0. Therefore, RMA can give a false impression of
isometry when in reality the actual relationship is allometric.

Although LMMs provide a convenient framework to
account for factors associated with site quality, climate, or
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stand history, in our analyses it yielded β estimators that were
biased downward (Supplementary Table 5). We have also noted
this problem in earlier studies (e.g., Panzou et al., 2021). It
must be noted that LMMs are sensitive to violations of various
assumptions (Schielzeth et al., 2020) and imbalances in sample
size between categories. Allometry parameters in LMM can be
biased due to these violations, and therefore empirical estimates
should not be taken at face value.

Conclusion and recommendations

This study is the first of its kind in applying rigorous
statistical tests on multiple allometries and visualizing the
empirical distributions of parameters at different scales. The
results show a striking similarity in allometry across taxonomic
lineages, climate zones, biomes and disturbance regimes.
Our main conclusions are: (1) the central tendency of the
exponents is toward 2/3 for H–D, CR–D, CR–H, Cdep-
D, and Cdep-CD allometry, 5/2–8/3 for A–D allometry,
and 1 for B–A allometry across the different scales; (2)
the exponent of these allometries has remained relatively
constant through evolutionary time; (3) the exponent and
the intercept are inversely related; and (4) some of the
discrepancy between empirical estimates of the exponent and
its theoretical value arises from statistical artifacts. These
findings have both theoretical and practical implications.
From a theoretical perspective, the findings provide novel
insights into the puzzling variability reported in the exponents,
which has been the sources of debates over the universality
of allometric scaling and the validity of macro-ecological
theories. In some of the literature we reviewed, authors
seem to have conflated statistical artifacts with violations of
allometric relationships.

The practical implication is that the simple power law
model could provide a more convenient tool for predicting
forest biomass and carbon stocks at different scales because
it is grounded in sound theory and supported by empirical
results. There are not many long-term studies that predict
productivity across plant communities over time or at
various successional stages and locations. Therefore, the use
of allometric models can provide a viable alternative for
predicting productivity. The other practical implication of our
findings is that the exponent can either be underestimated or
overestimated when the sample sizes are small, measurements
errors are large, sampling is biased, data are aggregated
and the wrong regression technique is used. Therefore, we
strongly recommend practitioners of allometry to pay particular
attention to statistical artifacts, and interpret results cautiously
when comparing empirical values with theoretical predictions.
We also strongly recommend the use of larger sample sizes
and samples that are representative of the size-frequency

distribution of the target population when testing hypothesis
about allometric variation with climatic zones, biomes or
disturbance regimes.
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