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Forests have the largest terrestrial nutrient pools. The loss of soil carbon

and nitrogen in forests under ongoing climate warming is subject to severe

environmental degradation. To mitigate the negative e�ects of global warming

on soil carbon and nitrogen in forest, it is important to obtain a better

understanding of howelevated temperature and altered precipitation variability

impact soil nutrient dynamics. To explore such interactions, we coupled

an eco-hydrological model (Multi-Layer Canopy model, MLCan) with a

biogeochemical model and applied the combined model to Pinus densiflora

forest in Gwangneung Experimental Forest, South Korea, from 2004 to 2020.

Our results showed that there was a time lag of 4 years to trigger soil

organic carbon losses under the elevated temperature of +1.11◦C during

2014–2020 compared to 2010–2013. A temperature rise over a prolonged

period increased microbial biomass and activity, stimulating soil organic

carbon decomposition. The combination of soil nitrate accumulation and

exceptional but expected delay in heavy precipitation seasons of 2 months led

to nitrate leaching four times higher than the average at 1 m depth in 2010.

Reduced evapotranspiration and heavy precipitation during early fall caused

intense subsurface water flux, resulting in a great increase in the risk of nitrate

leaching. Our results highlight that the impacts of global warming on soil

carbon decompositions has a time lag of 4 years and changes in precipitation

characteristics will lead to excessive nitrate loss in P. densiflora forests under

climate change.

KEYWORDS

climate change, warming, precipitation whiplash, organic carbon, nitrogen leaching,

Pinus densiflora

1. Introduction

Climate crisis is no longer a threat in the future. We are now facing the consequences

of increased greenhouse gas emissions accumulated over the past decades. Global mean

temperature has risen by 0.2◦C per decade since the late 1970s (Allen et al., 2019) and

by more than 1◦C since the late 1800s (IPCC, 2013). A recent IPCC report (IPCC, 2021)
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notes that the rates of climate change, such as increase in

atmospheric temperature and CO2 concentration, are higher

than values that are projected a decade ago. In the past,

scientists expected that when the global mean temperature

exceeded 5◦C above the mean of the pre-industrial period,

natural systems would cross a tipping point, resulting in an

irreversible shift. However, more recent studies have alerted that

the shift is expected to occur when the global mean temperature

exceeds 1.5◦C above the pre-industrial mean (Cai et al., 2016;

Lenton et al., 2020). In other words, we are close to or maybe

even already in the midst of the irreversible transition period.

Afforestation and reforestation are the dominant management

practices to mitigate climate change (Lewis et al., 2019; Rohatyn

et al., 2022). Reforestation of ∼1,700 Mha would lead to an

additional carbon sequestration of 205.7 billion tons (Bastin

et al., 2019). However, there have been debates on whether soil

organic carbon in forests will decrease or increase under the

global warming (Kirschbaum, 2006; Bao et al., 2016; Kong et al.,

2022).

Several studies have found a strong negative correlation

between soil organic carbon and temperature (e.g., Follett et al.,

2012; Pries et al., 2017; Yan et al., 2017; Li et al., 2020). An

increase in temperature leads to stimulated microbial activity

that increases soil organic matter decomposition. The rise in

atmospheric temperature has an imperative role in determining

soil carbon dynamics and vice versa (Zhao et al., 2017; Hartley

et al., 2021). Since more carbon is stored as soil organic carbon

than the sum of carbon in atmosphere and terrestrial vegetation

which accounts for ∼40% of terrestrial carbon (Jackson et al.,

2017), soil carbon governs the global carbon cycle that influences

the undergoing rapid human-driven climate change (Xu et al.,

2018; Harris et al., 2021). However, other studies have shown

that mean annual temperature have a positive effect on soil

carbon accumulation in forests by increasing photosynthesis and

thus litterfall and root death (Rodeghiero and Cescatti, 2005;

Dusenge et al., 2019; Wang and Huang, 2020). Soil properties

and climatic zones also influence these dynamics (Wang and

Huang, 2020; Hu et al., 2021).

The trends of precipitation have also changed over the last

decades with spatial, temporal, and periodic variations mainly

due to the ongoing climate change (Pendergrass, 2018; Tabari

et al., 2019; Tabari, 2020). Changes in the intensity of extreme

precipitation and the variability of seasonal precipitation have

become more pronounced than ever (Dourte et al., 2015; Tabari,

2020; Li et al., 2021). In particular, a rapid shift from low to

abundant precipitation (known as, “precipitation whiplash”) has

been observed globally, including the United States, East Asia,

and Europe (Loecke et al., 2017; Coffey et al., 2018; Swain et al.,

2018; Collins et al., 2019; Dai et al., 2022). In South Korea, heavy

precipitation occurred during the summers of 2010 (2,044 mm

yr−1) and 2020 (1,650 mm yr−1), which are considerably large

compared to the previous years in 2009 (1,560 mm yr−1) and

2019 (890 mm yr−1). Note that the annual precipitation in 2020

is almost double the amount in 2019.

Nitrate is highly mobile in soil due to its negative charge

and high solubility. An anticipated increase in the volume of

precipitation caused by the ongoing climate change will increase

soil nitrogen loss, leading to severe degradation in water quality

(Loecke et al., 2017; Kruger et al., 2021). In particular, drought-

to-flood transitions result in transporting accumulated nitrate

during drought periods to adjacent water bodies (Loecke et al.,

2017). A long-term experimental study (Rupp et al., 2021)

also highlighted that the amount of precipitation alone could

considerably increase the nitrogen loss by increased seepage

fluxes. However, drought-to-flood transitions and increased

precipitation do not necessarily result in increased soil nitrogen

leaching (e.g., Gu and Riley, 2010; Hess et al., 2020). Soil texture

and management also influence these nitrogen dynamics.

The goals of this study are (i) to explore the effects of

warming on soil carbon and (ii) to examine the impacts of

precipitation variability on soil nitrogen from 2004 to 2020. We

used a mechanistic and process-based biogeochemical model

(Woo and Kumar, 2019) coupled with an eco-hydrological

model (Muti-Layer Canopy model, MLCan) for plant-water-

energy dynamics. This coupled model has been validated

using soil temperature, litterfall, root death, soil carbon,

mineralization, and nitrification observed at Gwangneung

Experimental Forest, South Korea. We applied the model to

explore soil water, carbon, and nitrogen dynamics in response

to the changes in temperature and precipitation observed at the

experimental forest during the study period.

2. Methods

2.1. Study site

We explored soil carbon and nitrogen dynamics at

Gwangneung Experimental Forest, South Korea (37◦47′01′′

N, 127◦10′37′′ E, 420 m above sea level). There are several

tree species including Pinus densiflora, Carpinus laxiflora, and

Quercus serrata. We studied soil carbon and nitrogen dynamics

under P. densiflor, which is the most dominant tree species in the

experimental forest and across South Korea, occupying nearly

23% of the entire forested areas in the country (Yoon et al., 2015;

Woo and Do, 2021). This site has been protected from human

influence since its designation as an experimental site since

1912, as a Long-Term Ecological Research, and Korean Flux

Monitoring Network’s Past, Present, and Future (KoFlux) since

2002 to explore and characterize forest ecosystem dynamics

(Yoon et al., 2015).

The study site experienced strong variations in both

temperature and precipitation during the study period. Mean

temperature between 2004 and 2020 was 12.96◦C with mean
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monthly temperature ranging between −2.06◦C (January) and

26.50◦C (August). Themean annual precipitation was 1,380mm

with a standard deviation of 78 mm. The soil type is silt loam

with a bulk density of 1.02 g cm−3 and pH of 4.56 obtained

from a previous experimental study of the site (Yoon et al.,

2015). Based on the soil type, we assumed a saturated hydraulic

conductivity of 0.02 mm, s−1, a saturated soil moisture of 0.45

m3 m−3, and residual soil moisture of 0.02 m3 m−3 (Oleson

et al., 2013).

The coupled ecohydrological and biogeochemical model

requires hourly weather forcings, such as precipitation,

temperature, humidity, wind speed, solar radiation, and leaf

area index. Since weather data were not available for the

study site, a record of meteorological variables observed at

an adjacent site (∼30 km away) was used alternatively. The

meteorological record for 2004–2020 (17 years) was obtained

from Korea Meteorological Administration (https://data.kma.

go.kr). For a leaf area index, we linearly interpolated 8-day

leaf area index data collected from Moderate Resolution

Imaging Spectroradiometer (Myneni et al., 2015), to hourly

time series. Soil temperature, litterfall, root death, soil carbon,

mineralization, and nitrification were measured at the study site

at different time periods from 2004 to 2009 (Lee et al., 2009;

Yoon et al., 2015; Yun and Chun, 2018), which were used for

model validation to increase confidence of the coupled model

in exploring carbon and nitrogen dynamics under the ongoing

climate change.

2.2. Ecohydrological model

We coupled an ecohydrological model with a

biogeochemical model to explore the impacts of increased

temperature and altered precipitation on soil nutrient dynamics

FIGURE 1

A schematic diagram showing a coupled MLCan (left) and biogeochemical (right) model for the first soil layer. Multiple canopy and soil layers

were implemented. Layers not shown in the right panel follow the first layer approach except for litterfall and surface nitrogen transport which

only occur in the first soil layer. Precipitation, temperature, solar radiation, humidity, and wind speed were used as forcings. Soil moisture,

temperature, subsurface water flux, and water uptake estimated in MLCan, directly and indirectly, influence soil organic carbon and nitrogen,

and inorganic nitrogen dynamics. More details about this model including equations and parameters can be found in previous studies (Drewry

et al., 2010a,b; Woo et al., 2014; Woo and Kumar, 2019).
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(Figure 1) The multi-Layer Canopy model (MLCan) was used

to estimate ecohydrological processes, such as soil moisture

and temperature, evapotranspiration, CO2 fixation, and

energy balance. MLCan is a process-based model that solves

biophysical, physiological, and hydrological dynamics in an

hourly interval by discretizing canopy and soil into multiple

vertical layers (Drewry et al., 2010a,b). Each canopy layer has a

unique photosynthesis process in sunlit and shaded leaves under

microenvironment conditions. This model has been widely used

to enhance the understanding over a gradient of contrasting

ecosystems, including forest (Quijano et al., 2012, 2013; Quijano

and Kumar, 2015; Richardson and Kumar, 2020), semiarid (Lee

et al., 2018, 2021), agricultural (Drewry et al., 2010a,b, 2014; Le

et al., 2011), and green roof (William et al., 2016) settings. In this

paper, we briefly describe soil moisture, plant water uptake, and

soil temperature dynamics, but not in details. A comprehensive

description of MLCan model can be found in previous studies

(Drewry et al., 2010a; Quijano et al., 2013; Quijano and Kumar,

2015).

Soil moisture and plant water uptake play important roles in

soil carbon and nitrogen dynamics. Soil moisture is a key factor

affecting soil microbial biomass and activity, mineralization,

nitrification, and inorganic nitrogen transport. The soil depth

of 5 m was used with 12 layers using a negative exponential

profile depth function (Amenu and Kumar, 2008) where central

nodes were located at 0.01, 0.05, 0.10, 0.18, 0.29, 0.44, 0.67, 0.98,

1.44, 2.09, 3.02, and 4.35 m below the surface. MLCan adopts

a coupled root water uptake and Richards’ equations by solving

the soil and root water potentials for each soil layer (Quijano

et al., 2012):

∂θ

∂t
−
∂

∂z

[

Ks

(

∂ψs

∂z
−

−→
k

)]

− qe = −Kr (ψs − ψr) (1)

where θ is soil moisture [-]; t is time [T]; z is soil depth

[L]; Ks is unsaturated soil hydraulic conductivity [LT−1]; ψs

is soil water potential [L];
−→
k is the unit-upward vector; qe is

a source and sink term [T−1], such as infiltration and bottom

boundary condition (free flow); Kr is radial root conductivity

[T−1];ψr is root water potential [L]. Thismodel solves hydraulic

redistribution that leads to homogeneous soil water moisture

over the columns of soil layers. In the model, transpiration

is estimated using (i) root and leaf water potentials and (ii)

resistance to flow through the plant (Drewry et al., 2010a), and

is used as an upper boundary condition.

Soil temperature drives soil microbial activity and biomass,

influencing soil carbon and nitrogen dynamics. MLCan uses a

heat diffusion equation:

∂Ts

∂t
= −KT

∂2Ts

∂z2
(2)

where Ts is soil temperature [K]; KT is thermal diffusivity

[L2T−1], which is calculated as a function of soil moisture.

Ground heat flux at the soil surface is used to estimate subsurface

temperature by solving surface energy balance that accounts

for latent, sensible, and ground heat flux and soil longwave

emission. MLCan uses temperature gradient between the first

soil layer (Ts,1) and atmosphere near the soil surface (Ta,1) to

determine ground heat flux (G):

G = −KT,1
Ts,1 − Ta,1

dz0
(3)

where dz0 is a thickness of the first soil layer.

2.3. Biogeochemical model

We coupled MLCan with a biogeochemical model (Woo

et al., 2014; Woo and Kumar, 2016, 2019; Roque-Malo et al.,

2022) that followed the main structure of a carbon and nitrogen

model developed by previous studies (D’Odorico et al., 2003;

Porporato et al., 2003). A salient feature of this model is

its mechanistic expressions of microbe-meditated carbon and

nitrogen dynamics in the soil based on mass balance equations.

Three soil carbon pools are considered, fast (or litter Cl),

slow (or humus Ch), and microbial (Cb) pools (Figure 1). The

carbon and nitrogen (CN) ratios of fast and slow pools varied

during a simulation depending on weather, soil type, and litter

inputs. A fixed CN ratio of microbial biomass (11.5) is used

to account for soil carbon and nitrogen available to support

and sustain soil microbial growths. When microbial nitrogen

demands are not satisfied at the fixed CN ratio, soil microbial

biomass is reduced based on the nitrogen availability and

thus in microbe-meditated processes, such as mineralization,

nitrification, and denitrification. Here, we briefly describe key

carbon and nitrogen equations but not in full detail. A detailed

description of the model can be found in previous studies

(D’Odorico et al., 2003; Porporato et al., 2003; Woo et al., 2014;

Woo and Kumar, 2016). Soil organic carbon pools are written as:

∂Cl
∂t

= Ii + Ir + kbCb − KlCl (4)

∂Ch
∂t

= rhKlCl − KhCh (5)

and

∂Cb
∂t

=
(

1− rh − rr
)

KlCl + (1− rr)KhCh − kbCb (6)

where Cl, Cb, and Ch are soil carbon concentration in the fast,

slow, and microbial pools, respectively [ML−2]; Ii is litterfall

[ML−2T−1]; Ir is root death [ML−2T−1]; kb is microbial death

rate [T−1]; rh and rr are the fractions of humificated substrate

and CO2 respiration, respectively, during litter decomposition

[-]; Ranges of rh and rr are defined as following: 0 ≦ rr ≦ 1-rh.
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Kl and Kh are the decomposition rates of the fast and the slow

carbon pools [T−1], which are given as:

Kl = klφfθ fTCb (7)

and

Kh = khφfθ fTCb (8)

where kl and kh are the weighted averages of decomposition

rates for different compounds in the fast and slow carbon

pools, respectively [T−1]. φ is a non-dimensional factor [-

] that describes a nitrogen-limiting condition for a microbial

growth. fθ and fT are non-dimensional factors [-] accounting

for the effects of soil moisture and temperature, respectively,

on decompositions. For simplicity of the model, microbial

biomass and activity are assumed to have a linear relationship

between them.

Themodel considers mineralization andmicrobial uptake to

link soil inorganic nitrogen with soil organic matter (Figure 1,

right panel). The positively charged ion of ammonium is

attached to the negatively charged clay and retains ammonium

against leaching. To account for this phenomenon, mobile and

immobile ammonium are considered using dynamic volumetric

fractions (D’Odorico et al., 2003; Woo and Kumar, 2016).

The diffusion and dispersion terms are not considered in

this study and thus inorganic nitrogen transport is restricted

to advection. The mass balance of nitrate, and mobile and

immobile ammonium are modeled, respectively as:

∂N−

∂t
=

(

f+m

f−n
O+
m +

f+i

f−n
O+

i +W−

)

−
(

P− + L− + Q+ J
)

− ∇ ·

(

−→u
N−

θ

)

(9)

∂N+
m

∂t
=
(

M +W+
)

−
(

P+ + L+m + O+
m + V

)

−
f+i

f+m
R

− ∇ ·

(

−→u
N+
m

θ

)

(10)

and

∂N+

i

∂t
= −

(

L+i + O+

i

)

+ R (11)

where the superscripts of − and + represent processes relevant

to nitrate and ammonium respectively; N−, N+
m , and N+

i

are nitrate, mobile ammonium, and immobile ammonium

[ML−2], respectively; f−n , f+m , and f+i represent the ratios of the

volumetric fraction of nitrate, mobile ammonium, and immobile

ammonium [-];
f+i
f−n

,
f+m
f−n

, and
f+i
f+m

are used to convert given

volumes.Oi andOm are nitrification frommobile and immobile

ammonium [ML−2T−1]; W− and W+ are atmospheric nitrate

and ammonium deposition, respectively [ML−2T−1]; P− and

P+ are (active, passive, and remobilized) plant nitrate and

ammonium uptake, respectively [ML−2T−1]; L−, L+m, and L+i
are microbial nitrate and mobile and immobile ammonium

uptake, respectively [ML−2T−1]; Q is N2O production by

nitrification [ML−2T−1]; J is denitrification [ML−2T−1]; −→u

is water flux between soil layers [LT−1]; M is mineralization

[ML−2T−1]; Om and Oi are nitrifications estimated from

mobile and immobile ammonium, respectively [ML−2T−1]; V

is volatilization [ML−2T−1]; R is nitrogen exchange between

mobile and immobile ammonium [ML−2T−1]. Through

nitrification and ammonium mobility exchange, inorganic

nitrogen dynamics are interconnected.

2.4. Simulation design

We used a spin-up period of 50 years before 2004 to

minimize the influences of initial conditions of soil and canopy.

Since weather forcings were not available during the period,

we used a weather generator (Fatichi et al., 2010) to provide a

series of precipitation, temperature, humidity, wind, and solar

radiation with parameters estimated based on the observed

weather record from 2004 to 2020. The generated hourly time

series of syntheticmetrological variables are statistically identical

to the ones that are observed. Key variables are shown in

Figures 2A–C. Soil and P. densiflora parameters used in this

study were obtained from previous experimental and numerical

studies (Table 1). The litterfall was estimated using leaf area

index, leaf life span, and specific carbon leaf area index, following

a formulation described in a previous study (Quijano et al.,

2013). We assumed that the rate of root death had a linear

relationship with litterfall (Ir = krIi, where kr is a constant

representing litterfall-to-root death). Weather forcings were

used as an upper canopy boundary condition while the free flow

was used as a bottom soil boundary condition. To explore the

impacts of drought-to-flood transition on nitrogen loss (Section

3.3), we conducted additional numerical experiments that were

presented in Table 2. Model forcings, as well as measured

and simulated variables used in this study are presented in

Supplementary Table 1.

2.5. Statistical analysis

To capture abrupt shifts in time-dependent variables

(Section 3.2), we used a Bayesian change-point detection model

(Zhao et al., 2019). This model employs ensemble learning that

uses the combination of multiple models through the Bayesian

model average to provide the probabilities of change-point

occurrences in a given time series. In addition, we evaluated the

Pearson correlation coefficient to measure a linear correlation

between two variables.
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FIGURE 2

Forcings and initial conditions implemented in the simulation. Observed (A) hourly precipitation, (B) cumulative hourly precipitation, and (C)

temperature in 2020 (black) overlaid on the ensemble of generated 50-year weather variables (gray). The nonlinear dynamics in (D) soil organic

carbon (SOC), (E) organic carbon pools, and (F) inorganic nitrogen pools during the 50-year spin-up period before 2004 to reach a statistical

equilibrium state for initial conditions.

To explore the interactions between an abrupt precipitation

event due to ongoing climate change and subsequent effects

on nitrate losses, we estimated the Standardized Precipitation

Index (SPI, McKee et al., 1993). A precipitation shift index (PSI)

was also estimated to explore a shift of precipitation toward

the winter (most precipitation occurs in July). Similar to a

weather whiplash index developed by Loecke et al. (2017), PSI

is calculated as the normalization of (i) the total precipitation

during August and September of each year subtracted by (ii)

the total precipitation during 10 months before August of each

year, divided by the sum of them [(i) and (ii)] based on observed

precipitation from 1908 to 2020.

3. Results

3.1. Model performance

The quasi-steady state of soil carbon and nitrogen was

obtained from the 50-year spin-up simulation as an initial
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TABLE 1 Parameters used for the coupled ecohydrological and

biogeochemical model.

Parameter Units Value

Soil parameter

Saturated soil moisture m3 m−3 0.45a,b

Residual soil moisture m3 m−3 0.067a,b

Field capacity m3 m−3 0.37a,c

Sand content % 25a

Silt content % 10a

Soil pH – 4.56a

Saturated hydraulic conductivity m hr−1 see foot noted

Pinus densiflora parameter

The maximum carboxylation rate µmol m−2 s−1 34e

The maximum electron transport rate µmol m−2 s−1 32e

Leaf life span year 3f

Specific carbon leaf area index m2 gC 0.01g

CN ratio of litterfall – 37h

Nitrogen remobilization – 0.7i

Root radial conductivity (Kr) s−1 2.5×10−8 j

Soil nutrient parameter

Surface bioturbation diffusivity cm2 yr−1 8.76k

Litterfall-to-root death constant (kr) – 0.58

Microbial CN ratio – 11.5l

Soil CO2 respiration (rr) – 0.6l

Mimimum fractions of humificated substrate (rh) – 0.25l

Fast carbon pool decomposition rate (kl) m2 gC−1 d−1 see foot notem

Slow carbon pool decomposition rate (kh) m2 gC−1 d−1 see foot notem

Microbial death rate (kb) d−1 see foot notem

Fraction of dissolved nitrate (f−n ) – 1.0l

Steady-state fraction of mobile ammonium (f+m ) – 0.05l

Steady-state fraction of immobile – 0.95l

ammonium (f+i )

For other parameters not listed in this table, see Quijano et al. (2013), Woo et al. (2014),

Woo and Kumar (2016), Woo and Kumar (2019), and Woo and Do (2021) including

online Supplementary material. aYoon et al. (2015).
bCarsel and Parrish (1988).
cHillel (1998).
dEstimated using an equation that accounted for soil type and compaction (Oleson et al.,

2013).
eKimm and Ryu (2015).
fHauer (2008).
gHan et al. (2008).
hLee et al. (2013).
iAchat et al. (2018).
jQuijano et al. (2013).
kCousins et al. (1999).
lD’Odorico et al. (2003).
mkl , kh , and kb were estimated following approach described in D’Odorico et al. (2003) to

capture soil nutrient steady state.

condition for 2004 (Figures 2D–F) because there were no

experimental data at the beginning of the study period. Canopy

and soil energy, water, temperature, carbon, and nitrogen

TABLE 2 Numerical scenarios used in this study to explore the

impacts of drought-to-flood transition on nitrogen loss in Section 3.3.

Scenario Description

Baseline Using the observed weather record from 2004 to 2020

P2020useP×1.3 Multiplying the observed precipitation in 2020 by 1.3

P2020useP2010 Substituting the observed 2010 precipitation for the

observed 2020 precipitation

and leaving other variables consistent

P2020usePN2010 In addition to P2020useP2010, replacing soil carbon and

nitrate concentrations on

Jan 1, 2020, with those on Jan 1, 2010

modeled at the end of this spin-up period were used to initialize

simulations for which results were analyzed below. Over the

spin-up period, soil organic carbon and inorganic nitrogen have

reached a statistical equilibrium state.

Once the model was set in equilibrium, we simulated

the hydro-biogeochemical dynamics from 2004 to 2020 and

compared modeled and observed soil temperature, litterfall,

root death, soil organic carbon, mineralization, and nitrification.

Note that the comparison periods were not consistent over

2014–2015 due to limited availability in observed data. The

model accurately captured the seasonal variations of observed

soil temperature to a depth of 0.15 m from 2004 to 2015

(Figures 3A,B, Yun and Chun, 2018). The coefficient of

determination (R2) and root mean square error (RMSE) were

0.89 and 3.03◦C, respectively. We compared observed litterfall

averaged from 2007 to 2008 and from 2007 to 2009 (Lee

et al., 2009) and root death averaged from 2007 to 2009 (Noh

et al., 2017) with modeled values (Figures 3C,D). Since the

only available observed data for litterfall and root death from

previous experimental studies were mean values over multiple

years, we validated the simulated results with the measurements

averaged over multiple years. We found a strong agreement

between modeled and observed carbon inputs (RMSE = 12.38

gC m−2 yr−1). Modeled soil organic carbon was similar to

the measured value in 2007 to a depth of 0.3 m (Figure 3D,

Lee et al., 2009). The model estimated soil organic carbon of

4,795 gC m−2 that was within the range of observed values.

For inorganic nitrogen, we compared modeled and observed

rates of mineralization and nitrification from March 2008 to

April 2009 (Figures 3E,F, Yoon et al., 2015). The modeled

mineralization and nitrification during the simulated period

generally fell within the ranges of the observed values. Overall,

modeled results seemed to coincide well with observed values,

not only in a particular year but also over different observation

periods, providing confidence in using the coupled model

to explore the influence of ongoing climate change on soil

nutrient dynamics.

Frontiers in Forests andGlobal Change 07 frontiersin.org

https://doi.org/10.3389/ffgc.2022.1051210
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Woo and Seo 10.3389/�gc.2022.1051210

FIGURE 3

Comparisons of modeled and observed (A,B) soil temperature to a depth of 0.15 m from 2004 to 2015 (Yun and Chun, 2018), (C) carbon inputs

from 2007 to 2009 (Lee et al., 2009; Noh et al., 2017), (D) soil organic carbon to a depth of 0.3 m in 2007 (Lee et al., 2009), and (E) mineralization

and (F) nitrification to a depth of 0.15 m from 2008 to 2009 (Yoon et al., 2015). The black line in (B) represents the trend line. Gray dashed lines in

(B,C) represent a 1:1 relationship. The boxplot in (D) shows the distribution of observed soil organic carbon. The bar plots in (E,F) represent the

observed ranges of mineralization and nitrification, respectively.

3.2. Temperature impacts on soil organic
carbon

To explore the impacts of ongoing temperature rise on soil

organic carbon, we first explored temperature variations from

2004 to 2020 (Figure 4A). We noted the extended period of

years with higher than normal temperatures in recent years. We

found two change-point (in 2010 and 2014) where pronounced

temperature changes were detected during the study period

(Figure 4B). Annual mean temperature was 13.37◦C during

2014–2020, whereas the mean was 12.26◦C during 2010–2013.

In particular, differences in the mean annual minimum and

maximum temperatures between the two periods were 2.56

and 2.08◦C, respectively. The annual mean temperature during

2014–2020 was 0.69◦C warmer than that over the previous 10

years (2004–2013). That is, the study site experienced prolonged

periods of temperature up-shift in the recent years.

We found a decreasing trend in modeled soil organic carbon

over the study period with the rate of −1.50 gC m−2 yr−1

(Figure 4C). In particular, the decrease in soil organic carbon

became pronounced a few years after the elevated temperature.

Trend changepoints of soil organic carbon were identified in

2008 and 2017 (Figure 4D). Soil microbial biomass acted as

a key regulator of soil organic carbon decomposition due to

microbial metabolism. The elevated temperature stimulated the

growth and activity of soil microbes (Figure 4E). However,

relationship between soil carbon and microorganisms did not

show linear dynamics. We found that a year when soil carbon

decreased (2017) was not synchronized with the year when

microorganisms increased (2015, Figures 4D,F).
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FIGURE 4

The impacts of temperature rise on soil organic carbon and microbial biomass. (A) Observed annual mean temperature and (B) its probabilities

of trend changepoints, (C) modeled soil organic carbon, (D) its probabilities of trend changepoints, (E) modeled soil microbial biomass, and (F)

its probabilities of trend changepoints during the study period. The shaded gray areas in (C,E) indicate the 20th and 80th percentiles that

represent their variations in a given year. Red in (A) and blue (B,D,F) dotted lines represent linear trend lines and changepoints, respectively.

To further explore time-dependent temperature effects on

soil organic carbon, temperature was averaged over different

time windows: 1–10 years (Figure 5A). Among them, a change

in soil organic carbon was the most significantly associated with

4-years average temperature with a linear trend of −4 gC m−2

◦C−1 (P<0.02). We noted that a prolonged period of warming

accelerated the microbial decomposition of soil organic carbon

(Figure 5B). The accumulated long-term warming drove the

divergent growth trends of soil microbes, shifting soil organic

carbon from a quasi-steady state to another. In other words,

accumulated warming has been and will have a considerable

influence on the growths of soil microbes, leading to an increase

in soil carbon decomposition rate in the coming years.

3.3. Precipitation whiplash impacts on
nitrogen leaching

The annual precipitation ranged from 792 to 2,044 mm

with a mean and standard deviation of 1,380 and 377 mm,

respectively, during the study period (Figure 6A). There was

an insignificant relationship between interannual precipitation

variations and soil ammonium (P > 0.05, Figure 6B). This

irrelevance is mainly due to positively charged soil ammonium

ion that is bonded to the negatively charged soil. On the

other hand, the model predicted a considerable decrease in soil

nitrate in 2010 due to a dramatic increase in nitrate leaching

caused by high subsurface water flux (hereafter referred to as

the 2010 N event) at a depth of 1 m (Figures 6C–F). Nitrate

leaching in 2010 was more than four times higher than the

average during the study period. Mean annual precipitation

from 2004 to 2009 (6 years) was 1,445 mm while that in 2010

was 2,044 mm. The combination of intense precipitation and

high nitrate concentration resulted in extreme nitrate losses in

2010. However, an abrupt change in annual precipitation (1,650

mm in 2020; mean annual precipitation of 891mmduring 2014–

2019, over 6 years before 2020) combined with high nitrate

concentration (13% higher than average) in 2020 did not lead

to excess nitrate loss (hereafter referred to as the 2020 N event).

For the case of the 2010 N event, we found an annual SPI of

0.56 (near normal) in 2009 followed by an annual SPI of 1.63

(severely wet) in 2010 (Figure 7A). The annual SPI estimated

from 2004 to 2009 did not get below −1.0 (moderate drought).

On the other hand, for the 2020 N event, an annual SPI of

−1.40 (moderate drought) in 2019 was followed by 0.77 (near

normal) in 2020. Under P2020useP×1.3 scenario, an annual

SPI of 1.64 (severely wet) was modeled. However, the model

showed that nitrate loss slightly increased from 0.010 (under

baseline scenario) to 0.013 gN m−2 d−1 at a depth of 1 m
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FIGURE 5

Relationships between soil organic carbon, microbial biomass, and atmospheric temperature. (A) 1:1 plot for 4-year average annual temperature

(x-axis) and changes in annual soil organic carbon (y-axis). (B) The relationship between annual average soil organic carbon (x-axis), soil

microbial biomass (y-axis), and temperature (color bar). Soil organic carbon and microbial biomass were analyzed to a depth of 1 m.

FIGURE 6

The impacts of abrupt precipitation changes on soil inorganic nitrogen dynamics. (A) Observed annual precipitation, and modeled (B) soil

ammonium, (C) soil nitrate, (D) soil nitrate profile, (E) subsurface water flux, and (F) soil nitrate leaching at a depth of 1 m. Soil inorganic nitrogen

dynamics were analyzed to a depth of 1 m. The shaded gray areas in (B,C,E) indicate the 20th and 80th percentiles that represent their variations

in a given year. Red in (A) represents linear trend lines. Blue dotted lines represent 2010 and 2020, respectively, for visualization purposes.
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(Figure 7B). The 2010 and 2020 N events modeled in this study

are not explained by widely accepted findings of the impacts of

drought-to-flood transition on the nitrogen loss.

A question remains on identifying the key factors that

drive excessive nitrate loss. To answer this question, additional

numerical experiments were conducted. Under P2020useP2010

scenario, nitrate leaching at a depth of 1 m increased by

191% compared to the baseline (Figure 7B). Nitrate leaching

further increased by 284% compared to the baseline under

P2020usePN2010 scenario (Figure 7B). That is, the combination

of accumulated nitrate in the soil and a unique precipitation

event created excessive nitrate loss.

What is then a unique feature in the 2010 precipitation?

We explored monthly precipitation characteristics during the

study period (Figure 7C). The study site generally experiences

the wettest month in July based on the observed precipitation

records, which accounts for ∼33% of the annual precipitation.

However, the monthly distribution of the 2010 precipitation

was exceptionally unique, receiving 599 and 672 mm in August

and September, respectively. These amounts were two- and

four-times greater than the monthly mean precipitation during

the study period, respectively. Reduced evapotranspiration and

heavy precipitation during late summer and early fall increased

subsurface water flow, thus resulting in excessive nitrate loss.

These results highlight that abnormally heavy precipitation

during August and September combined with accumulated

soil nitrate are important factors, rather than drought-to-flood

transition, for excessive nitrate loss at the study site.

FIGURE 7

Analysis of precipitation to explore excessive the 2010 N event. (A) The probability density function of yearly standardized precipitation index. (B)

Soil nitrate leaching under baseline, a scenario of 2020 precipitation multiplied by 1.3 (P2020useP×1.3, red), a scenario of replacing 2020

precipitation with 2010 precipitation (P2020useP2010, blue), and a scenario of P2020useP2010 with substituting soil carbon and nitrate

concentrations on Jan 1, 2010, for those on Jan 1, 2020 (P2020usePN2010, green). Dynamics associated with 2010 and 2020 were in dotted

black and gray lines. (C) Monthly precipitation in 2010 was overlaid on monthly mean precipitation with associated standard deviations (error

bars).

FIGURE 8

To explore monthly precipitation shifts toward winter, we estimated (A) the precipitation shift index from 1909 to 2020 and (B) the frequency

histogram of the precipitation shift index. The blue dotted line in (A) represents the precipitation shift index of 2. The black dotted and gray lines

in (B) are for precipitation in 2010 and 2020, respectively.
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How frequently does precipitation shift toward winter

occur? To address the question, we quantified a precipitation

shift index (PSI, Figure 8). Analogous to SPI, PSI values>2 were

used to indicate abnormal wetness during early fall. Between

1909 and 2020, 6 years experienced abnormal precipitation shift

towardwinter, where two-thirds of the shifts occurred during the

last 30 years (from 1991 to 2020). Therefore, more precipitation

shift is expected to be observed in the future.

4. Discussions and conclusions

The main purpose of this study was to assess the impacts of

ongoing climate change on soil carbon and nitrogen dynamics.

Using a coupled ecohydrological and biogeochemical model, we

characterized (i) the influence of elevated temperature in recent

years on soil organic carbon and (ii) the impacts of monthly

precipitation characteristics on soil nitrate leaching in a mature

P. densiflora forest. The model validation was carried out using

available data (such as soil temperature, litterfall, root death, soil

organic carbon, mineralization, and nitrification) measured at

the study site in different periods between 2004 and 2015. Our

results showed that elevated temperature led to decreases in soil

organic carbon with a time lag of 4 years. The prolonged period

of temperature rise increased the microbial biomass and activity

over time, thus stimulating soil organic carbon decomposition.

In addition, we noted that a combination of abnormal but

expected extreme precipitation in August and September and

accumulated soil nitrate resulted in excessive nitrate loss.

Changes in atmospheric temperature could, directly and

indirectly, influence the fate of soil organic carbon by regulating

soil microbial growth and activity, litterfall, root death, and

soil moisture (e.g., Qi et al., 2016; Yan et al., 2017; Hartley

et al., 2021). Several studies have explored the effects of

climate warming on soil organic carbon in forests over several

decades (Kasischeke et al., 1995; Melillo et al., 2011; Zhao

et al., 2021; Nottingham et al., 2022). However, there is

still no scientific consensus on whether soil organic carbon

decreased or increased in forests under climate warming due

to the contradictory results under different experimental and

numerical conditions (Kirschbaum, 2006; Bao et al., 2016; Kong

et al., 2022). Climate warming is found to simulate more

rapid soil organic carbon loss since warming has a greater

impact of soil respiration compared to photosynthesis (e.g.,

Qian et al., 2010; Nottingham et al., 2022) while other studies

report results either that are opposite or show insignificant

effects of warming on soil carbon decomposition (e.g., Melillo

et al., 2011; Hartley et al., 2012). Among these contradictory

results, an experimental study (Ofiti et al., 2021) found that

elevated temperature over 4.5 years reduced root biomass and

accelerated soil organic matter decomposition. Analogous to

that study, our results showed that the prolonged period of

elevated temperature stimulated soil microbial biomass, leading

to consequent decrease in soil organic carbon 4 years after the

onset of temperature elevation. Demonstrating the connection

between long-term elevated temperature and soil carbon loss

leads us to infer that climate change stimulates soil carbon loss

in a P. densiflora forest.

Using the modeling approach, we characterized the impacts

of precipitation whiplash on nitrate loss. In this study, we

defined precipitation whiplash that caused an excessive nitrogen

loss as the occurrence of abnormally high precipitation in late

summer and early fall (August and September) at the study site.

The combination of precipitation whiplash and relatively high

soil nitrate concentration due to prolonged dry periods resulted

in extreme nitrate leaching. A precipitation whiplash event

occurred during the study period over 17 years. However, there

has been already substantial evidence of changes in precipitation

characteristics due to global warming. For example, California,

United States, forecasts more frequent occurrences of extremely

dry and wet seasons in the twenty-first century (Swain et al.,

2018). An increase in frequency and intensity of extreme events

has also been observed over East Asia during the past decades

partially due to a shift of high-frequency tropical cyclones

toward the north (Lee et al., 2021; Ren et al., 2021). A global

study projected a permanent shift of heavy precipitation events

over a few days to months at the end of the twenty-first century

(Marelle et al., 2018). In addition, it has been widely observed

that the variation and intensity of precipitation are one of the

most important factors governing nitrate leaching (e.g., Di and

Cameron, 2002; Jabloun et al., 2015; He et al., 2018). Nitrogen

in groundwater, especially in an unconfined aquifer, is a direct

response to nitrogen leaching from the vadose zone (Hansen

et al., 2017; Kuchta et al., 2020). Petrovic (1990) found that

there is a great potential for nitrate leaching under increased

precipitation in the late fall due to reduced evapotranspiration

and decreased microbial activity. These findings support the

results of this study that precipitation shift toward winter will

result in a high risk of nitrate leaching.

This study considered only a single tree, P. densiflora, and

used one coupled model to explore the impacts of ongoing

climate change on soil carbon and nitrogen dynamics. To extend

our results in future analyses, we recommend that the long-

term effects of climate change, various trees, and parameter

uncertainties be examined further to assess the impacts of

warming and altered precipitation characteristics on forest soil

carbon and nitrogen dynamics. However, there is no doubt that

the maintenance of forest health and vitality is a key aspect of

climate change mitigation. Forests are important carbon and

nitrogen pools that serve as a safety net under climate change.

Our study showed that the persistence of elevated temperature

and abnormally heavy precipitation during late summer and

early fall could lead to severe environmental consequences.

Scientists have argued that multiple tipping points could be

triggered if global warming exceeds 1.5◦C above pre-industrial

levels (Cai et al., 2016; Lenton et al., 2020). Under such

conditions, it will not be surprising if forest ecosystems do not

function properly as we have expected and observed. Therefore,
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in light of the findings obtained from this study, we conclude

that climate change has been already influencing carbon and

nitrogen dynamics in P. densiflora forests.
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