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Vegetation phenological models play a major role in terrestrial ecosystem

modeling. However, substantial uncertainties still occur in phenology models

because the mechanisms underlying spring phenological events are unclear.

Taking into account the asymmetric effects of daytime and nighttime

temperature on spring phenology, we analyzed the performance of 17

spring phenological models by combining the effects of photoperiod and

precipitation. The global inventory modeling and mapping study third-

generation normalized difference vegetation index data (1982–2014) were

used to extract the start of the growing season (SOS) in the North–South

Transect of Northeast Asia. The satellite-derived SOS of deciduous needleleaf

forest (DNF), mixed forest (MF), open shrublands (OSL), and woody savannas

(WS) showed high correlation coefficients (r) with the model-predicted SOS,

with most exceeding 0.7. For all vegetation types studied, the models that

considered the effect of photoperiod and precipitation did not significantly

improve the model performance. For temperature-based models, the model

using the growing-degree-day temperature response had a lower root mean

square error compared with the models using the sigmoid temperature

response Importantly, we found that daily maximum temperature was most

suitable for the spring phenology prediction of DNF, OSL, and WS; daily mean

temperature for MF; and daily minimum temperature for grasslands. These

findings indicate that future spring phenological models should consider

the asymmetric effect between daytime and nighttime temperature across

different vegetation types.
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1. Introduction

Phenology is the study of repetitive life-cycle events, such as plant leaf expansion,
flowering, and animal migration (Morisette et al., 2009). Vegetation phenology is
the study of the relationship between climate and specific biological events, such as
germination, flowering, and defoliation (de Beurs and Henebry, 2008). Phenological
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events have a strong control over the seasonal exchange
of material and energy between the land surface and
the atmosphere (Chuine et al., 2000). Extensive vegetation
phenological changes (Julien and Sobrino, 2009; Brown et al.,
2012; Oberbauer et al., 2013; Park et al., 2015; Liu et al., 2016;
Zhou et al., 2020) caused by climate change (Anderegg and
Diffenbaugh, 2016) may threaten the function of ecosystems
(Thackeray et al., 2016). They can also have widespread
consequences for agriculture, forestry, human health, and the
global economy (Peñuelas and Filella, 2001).

Appropriate plant phenological timing can protect plants
from abiotic stress, which is essential for plant growth
(Basler, 2016; Delpierre et al., 2016). The dispersion of
plant phenological timing allows different species in plant
communities to coexist, and it also has an important impact
on ecosystem processes such as nutrient acquisition (Cleland
et al., 2007). Therefore, vegetation phenology plays an important
role in species distribution models (Chuine and Beaubien, 2001)
and dynamic global vegetation models (Krinner et al., 2005;
Peano et al., 2019). Phenological models that simulate the
start of the growing season (SOS) can effectively predict the
response of vegetation to changes in the climate and energy
balance (Chuine et al., 2000). The phenological processes in
models that couple land surfaces to the climate system should
be accurately represented, particularly when these models are
used to predict future climates (Richardson et al., 2013).
Therefore, accurate simulation of the phenological changes
in coupled biosphere/atmosphere climate models, terrestrial
biogeochemical cycling models, and vegetation dynamics
models is important (Botta et al., 2000; Yun et al., 2017; Gauzere
et al., 2019; Peano et al., 2021).

Bud dormancy consists of three phases, namely
paradormancy, endodormancy, and ecodormancy (Lang
et al., 1987). Plants need to accumulate chilling during
the endodormancy phase and accumulate heat (forcing
temperature) during the ecodormancy phase. Models that
involve only the ecodormancy phase are called one-phase
models, while models that involve both the endodormancy
and ecodormancy phases are called two-phase models (Fu
et al., 2020). The oldest one-phase model dates back to
1735 (Reaumur, 1735). That model considered the need for
plants to accumulate heat in spring, and could be called the
thermal time model (Basler, 2016). Since then, researchers
have developed many thermal time models (Wang, 1960;
Cannell and Smith, 1983; Hunter and Lechowicz, 1992; Chuine
et al., 1999) by using the growing-degree-day as a unit of heat
accumulation. The temperature response of the thermal time
model is a linear function. Some studies have used the sigmoid
function as a substitute to develop the sigmoid temperature
response model (Hänninen, 1990; Kramer, 1994). Because the
photoperiod affects heat accumulation, Masle et al. developed
a photothermal-time model for crops (Masle et al., 1989).
According to the relationship between chilling accumulation

and heat accumulation, the two-phase models are divided into
the sequential model, parallel model, alternating model, and
unified model (Cannell and Smith, 1983; Murray et al., 1989;
Hänninen, 1990; Kramer, 1994; Chuine, 2000). In addition,
dormancy induction processes have been introduced into spring
phenology models. The most complex of these is the DormPhot
model (Caffarra et al., 2011), because it considers dormancy
induction, chilling, forcing, and photoperiod, simultaneously.
Unlike models based on dormant phases, promoter–inhibitor
models do not distinguish between dormant phases and treat
the release of dormancy as the result of the combined control
of promoters and inhibitors, where promoters and inhibitors
include hormones or enzymes that determine the physiological
developmental state of the plant and its response to external
drivers (Schaber and Badeck, 2003). Most spring phenology
models do not include the effects of precipitation, although
models that include precipitation have been developed for
grasslands (e.g., grassland pollen model) (García-Mozo et al.,
2009). Although models have been developed to simulate spring
phenology for specific species, they do not include recent new
insights into spring phenology, such as the asymmetric effects
of temperature. In addition to average temperatures, previous
studies have found that daytime and nighttime temperatures
also affect vegetation greening (Shen et al., 2018; Meng et al.,
2020). It is thus important to consider the effect of asymmetric
warming on vegetation greening in spring phenological models.

High-latitude areas warm faster than low-latitude areas, and
phenological changes may be more pronounced than those in
other parts of the Earth (Parmesan, 2007; Pau et al., 2011),
making them ideal to study phenological responses to climate
change (Prevéy et al., 2017). Vegetation phenology varies with
species and is influenced by environmental factors, such as
air temperature, precipitation, soil temperature, soil moisture,
and photoperiod (Fu et al., 2019; Meng et al., 2021), which
depend on location and time (de Beurs and Henebry, 2008).
Experimental studies (Henry and Molau, 1997; Price and Waser,
1998; Menzel and Fabian, 1999; Botta et al., 2000; Fu et al., 2015;
Malyshev, 2020) have shown that air temperature is the main
driver of phenological changes in northern temperate and high-
latitude regions. In addition, precipitation has an impact on the
spring phenology of grasslands (Shen et al., 2018; Castillioni
et al., 2022). In the temperate grasslands of China, the effects
of daytime and nighttime temperatures on spring phenology are
asymmetric, with the monthly average maximum temperature
having a greater effect in winter and the monthly average
minimum temperature causing a greater effect in spring (Shen
et al., 2018). On the Qinghai–Tibet Plateau, the daily minimum
temperature has a stronger influence on the phenology during
spring and summer (Shen et al., 2016). Previous studies have
shown significant differences in the effects of daytime and
nighttime temperatures on the leaf unfolding of European
deciduous trees (Fu et al., 2016; Wang et al., 2021). In addition,
daytime and nighttime warming had different or even opposite
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effects on spring phenology in the Appalachian Trail region of
the eastern United States (Meng et al., 2020). Therefore, the
characteristics of temperature effects on phenology should be
considered in phenological models (Fu et al., 2016; Meng et al.,
2020).

In this study, we used the global inventory modeling
and mapping study (GIMMS) third-generation normalized
difference vegetation index (NDVI3g) from 1982 to 2014 to
extract the SOS in the North–South Transect of Northeast
Asia (NSTNEA) region and then combined the ERA-Interim
temperature data to test the asymmetric effect of temperature
on 17 spring phenological models. The objectives of this study
were as follows: (1) to analyze the influence of model structure
and temperature response function on spring phenology
prediction; (2) to find the optimal spring phenological model
for each vegetation type; and (3) to test the effects of
daily maximum temperature (Tmax), daily mean temperature
(Tmean), and daily minimum temperature (Tmin) on the
prediction performance of the spring phenological models.

2. Materials and methods

2.1. Study area and land cover datasets

To reduce the spatial heterogeneity of phenology (Suzuki
et al., 2003), we chose the NSTNEA region as the study
area because it covers a wide latitude range and a narrow
longitude range. Transects are used to reflect the effects of major
environmental factors on the structure, function, composition,
and water cycle of terrestrial ecosystems. They comprise a series
of research sites distributed over a large geographical area and
are a good reference for studying terrestrial ecosystems with a
large spatial extent, even at a global scale. The NSTNEA covers
regions with coordinates ranging from 32 to 78◦N and from 105
to 118◦E, spanning China, Mongolia, and Russia. The center
of the NSTNEA is located at Lake Baikal in Southern Siberia,
Russia, and the south and north are bounded by the northern
bank of the Yellow River in China and the shore of the Arctic
Ocean, respectively (Wang et al., 2014).

The response of spring phenology to climate change varies
by vegetation type and separate phenology models need to be
constructed for each vegetation type. The vegetation type dataset
used in this study was MODIS land cover from 2001 to 2012 with
a spatial resolution of 5′ (0.083◦) after aggregation (Friedl et al.,
2010; Channan et al., 2014). To reduce the impact of changes in
land cover (Wang et al., 2016), we only analyzed pixels with a
stable vegetation coverage (Figure 1A). Considering the impact
of human activities, we excluded croplands. Considering the
effects of noise and non-vegetation signals, we excluded the
“barren or sparsely vegetated” land cover type and selected pixels
with NDVI greater than 0.1 for analysis. Finally, the following
five vegetation types were selected for the analysis of the spring

phenological models: deciduous needleleaf forest (DNF), mixed
forest (MF), open shrublands (OSL), woody savannas (WS),
and grasslands (GL). To match the temperature data resolution,
we determined the main vegetation types at a resolution of
0.125◦ (Figure 1B). We overlaid the land cover data with the
climate data. When the value of all land cover pixels covered
by the climate data pixel was unique, we set the value of the
corresponding pixel of the new land cover data to that unique
value; otherwise, it was set to a null value. Therefore, the values
of the mixed pixels at the edge of different land cover were set to
null values to reduce the uncertainty in our research.

2.2. Phenology and climate datasets

We used GIMMS NDVI3g to extract the SOS for the study
area because it covered more than 30 years and it included
the warming prior to the 1997/98 El Niño event as well as the
subsequent warming hiatus (Meehl et al., 2011). Because the
NDVI time-series data fluctuated significantly owing to various
factors, a noise removal processing was required to reconstruct
a smooth NDVI time-series curve. In the current study, this was
achieved using the asymmetric gaussian model, double logistic
method, and Savitzky–Golay filter (with a Savitzky–Golay filter
window of 5). We adopted these methods because they are
widely used for the extraction of vegetation phenological metrics
(Zhong et al., 2019; Zeng et al., 2020). The NDVI curve fitting
functions for the three methods are shown in Supplementary
Table 1. The maximum rate of change in the fitted NDVI
curve was used to determine the SOS. The flow chart for SOS
extraction is shown in Supplementary Figure 1. Details of
the methods can be found in previous studies (Jonsson and
Eklundh, 2002; Jönsson and Eklundh, 2004; Piao et al., 2006).
The present study used the TIMESAT software to construct
a smooth NDVI time-series curve.1 A detailed comparison of
the three extraction methods has been reported by Mo et al.
(2019). We used the mean value of the three methods as the
phenological modeling data. Table 1 shows the comprehensive
results of the three methods.

The European Centre for Medium-Range Weather
Forecasts is one of the world’s leading reanalysis centers.
ERA-Interim is the global atmospheric numerical forecast
reanalysis provided by the European Centre for Medium-Range
Weather Forecasts to users worldwide. It is a newer product
than EAR-40. Its purpose is to connect early products with a
new generation of products, thus gradually replacing ERA-40.
The ERA-Interim data cover reanalysis dates from 1979 and is
updated in real-time (Berrisford et al., 2009, 2011). We used
ERA-Interim as climate data because it is widely used and its
spatial-temporal resolution met our needs. The ERA-Interim
uses 4D-Var assimilation technology to improve the ERA-40

1 http://web.nateko.lu.se/timesat/timesat.asp
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FIGURE 1

Land cover in the North–South Transect of Northeast Asia (NSTNEA) region: (A) original stable land cover, (B) redefined vegetation types.

TABLE 1 Statistics of spring phenology of five vegetation types in the study area (1982–2014) on the day of year (DOY): (a) deciduous needleleaf
forest (DNF), (b) mixed forest (MF), (c) open shrublands (OSL), (d) woody savannas (WS), and (e) grasslands (GL).

Vegetation type Full name Data points Mean SOS (DOY) SD of SOS (days)

DNF Deciduous needleleaf forest 30,789 141.6 6.5

MF Mixed forest 59,400 142.1 8.8

OSL Open shrublands 17,886 151.1 10.1

WS Woody savannas 891 150.1 7.1

GL Grasslands 2,07,471 152.1 16.7
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and other data, solving some of the key problems associated
with ERA-40 and improving the accuracy of the forecast.
ERA-Interim has a horizontal resolution of approximately
79 km and is interpolated globally to a variety of latitude and
longitude grids ranging from 0.125 to 2.5◦ using interpolation
techniques. We obtained daily temperature and precipitation
data from 1982 to 2014 with a spatial resolution of 0.125◦. The
dataset contained atmospheric temperature data 2 m above the
ground taken at four time intervals (6, 12, 18, and 24 h). The
mean temperature at these intervals was taken as the average
temperature of the day.

2.3. Spring phenological model

Because the study area is located in the middle and
high latitudes, the SOS is primarily controlled by temperature
and photoperiod. We selected 17 spring phenological models,
including a linear model, 6 one-phase models, and 10 two-
phase models for analysis (Table 2). The parameter common
to most models was the start date; the differences were
the environmental driver used and the response rate to the
environmental driver controlled by one or more parameters.
The formulas of the models used in this study can be found
Supplementary Tables 2, 3.

2.4. Model calibration and evaluation

A part of dataset (1986-2010) was used to train the model
and another part (1982-1985, 2011-2014) to evaluate its
predictive performance. The PHENOR modeling framework
(Hufkens et al., 2018) was used to train the different
phenology models, using the generalized simulated annealing
(GenSA) parameter optimization algorithm (Xiang et al.,
2013). Considering the asymmetric effects of daytime and
nighttime temperatures on SOS, we parameterized the
model using Tmax, Tmean and Tmin as input data. The
performance of the model was evaluated based on the
results of Tmean. Model parameterization is an important
process affecting the application of the model. As the
sample size increases, the parameter optimization process
becomes time-consuming. Therefore, the number of iterations
was set to 5,000 in this study. Considering the definition
of the phenological period and the scale effect, we did
not validate the model with in situ spring phenological
data.

We used the root mean square error (RMSE) to evaluate
the spring phenological model. The RMSE reflects the deviation
between the predicted value of the model and the observed
value. The calculation formula of RMSE is shown in Equation 1:

RMSE =

√∑n
i=1 (Oi − Pi)2

n
(1)

Here, Oi is the observed value, Pi is the predicted value, n is
the number of observed samples.

The Akaike information criterion (AIC) is often used to
evaluate a set of models for a given data (Akaike, 1974). The AIC
is based on the concept of information entropy and is used to
evaluate the complexity of the model and measure the goodness
of the model. For a certain dataset, the lower the AIC value, the
better the model. The calculation formula of AIC is shown in
Equation 2:

AIC = n∗ log
(
RMSE2)

+ 2k+
2k(k+ 1)

n− k− 1
(2)

where k is the number of parameters to be fitted in the model.
In summary, we used correlation coefficients, RMSE and

AIC to evaluate the predictive performance of the 17 models
used in this study, which were calculated from the 8-year
observed and predicted SOS.

3. Results

Figure 2 shows the scatter plot of the SOS predicted by the
17 models for DNF, MF, OSL, WS, and GL and the satellite-
derived SOS. For DNF, MF, OSL, and WS, the SOS simulated
by the models had a good consistency with the satellite-derived
SOS, and most points were concentrated near the 1:1 line. For
GL, the data points were more scattered. This characteristic
was reflected in the correlation coefficient. From the perspective
of vegetation types, overall, the satellite-derived SOS of DNF,
MF, OSL, and WS had a high correlation with the model-
predicted SOS, with most coefficients exceeding 0.7 and some
even exceeding 0.8. In contrast, the corresponding correlation
coefficient of GL did not exceed 0.5.

Figure 3 shows the box plot of RMSE between the SOS
predicted by the 17 models and the SOS derived from the
satellite. From Figures 3A, C, it can be seen that for DNF
and OSL the difference in the prediction results of most spring
phenological models was relatively small. For MF and WS, the
temperature response functions and model structures had a
significant impact on the model prediction results, while for GL,
there was no significant difference in the prediction results of
most models.

To find the optimal spring phenological model for each
vegetation type, we listed the RMSE, correlation coefficient, and
AIC of the SOS predicted by the 17 models and the SOS derived
from the satellite (Table 3). For DNF, the M1 model was the best
model for predicting spring phenology, because it had the lowest
RMSE and AIC and the highest correlation coefficient. Similarly,
the M1 model was the best model for predicting the spring
phenology of OSL and GL. For MF, the AT model achieved the
lowest RMSE and AIC and the highest correlation coefficient,
making it the optimal model for predicting spring phenology.
The PM1 model was the best model for predicting the spring
phenology of WS.
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TABLE 2 Phenological models for the start of the growing season (SOS) included in this study.

Model
abbreviation

Full model name Release Drivers No. parameters Comments/References

LIN Linear model – T 2 Simple linear regression

TT Thermal time model Ecodormancy release F 3 Reaumur, 1735; Kramer, 1994;
Chuine et al., 1999

TTs Thermal time model Ecodormancy release F 4 Hänninen, 1990; Kramer, 1994

PTT Photothermal time
model

Ecodormancy release PF 3 Masle et al., 1989

PTTs Photothermal time
model

Ecodormancy release PF 4 Landsberg, 1974; Ćrepinšek et al.,
2006; Basler, 2016

M1 M1 model Ecodormancy release PF 4 Blümel and Chmielewski, 2012

M1s M1 model Ecodormancy release PF 5 M1 model using a sigmoid
temperature response

AT Alternating model Endo- and ecodormancy
releases

CF 5 Murray et al., 1989

SQ Sequential model Endo- and ecodormancy
releases

CF 8 Hänninen, 1990; Kramer, 1994

SQb Sequential model Endo- and ecodormancy
releases

CF 8 SQ model using a bell-shaped
chilling response

PA Parallel model Endo- and ecodormancy
releases

CF 9 Hänninen, 1990; Kramer, 1994

Pab Parallel model Endo- and ecodormancy
releases

CF 9 PA model using a bell-shaped
chilling response

SM1 Sequential model (M1
variant)

Endo- and ecodormancy
releases

CPF 8 Basler, 2016

SM1b Sequential model (M1
variant)

Endo- and ecodormancy
releases

CPF 8 SM1 model using a bell-shaped
chilling response

PM1 Parallel M1 model Endo- and ecodormancy
releases

CFP 8 Basler, 2016

PM1b Parallel M1 model Endo- and ecodormancy
releases

CFP 8 PM1 model using a bell-shaped
chilling response

GRP Grassland pollen model Endo- and ecodormancy
releases

FR 5 García-Mozo et al., 2009; Basler,
2016

Model description: s, to distinguish the forcing function, using a sigmoid temperature response rather than a growing-degree-day temperature response; b, to distinguish the chilling
function, using a bell-shaped temperature response rather than a triangular temperature response.
C, chilling temperature; F, forcing temperature; P, photoperiod; R, precipitation, and T, temperature responses are not separable in chilling or forcing.

We calculated the average results of the TT, PTT, and M1
models and the average results of the TTs, PTTs, and M1s
models to compare the difference between growing-degree-day
temperature response and sigmoid temperature response. We
also calculated the average results of the SQ, PA, SM1, and PM1
models and the average results of the SQb, PAb, SM1b, and
PM1b models to compare the difference between the triangular
chilling response and the bell-shaped chilling response. Finally,
we calculated the average results of the one-phase models and
of the two-phase models to analyze the influence of the model
structure (Figure 4).

For all vegetation types in this study, the difference in
chilling temperature response had no significant effect on
the model predictions. The difference in forcing temperature

response had a significant impact on the prediction results of the
spring phenological model. Overall, compared with the model
using the sigmoid temperature response, the model using the
growing-degree-day temperature response had a lower RMSE.

Figure 5 shows the RMSE of the satellite-derived SOS
versus the simulated SOS for the spring phenological models
using Tmax, Tmean, and Tmin. As shown in the figure, the
performance of the models varied by vegetation type. In general,
for DNF, OSL, and WS, the lowest RMSE was obtained when
the model used the maximum daily temperature to predict the
spring phenology. For MF, compared with the maximum daily
temperature, a lower or similar RMSE was obtained when the
model used the mean daily temperature. For GL, the lowest
RMSE was achieved when the model used the minimum daily
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FIGURE 2

Scatter plot of the model-predicted start of the growing season (SOS) and satellite-derived SOS. The dots in each graph indicate all pixels for
each vegetation type across the model training period. Figures a1–a17, b1–b17, c1–c17, d1–d17 and e1–e17 show the prediction results of the 17
models of deciduous needleleaf forest (DNF), mixed forest (MF), open shrublands (OSL), woody savannas (WS), and grasslands (GL), respectively.
The solid lines in the figures are 1:1 lines. A point on the line indicates that the satellite-derived SOS is equal to the model-predicted SOS.
n_neighbors indicates the number of points within the radius of each data point, which reflected the degree of aggregation of data points. It
was drawn by geom_pointdensity in the ggpointdensity package (version 0.1.0) in R, with the radius adjustment parameter set to 0.1.
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FIGURE 3

Comparison of the results of 17 spring phenological models for five vegetation types: (A) deciduous needleleaf forest (DNF), (B) mixed forest
(MF), (C) open shrublands (OSL), (D) woody savannas (WS), and (E) grasslands (GL). The five panels show box plots of the root mean square error
(RMSE) between the start of the growing season (SOS) predicted by the 17 models used in this study and the satellite-derived SOS. The RMSEs
were calculated from the validation dataset.

temperature, while for DNF, MF, OSL, and WS, the highest
RMSE was achieved when the model used the minimum daily
temperature.

4. Discussion and conclusion

The SOS of five vegetation types extracted using the NDVI
dataset for the period 1982–2014 was used to parameterize and
evaluate the performance of 17 spring phenological models.
The effects of different chilling temperature responses, forcing
temperature responses, and model structure on the prediction
performance of the model were compared. The effects of
Tmean, Tmin, and Tmax on the performance of the models
were also tested.

For the five vegetation types studied, the models that
explained only the ecodormancy release gave RMSE and
correlation coefficients similar to the models that explained
the releases of both endo- and ecodormancy, consistent with
previous studies (Hänninen and Kramer, 2007; Linkosalo et al.,
2008; Granhus et al., 2009; Basler, 2016). This may be because
the spring temperature accumulation process that explains the
release of ecodormancy common to all models dominates the

occurrence of spring phenology (although the temperature
response function is different), while other factors, such as the
chilling response function, play only a modulating role. In the
models that explain only the ecodormancy release, it is assumed
that the chilling response is satisfied. This assumption is often
valid under northern climatic conditions (such as the study area)
but may lead to incorrect results in the future as the climate
warms. The environmental adaptation strategies of different
vegetation types tend to vary considerably, and differences in the
best models were generally the result of a combination of model
structure and environmental drivers. For DNF and OSL, SOS
was mainly driven by spring forcing and photoperiod; for MF,
SOS was mainly controlled jointly by chilling and forcing; and
for WS, SOS was driven by a combination of chilling, forcing,
and photoperiod.

Piao et al. (2015) showed that leaf onset was triggered
by Tmax rather than Tmin or Tmean, and this finding was
supported by the analysis of satellite-derived spring vegetation
phenology in the northern hemisphere (>30◦N). The results of
the current study indicated that Tmax had the highest impact
on DNF, OSL and WS, and Tmean had the highest impact on
MF. As for GL, most models parameterized by Tmin gave the
lowest RMSE, indicating that the spring phenology of grassland
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FIGURE 4

RMSE predicted by spring phenological models with different temperature response functions and model structures: (A) deciduous needleleaf
forest (DNF), (B) mixed forest (MF), (C) open shrublands (OSL), (D) woody savannas (WS), and (E) grasslands (GL). Triangular and Bell are the
average results of the model using triangular temperature response (SQ, PA, SM1, and PM1) and bell-shape temperature response (SQb, PAb,
SM1b, and PM1b) during the endodormancy phase, respectively. GDD and Sigmoid are the average results of the model using
growing-degree-day temperature response (TT, PTT, and M1) and sigmoid temperature response (TTs, PTTs, and M1s) during the ecodormancy
phase, respectively. Ecodormancy, and endo- and ecodormancy, refer to the average results of the one-phase model and the two-phase
model, respectively.

was mainly affected by Tmin. Shen et al. (2018) showed that for
the temperate grasslands of China, Tmin had a greater effect in
spring, consistent with the results of this study.

Shen et al. (2018) demonstrated that for temperate
grasslands in China, precipitation significantly affected
grassland SOS. On average, an increase of 10 mm in
precipitation during spring will advance the SOS by 1.7 days.
Liu et al. suggested that factors such as precipitation should be
considered when simulating the spring phenology of grasslands
in the northern hemisphere (Liu et al., 2018). The GRP model
used in this study considered the impact of precipitation, but
the simulation results did not improve. This may be a limitation
of the model structure, because the interactions between the

drivers are still largely unknown. In addition, soil moisture
may also be an important factor affecting the spring phenology
of grassland (Liu et al., 2013). Because of the unsatisfactory
results of spring phenology predicted by existing models for
GL, the effects of temperature, photoperiod, and precipitation
need to be further investigated. In addition, soil moisture can
be integrated into future spring phenological models (Liu et al.,
2013; Tao et al., 2020).

It should be noted that although Tmax and Tmin showed
asymmetric effects on the performance of most models,
their effects may be different for one-phase and two-phase
models. One-phase models only consider cumulative forcing
temperature, which may be influenced mainly by Tmax,
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FIGURE 5

RMSE of the satellite-derived start of the growing season (SOS) versus the simulated SOS for the 17 models parameterized using Tmax, Tmean,
and Tmin for five vegetation types: (A) deciduous needleleaf forest (DNF), (B) mixed forest (MF), (C) open shrublands (OSL), (D) woody savannas
(WS), and (E) grasslands (GL). Model abbreviations: see Table 2. The RMSEs were estimated from the SOSs of the validation period.

whereas two-phase models consider both cumulative chilling
temperature and cumulative forcing temperature, where the
chilling temperature accumulation process may be more
influenced by Tmin. For two-phase models, especially those
with concurrent cumulative chilling and cumulative forcing
temperatures, the effects of Tmax and Tmin need to be
further investigated.

Model structure is a decisive factor affecting model
performance; thus, understanding the interaction of the
environment with plant growth is critical. In this study,
the effects of chilling, forcing, photoperiod, and precipitation
on spring phenology were considered, but the synergistic
relationship of each factor still needs to be further clarified.
Manipulating experiments is a useful means of understanding
the impact of environmental factors on plant growth and can
help improve the predictive performance of models (Piao et al.,
2020; Prevéy et al., 2021). In addition, phenological models
are usually built at the species level, and the phenological
information extracted in this study may be an integrated result
from different species. Studies have shown that different tree

species have different temperature and photoperiod sensitivities
(Körner and Basler, 2010; Zohner et al., 2016; Fu et al.,
2019). With the development of remote sensing technology,
high-resolution data are increasingly available. High-resolution
phenological data can be used to build models to reduce
uncertainty in modeling datasets.

Our study shows that the satellite-derived SOS of DNF,
MF, OSL, and WS had a higher correlation coefficient with
the model-predicted SOS, with most exceeding 0.7, while the
corresponding correlation coefficient of GL did not exceed
0.5. For all the five vegetation types studied, the difference in
chilling temperature response had no significant effect on the
model predictions, while the difference in forcing temperature
response had a significant impact on the prediction results of the
spring phenological model. Overall, compared with the model
using a sigmoid temperature response, the model using the
growing-degree-day temperature response had a lower RMSE.
The models explaining only the ecodormancy release had
RMSEs and correlation coefficients similar to those of models
explaining the releases of both endo- and ecodormancy. The
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most suitable temperature predictors for spring phenology were
Tmax for DNF, OSL, and WS; Tmean for MF; and Tmin for GL.
Because phenology models based on temperature, photoperiod,
and precipitation are not always satisfactory, their impact needs
further study. Furthermore, asymmetric effects between daytime
and nighttime temperatures in different vegetation types should
be incorporated into future spring phenology models.
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