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We conducted dendroclimatological study on three dominant conifer tree species,
Pinus koraiensis, Larix olgensis, and Picea jezoensis, in northeastern China for a better
understanding of climate change impacts on temperate forest growth, by discussing
the radial growth relationships of these tree species and projecting their radial growth
trends under the future climate change scenarios. Based on the tree-ring samples
collected from the upper altitude of Changbai Mountain, ring width chronologies were
built to examine the growth relationships, and regression equations were established
to project the future growth of the species under future climate change projected
by the five general circulation models (GCMs) and four representative concentration
pathway (RCP) scenarios. Although both temperature and precipitation showed varying
degrees of relationships with growth of these three tree species, the limiting climate
factors were species-specific. The tree-ring growth of P. koraiensis was limited by
the summer temperature and precipitation at the end of growth, namely, significant
positive correlations with the current July temperature and the previous September
precipitation. Growth of L. olgensis was limited by the temperature before growing
season, for its chronology was negatively correlated with the current February and
previous December temperature (p < 0.05). The climatic conditions before and after
growing season seemed to be the limiting factors of P. jezoensis growth, which was
negatively correlated with the current February to April temperature and the current
September temperature (p < 0.05), and positively correlated with the current August
precipitation (p < 0.05). Under the gradual increasing of temperature predicted by the
five GCMs and four RCP scenarios, the radial growth of P. Koraiensis will relatively
increase, while that of L. olgensis and P. jezoensis will relatively decrease comparing
to the base-line period (1981–2010). The specific growth–climate relationships and the
future growth trends are species dependent. P. Koraiensis was the more suitable tree
species for the forestation to maintain the sustainable forest in Changbai Mountain.
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INTRODUCTION

Global warming and its influences on the structure, function,
and growth of the forest ecosystem have been observed and
recognized (Lindner et al., 2010; IPCC, 2013; Rahman et al.,
2017; Russell and Parton, 2020). The annual mean temperature in
China has increased 0.9 to 1.5◦C during the last 100 years (1909–
2011) larger than the global average (Editorial Commission of
Northeast Regional Climate Change Assessment Report, 2013),
and different climate models under different scenarios all predict
that climate warming will continue in future in China (Xu et al.,
2006; Xu et al., 2016; Zhang et al., 2017). A better understanding
of how forest ecosystem in response to climate change is of great
significance for maintaining productive and sustainable forest,
and this requires more precise tree growth-climate relationships.

Tree-ring can be used as an important data source to study
impacts of climate change on tree growth, for tree-ring recording
the tree growth process and reflecting the effect of tree growth
climate conditions. In addition, tree-ring material has many
advantages, such as a wide range distribution, high resolution,
accurate dating, and easy access to multiple copies (Hughes, 2002;
Cook et al., 2004; Breitenmoser et al., 2014). Accordingly, many
studies on tree growth-climate relationships have been widely
carried out by dendroclimatological method using this proxy
data (Fritts, 1976; Lebourgeois et al., 2012; Housset et al., 2018;
Zhang et al., 2018).

Compared with boreal forests, temperate forests are
characterized by high precipitation, high humidity, and more
deciduous tree species, indicating more complex growth-climate
relationships and potential growth trends under climate change
(Castagneri et al., 2014; Han et al., 2019; Prislan et al., 2019; Wu
et al., 2019). Some dendroecological studies were conducted
on the radial growth of Pinus sylvestriformis, Picea jezoensis,
and Pinus koraiensis in the temperate forest of Changbai
Mountain, showing comprehensive influence of temperature and
precipitation (Yu et al., 2016, 2021). If the global temperature
continues to increase in the future, growth of P. jezoensis will
undergo an adverse impact (Yu et al., 2021). At the same time, the
climate conditions related to growing seasons have been found to
be limiting factor for temperate forest growth usually, especially
summer temperature (Castagneri et al., 2014; Chen et al., 2017;
Wu et al., 2019), spring, and winter temperatures before growing
season (Pederson et al., 2004; Yan et al., 2017; Prislan et al., 2019).
Above all, although many studies have already addressed the
unstable relationships between radial growth and climate, the
climatic responses still need to dig deeper.

Changbai Mountain in Northeastern China is covered by a
large area of undisturbed temperate forest and characterized by
a vertical zonation of forest ecosystems along the altitudinal
gradient (Editorial Committee for Forestry of Jilin, 1988).
P. koraiensis, Larix olgensis, and P. jezoensis are its three dominant
conifer tree species. The climate warming in Changbai Mountain
has been obvious since the 1950s (Wang et al., 2010; Jia et al.,
2017; Jiang et al., 2019). Under this background, many studies
were carried out in this region to discuss the influence of climate
change on the forest ecosystem using dendroclimatological
method. Some revealed that elevation differences exerted a strong

influence on the growth-climate relationships for the individual
conifer tree species (Wang et al., 2013; Shen et al., 2016; Wang H.
et al., 2017; Wang X. C. et al., 2017), but the difference among the
tree species growth-climate relationships was rarely compared,
which is also important for examining the regional growth-
climate precisely and thoroughly.

This study chose the three main conifer tree species of
P. koraiensis, L. olgensis, and P. jezoensis in Changbai Mountain
to discuss the radial growth relationships of the three tree species
and to project their radial growth trends under the future climate
change scenarios.

MATERIALS AND METHODS

Study Area and Field Sampling
The study area is located on the north slope of the Changbai
Mountain Natural Reserve in northeastern China (Figure 1).
This area is characterized by a temperate continental monsoon
climate. The meteorological data of the Donggang and Erdao
stations (data from the National Meteorological Information
Center of China) showed that the mean annual temperature
was 3.2◦C, with a mean temperature of −16.8◦C in January and
20.1◦C in July during the period 1958–2007 (Figure 2). The
mean annual precipitation was 746.4 mm, and mainly occurred
from May to September. The vegetation in this area has the
characteristic of vertical zonality. Korean pine and broad-leaved
mixed forest are located from 500 to 1,100 m. A spruce-fir forest
continues from 1,100 to 1,800 m. The soil in the coniferous forest
zone is mountainous brown forest soil (Editorial Committee for
Forestry of Jilin, 1988).

Tree-ring cores of P. koraiensis, L. olgensis, and P. jezoensis
were all sampled at their upper altitudinal limit in the mountain
dark coniferous forest zone distributed from 1,100 to 1,800 m
a.s.l. For each site, approximately 20–30 trees were selected and
two cores were sampled per tree.

Chronology Development
Cores were dried and sanded to produce clearly visible tree-ring
boundaries, and then cross-dated (Stokes and Smiley, 1968). The
ring width was measured using the LINTAB-station (Frank Rinn,
Heidelberg, Germany) at a 0.01 mm resolution. The COFECHA
program (Holmes, 1983) was used to check the quality of cross-
dating and measurements.

The tree-ring chronologies was developed using the ARSTAN
program (Cook, 1985). A cubic smoothing spline with 67%
of the series length was used to remove the age-related
growth trends of raw ring-width chronologies. The resulting
ratio series were then computed as a biweight robust mean
of the detrended and standardized individual series (Cook
et al., 1990). To show the strength of common signals in the
chronologies, a within-chronology common interval analysis for
each chronology was performed. The statistical quality of each
chronology was measured using several coefficients commonly
used in dendrochronology. We calculated the standard deviation
(SD) to estimate the variability of ring width series, and the mean
sensitivity (MS) to indicate the relative changes in ring width
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FIGURE 1 | Locations of sample sites and meteorological stations in the study area.

FIGURE 2 | Monthly total precipitation and mean temperature at Changbai Mountain based on the Donggang and Erdao meteorological stations (1958–2007).

index variance between consecutive years, and the first-order
autocorrelation (AC1) to measure the influence of the previous
year’s growth on the current ring, and the mean correlation
between trees (R) and the first principal component (PC1) to
indicate the common signal strength. The expressed population
signal (EPS) was also calculated to indicate the chronology

confidence level (Briffa and Jones, 1990), and a threshold value
of 0.85 is often used to evaluate the useful and valid time span of
the final chronologies (Wigley et al., 1984).

Gleichläufigkeit index was calculated to measure level
of agreement between consecutive ring width slopes. The
degree of similarity between two series based on the
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positive (upward) or negative (downward) trends of each
width was expressed as a percentage of the number of
intervals (Schweingruber, 1988; Schweingruber et al., 1993).
Gleichläufigkeit index (GLK) was computed according to the
formula (Feliksik and Wilczyński, 2009):

GLK = 100 ·m · (n− 1)−1
[%]

where m is the number of concordant (as to the direction)
chronology sections, and n is the length of the period under
comparison in years.

Pearson correlation coefficient was calculated to measure the
consistence of variation amplitude correlated with the sensitivity
of the chronology.

Growth-Climate Relationships
There are three meteorological stations named Erdao (591 m
a.s.l.), Donggang (774 m a.s.l.), and Tianchi (2623 m a.s.l.)
in the study area (Figure 1). Among them, Tianchi station
data were not used in our study because winter observations
have been terminated since 1989. The monthly temperature
and precipitation correlation coefficients at Erdao and
Donggang from 1958 to 2007 were 0.95 (p < 0.01) and
0.79 (p < 0.01), respectively. Therefore, we averaged the
recorded climate data from the Erdao and Donggang to
improve the regional representation when used to analysis the
growth-climate relationships.

Pearson correlation coefficients between the tree-ring width
and monthly mean temperature and total precipitation were
calculated between 1958 and 2007 to identify the growth-climate
relationships (Fritts, 1974) throughout 13 months from the
previous September to the current September.

Future Projection of the Radial Growth
Trends
The future climatological data were projected by five general
circulation models (GCMs) (HadGEM2-ES, IPSL-CM5A-LR,
GFDL-ESM2M, MIROC-ESMCHEM, and NorESM1-M) (Yin
et al., 2015) and four representative concentration pathway
(RCPs) (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) scenarios (Moss
et al., 2010) used in the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report. To evaluate the
simulation capacity of the models for the study area, Pearson
correlation coefficients between the observed and the simulated
monthly temperature and precipitation were calculated during
1981–2010. To reduce uncertainty in GCMs performance,
an average of the five GCMs under each emission scenario
was used in this study. The future projection was predicted
between 2011 and 2100.

The regression equations between ring width and climatic
factors were established by stepwise regression method to
calculate tree-ring index. The regression equations, passing
the significance test at 0.005 levels and explaining variances
all over 20%, were used for the growth projections. Sum of
square error (SSE) and mean squared error (RMSE) were
calculated to measure the fitting effect of the equations.
The relative variation rate (RVI) was used to evaluate the

impacts of future climate change on the radial growth of the
three tree species.

RVI =
Y (X+4X)− Y (X)

Y (X)
× 100%

RVI: the variation rate of tree-ring index; Y: the tree-ring width
index; X: the monthly total precipitation and mean temperature;
4X: the variable quantity of monthly total precipitation and
mean temperature.

RESULTS

Chronology Characteristics
Three ring-width chronologies were built for the three conifer
tree species. Table 1 shows the statistical characteristics of the
three chronologies. P. jezoensis had the higher statistical indices
than the other two tree species, except for L. olgensis’ SD.
P. koraiensis had the lowest statistics of the three tree species.
The EPS of the three chronologies all exceeded the recommended
threshold of 0.85; according to Wigley et al. (1984), they were all
suitable for dendroclimatological studies.

The annual and 5-year moving averaged ring width indices
revealed the correlations among chronologies in high-frequency
and low-frequency, respectively (Figure 3). They showed the
similar variation in 1990s, circa 1885 to 1905, but they were
different in circa 1975, circa 1930 to 1935. Gleichläufigkeit indices
of the three chronologies were 57, 53, and 53%, all greater than
50% over 200 years. The P. koraiensis chronologies showed better
relationships with the other two chronologies (R = 0.22 and
0.28, respectively) than the relationship between L. olgensis and
P. jezoensis chronologies (R = 0.09) (Table 2).

Relationships Between Tree-Ring
Chronologies and Climatic Factors
The growth-climate relationships were different for the three
tree species (Figure 4). P. koraiensis chronology was significantly

TABLE 1 | The sampling site information, the standard chronology statistics, and
the results of the common period analysis.

Site no. Site 1 Site 2 Site 3

Tree species Pinus koraiensis Larix olgensis Picea jezoensis

Latitude (N) 42.14◦ 42.14◦ 42.07◦

Longitude (E) 128.47◦ 128.51◦ 128.09◦

Elevation (m a.s.l) 1258 1258 1770

Tree/Core 29/58 22/44 21/41

MS 0.115 0.150 0.121

SD 0.146 0.206 0.198

AC1 0.534 0.590 0.705

R 0.356 0.397 0.410

EPS 0.958 0.959 0.965

PC1 (%) 37.6 42 43.7

MS indicates the mean sensitivity, SD the standard deviation, AC1 the first-
order autocorrelation, R the mean correlation between trees, EPS the expressed
population signal, and PC1 the first principal component.
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FIGURE 3 | Ring-width index series of the chronologies (left Y-axis) and numbers of tree-ring sample cores used in the chronology development (right Y-axis). The
red lines represent the 5-year moving averages.

and positively correlated with temperature in the current July
and precipitation in the previous September. Different from
P. koraiensis, L. olgensis ring width index chronology was
negatively and significantly correlated with temperature in the
current February and the previous December. P. jezoensis
was negatively correlated with the temperature in the current
months especially with February to April and September (all
p< 0.05), and it was positively correlated with the current August
precipitation significantly.

The Future Radial Growth Trends Under
the Projected Climate
Figure 5 shows the future climate change predicted by five
GCMs under four emission scenarios. During 1981–2010, the
correlation coefficient between the observation and the simulated
monthly temperature and precipitation was 0.987 (p< 0.001) and
0.721 (p < 0.001), respectively. The annual average temperature
increased gradually for all RCPs, and the temperature in 2099

TABLE 2 | Gleichläufigkeit indices (GLK) and Pearson correlation coefficients (R)
among the three chronologies.

Pinus koraiensis Larix olgensis

GLK R GLK R

Larix olgensis 57%* 0.22*

Picea jezoensis 53% 0.28* 53% 0.09

* refers to the significance at 0.05 level.

is 1.4, 2.1, 3.5, and 6.3◦C higher than the temperature in
2011, respectively, for RCP2.6, RCP4.5, RCP6.0, and RCP8.5,
respectively (Figure 5A). The annual total precipitation also had
a rising trend, increased about 10 mm from 2011 to 2100 for the
individual RCPs (Figure 5B).

Three equations were chosen for prediction of the future
radial growth (Table 3). They all passed the significance test at
0.005 levels and explained variances all over 20%. The correlation
coefficient between observed and the modeled tree-ring width
index are 0.482 (p < 0.01), 0.761 (p < 0.01), and 0.533 (p < 0.01)
for P. koraiensis, L. olgensis, and P. jezoensis, respectively. Under
the future climate change scenarios, compared with the baseline
term of 1981–2010, the annual ring width of P. koraiensis will
increase by more than 20% in the three future periods (Table 4).
The ring width of L. olgensis and P. jezoensis will decrease by
more than 48 and 29% in the three future periods, respectively.
As carbon intensity increased from low greenhouse gas emissions
scenarios (RCP2.6) to high greenhouse gas emissions scenarios
(RCP8.5), the variation magnitude will be enhanced for all the
three tree species.

DISCUSSION

Species-Specific Growth-Climate
Relationships
Pinus koraiensis, L. olgensis, and P. jezoensis
chosen in this study were the three typical and
representative conifer tree species of Changbai Mountain
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FIGURE 4 | Pearson correlation coefficients between monthly climatic factors and ring width indices for Pinus koraiensis, Larix olgensis, and Picea jezoensis. Sizes
of the circles indicate the strengths of the correlation coefficients. The gradual change of color from blue to red indicates a gradual change of correlation from
negative to positive. The capitalized months mean them from the past year, and the lowercase from the current year. The “∗” indicated a significance p < 0.05.

(Editorial Committee for Forestry of Jilin, 1988). The established
chronologies had good statistical quality, suggesting they were
suitable for dendroclimatological study. High Gleichläufigkeit
indices illustrated the good overall similarity of width trends
among the three chronologies, which can crossdate with
each other. However, the correlation coefficients between the
L. olgensis and P. jezoensis were weak, indicating that the
amplitude of variation for the two chronologies had poor
consistence (Shao et al., 2003). This may inform differences in
the ecological information recorded by the chronologies, but the
further identification of such information required a comparison
of the chronologies with climate data (Wimmer and Grabner,
2000; Fonti and García-González, 2004).

According to the new climate regionalization scheme for
China, Changbai Mountain belongs to the middle temperate
humid climate zone located in northeastern China, where
temperature is the main limiting factor for forest growth.
However, further analyses showed that precipitation were the
one of the limiting climate factors for the tree radial growth

in Changbai Mountain as well. Due to the vertical zonality of
Changbai Mountain, the microclimate (such as temperature,
precipitation, and soil moisture) is different (Editorial Committee
for Forestry of Jilin, 1988), which further leads to the influence
of altitude on the radial growth-climate relationships for the
individual tree species. In general, at low elevation site, the
radial growth was positively correlated with the precipitation,
while at the upper elevation, radial growth was significantly
correlated with the temperature. This rule was applied to
the main tree species in the region scale (Zhuang et al.,
2017). On the other hand, some studies have also shown
that differences in growth-climate relationships between tree
species were more influential than those between sites (Yu
et al., 2011), which were consistent with the results reported
by Graumlich (Graumilch, 1993), but differed from some other
findings in northwest China, Picea crassifolia in Qilian Mountain
for example (Liang et al., 2010).

Our study suggested that the three conifer tree species’ radial
growth was affected by both temperature and precipitation,
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FIGURE 5 | Climate changes in (A) annual temperature and (B) annual precipitation during 2011–2100 relative to the baseline period for four RCPs. Modeled and
observed averages of (C) monthly temperature and (D) monthly precipitation during 1981–2010.

and the specific responses of tree radial growth to climate
were dependent on the species. The main difference was that
P. Koraiensis radial growth was positively and significantly
correlated with temperature, whereas L. olgensis and P. jezoensis
radial growth were negatively and significantly correlated with
temperature; these findings were confirmed by the other studies.
With the detailed analysis, the current July temperature was the
main climatic limiting factor for the growth of P. koraiensis,
verified by Gao et al. (2018), because the decreasing temperature
may lead to a delay of the onset of the growth period and the
termination of growth before the end of the normal growing
season. In addition, the previous September precipitation was
another climatic limiting factor for the growth P. koraiensis,
for that the concentrating period of precipitation was from

TABLE 3 | Statistics of equation for Pinus koraiensis, Larix olgensis, and
Picea jezoensis.

R R2 F Sig. SSE RMSE

Pinus koraiensis 0.539 0.290 6.134 0.001 0.124 0.125

Larix olgensis 0.761 0.581 11.924 0.000 0.150 0.142

Picea jezoensis 0.482 0.232 6.343 0.004 0.179 0.172

May to September. Therefore, high precipitation in September
was more important to the accumulation of soil moisture,
which affected the growth of P. koraiensis in the next year.
The radial growth of L. olgensis was negatively affected by
the temperature in the current February and the previous
December, while the radial growth of for P. jezoensis was
negatively with temperature from February to April. Some
other studies showed that the above negative correlations may
be caused by the drought stress when the temperature rises
for the high altitude growth of the conifer tree growth (Yu
et al., 2006; Li et al., 2011). The special geological conditions
in Changbai Mountain lead to the thin soil layer and poor
water storage capacity in high altitude areas. With the increase
of temperature, the evapotranspiration of soil water and the
transpiration of plants may accelerate to inhibit the tree growth,
reduce leaf area, and then affect the photosynthetic characteristics
of plants, which is most obvious in spring when drought stress
is prone to occur.

The Projected Future Radial Growth
The future climate change in Changbai Mountain area was
predicted by different climate models with different climate
scenarios (Zeng et al., 2009; Wang et al., 2013; Yu et al., 2015), and
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TABLE 4 | RV values for the three periods based on tree-ring climate relationship.

RCP2.6 RCP4.5 RCP6.0 RCP8.5

2020s 2050s 2080s 2020s 2050s 2080s 2020s 2050s 2080s 2020s 2050s 2080s

Pinus koraiensis 22.33 28.37 26.8 20.97 31.81 37.88 23.7 34.85 47.41 27.59 43.59 63.29

Larix olgensis −48.03 −52.28 −52.61 −46.83 −57.92 −63.94 −59.09 −68.32 −81.05 −61.24 −78.98 −98.8

Picea jezoensis −29.51 −32.64 −32.16 −28.63 −35.59 −40.35 −35.81 −41.54 −50.69 −37.11 −49.73 −62.92

[RVI = (Y (X +4X)−Y(X))/Y(X) ∗ 100% RVI is the relative variation rate; Y is the tree-ring width index; X is the climatic data; 1X is the variable quantity of temperature
and precipitation].
T2, T4, T10, T11, and T12 are the temperature for February, April, October, the previous November, and the previous December, respectively; P2, P4, P7, and P9 are the
precipitation for February, April, July, and the previous September.

those studies all predicted temperature will increase gradually
in future. However, the prediction results for precipitation
are inconsistent, which indicated that the change of future
precipitation is uncertain. GCMs have become the main tool in
future climate change assessment and RCPs were used in IPCC
Fifth Assessment Report to investigate the impact of greenhouse
gasses on climate change (IPCC, 2013). They were proved to have
good simulation abilities for local climate characteristics over
China (Yin et al., 2015) and in Changbai Mountain (Yu et al.,
2015; Wang et al., 2019).

Under the climate change scenarios, in the future (2011–
2099), the temperature in Changbai Mountain will increase
obviously, and the rates of increase are 0.14◦C/10 a (RCP2.6),
0.21◦C/10 a (RCP4.5), 0.35◦C/10 a (RCP6.0), and 0.63◦C/10
a (RCP8.5), which are generally consistent with those of the
whole China (Yin et al., 2015). The different growth–climate
relationships dependent on tree species caused the different
future radial growth under future climate warming, and this
finding was verified by other studies (Li et al., 2011; Zhuang et al.,
2017). For P. koraiensis, the radial growth will increase greatly
when the temperature rise. But for L. olgensis and P. jezoensis, the
radial growth will relatively decrease with temperature increase
in future. In detail, a warming growing season will benefit growth
and distribution spread of P. koraiensis, while temperature
increase before growing season will restrict the growth and
survival of L. olgensis and P. jezoensis. If warming continues
in the future, the distribution of P. koraiensis at high altitude
will very likely expand; however, the range of L. olgensis and
P. jezoensiswill narrow for their decline in competitiveness. These
dominant tree species shift may further lead to the changes of
forest composition, structure, and the potential distribution area
for the mountain dark coniferous forest where they distributed.

It should be noted that the above projections based on the
growth-climate relationships and future climate change may be of
some uncertainty. On the one hand, some uncertainties may exist
in GCMs and RCPs. On the other hand, the other environmental
and biological factors affecting tree growth also may change,
bringing about the future growth change.

CONCLUSION

The radial growth of the three main conifer tree species
of P. koraiensis, L. olgensis, and P. jezoensis, distributed at

their upper altitudinal limit on the north slope of Changbai
Mountain, is affected by both temperature and precipitation.
The specific growth–climate relationships are species dependent.
Under the future climate change scenarios, the P. koraiensis
growth will increase, whereas the L. olgensis and P. jezoensis
radial growth will decrease relatively. In consequence,
P. koraiensis in the higher attitude are more favorable for
forestation compared with the other two tree species, and this
finding can be used as an important basis of healthy forest
management in this region.
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