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Supporting a transition to net-zero carbon (C) emissions is a key component of
international action to avoid dangerous climate change. Science has outlined potential
routes to net-zero, which include using nature-based solutions to grow C sinks and
diminish sources linked to land use and land use change. However, decision-makers
are challenged by ongoing climate change and the complexity of the biosphere,
interacting with socio-economic constraints. Decision-makers need science-based, but
easy to use, tools to understand the current and potential future states of the terrestrial
C-cycle, and its sensitivity to their decisions. These tools must provide clear uncertainty
estimates to help take account of risks, must be flexible enough to be updated as
new data become available, and simple enough to be deployed broadly. We argue that
model-data fusion approaches, combining the systemic ecological theory embedded
in intermediate complexity models with an ever-expanding collection of ecosystem
observations from field and remote sensing campaigns, provide the scientific means
to address each of these challenges and therefore facilitate management decisions as
we face an uncertain future.

Keywords: earth observation, terrestrial biosphere models, terrestrial ecosystems, carbon cycle, model-data
fusion, decision-making support

INTRODUCTION

Human interference with the global carbon (C) cycle has already led to dangerous climate change.
There are now international efforts to limit the accumulation of atmospheric CO2, focussing
primarily on the reduction of C emissions from fossil fuels. However, reducing emissions from
the land surface and increasing biological stores of C will also play critical roles on our path to net-
zero C emissions. Determining effective policy and management interventions therefore requires
an understanding of the terrestrial biosphere’s C balance. In this perspective piece we argue that
management of terrestrial ecosystems for net-zero requires tools that address four key challenges;
(i) resolving complex behaviours of ecosystems; (ii) maximising information from observations;
(iii) characterising model error and uncertainty; and (iv) effective communication of scientific
knowledge to decision-makers.

Frontiers in Forests and Global Change | www.frontiersin.org 1 January 2022 | Volume 4 | Article 818661

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2021.818661
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/ffgc.2021.818661
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2021.818661&domain=pdf&date_stamp=2022-01-20
https://www.frontiersin.org/articles/10.3389/ffgc.2021.818661/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-818661 January 15, 2022 Time: 14:14 # 2

Smallman et al. Model-Data Fusion as an Operational Tool

The terrestrial C-cycle is multi-scale, systemic and displays
non-linear behaviours. Dynamics arise from ecosystem processes
connecting producers (i.e., plants) and consumers (i.e.,
everything else) in complex food webs. These processes
have interactive controls and feedbacks that generate non-
linearities. For instance, the interactions between meteorology,
photosynthesis, leaf respiration and leaf traits determine the
seasonal cycle of production and its geographic variation.
C-cycling operates across time scales ranging from seconds (e.g.,
molecular processes) to millennia (e.g., C accumulation in peat).
This complexity is compounded by the heterogeneity of the
terrestrial biosphere, linked to topography, hydrology, geology,
disturbance history, and land management.

Effective decision-making relies on being grounded in
observations and supported by evidence. Earth observation
(EO) provides the means to monitor the entire land surface,
with increasingly frequent updates. EO can provide insights
into the biological and physical states of the land surface, but
field-based monitoring is vital for interpreting EO information,
quantifying its biases and generating ecological knowledge. All
observations contain errors and uncertainties which are often
poorly known, particularly in global products. Furthermore,
observations provide an incomplete picture of the terrestrial
C-cycle as some key states and processes are not currently
observable from space.

Process modelling provides a systemic view of the terrestrial
C-cycle, with the means to explore scenarios, to compare
the outcomes of alternative decisions. Modelling can generate
counterfactuals, the “what-ifs” that are vital for decision-making
around land management for net-zero. For example, there is
active debate about the potential for afforestation, reforestation,
and restoration to act as nature-based solutions. Modelling can
help test whether decisions are robust against a backdrop of
climate change, and project how poorly observable components
such as soil C respond to tree planting. However, process models
are highly complicated, often with weakly constrained parameters
and lacking uncertainty estimates.

Our fourth and final challenge is the effective communication
of scientific understanding to support decision-making. Our
knowledge of ecosystem function and future trajectories is
uncertain. These uncertainties need to be determined, explained
and exchanged so that decision-makers can balance risks and
opportunities, to take account of low-probability but extreme
events. This information needs to be accessible to non-specialists
and targetted to user needs. Solutions need to take account of
local biodiversity, soils, disturbance history, and people, who
must find ways to coexist with ecosystems in a sustainable
way. Co-creation between scientists and end-users is vital to
meet this challenge.

Recent developments in observing and modelling have
enhanced understanding of the terrestrial C-cycle, however,
further efforts are required. Both observational and modelling
approaches have deficiencies regarding the challenges laid out
above which are explored in the following sections. We then
argue that robust coupling of models and observations can
begin to solve these challenges, and track progress toward better
solutions for decision-making. We discuss how engagement

with decision-makers can make science accessible and useful.
And we conclude with key recommendations for linking
science to decisions.

SCALING AND REPRESENTATION
CHALLENGES IN OBSERVATIONS

Over recent decades, concurrent threads of research have
transformed our understanding of the terrestrial carbon cycle.
The advent of large international field-based observing networks
(e.g., FLUXNET, ICOS, GEM, and RAINFOR; Gwynne, 1982;
Pastorello et al., 2020; Malhi et al., 2021) has expanded
our understanding of the stocks and fluxes of C through
terrestrial ecosystems. Additionally, the creation of collaborative
repositories has enabled researchers to pool tens of thousands
of field observations, revolutionising our understanding of
ecosystem traits and their interrelationships (e.g., TRY and
GlobAllomeTree database; Henry et al., 2013; Kattge et al.,
2020). At the same time, our capacity to monitor ecosystems
at global scales has been revolutionised by the rapid expansion
of satellite-based remotely sensed EO. EO can uniquely provide
observationally informed estimates of ecosystem status and
dynamics with global coverage and increasingly, repeated
estimates (Table 1). These data present an opportunity to advance
our knowledge of terrestrial ecosystems. However, there remains
substantial progress to be made regarding data interpretation and
reducing uncertainty and bias in observations. Understanding
how best to use these data is critical to providing effective support
to decision-making.

Effective use of observations is restricted by measurement
error and uncertainty. While field-based observations typically
provide the most robust confidence estimates for ecosystem
status and function, they tend to represent a small spatial area
and/or short time-period. This localisation introduces error
and uncertainty when scaling [e.g., via machine learning (ML)]
to inform decision-making. Moreover, field-based observing
networks are concentrated across temperate latitudes with little
spatial and temporal coverage elsewhere, especially tropical
ecosystems. For example, the FLUXNET network has just 13
sites across Africa and South America. EO estimates reduce
scaling error and uncertainty by providing spatially consistent
coverage but require either statistical, ML or process-models
to transform the signals observed by satellites to relevant,
interpretable ecological metrics. This process introduces a new
source of error and uncertainty into estimates. Neither field
nor EO data provide a complete picture of ecosystem C
dynamics - some processes are not observed (e.g., soil C
stocks); some fluxes are net estimates restricting the process
knowledge we can infer (e.g., Wang et al., 2020). Constraining
the terrestrial C balance therefore requires an integrated view
of how stocks and fluxes are connected and correlated to
maximise process learning (e.g., Bloom et al., 2020). Furthermore,
error and uncertainty associated with observations make it
unclear whether estimates of different components of the C-cycle
are consistent, e.g., are EO derived estimates of disturbance
(e.g., deforestation) consistent with estimates of aboveground
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TABLE 1 | Examples of information available from earth observation.

Estimated
quantity

Spatial coverage Spatial resolution Temporal coverage Temporal
resolution

Process
relevance

References

Gross primary
productivity

Global 1 km 2000-Present 8-day C uptake Wang et al., 2017

Leaf area index Global 1 km 1998-Present 10-day Phenology,
potential C uptake

Lacaze et al., 2015

AG biomass Regional-global 30–250 m Various Annual or less
frequent

AG C storage, net
production

Rodríguez-Veiga
et al., 2019;
Santoro et al., 2021

Burned fraction Global 500 m 2000-Present Monthly Fire disturbance,
combustion

Giglio et al., 2018

Forest loss Global 30 m 2000-Present Annual Intense disturbance Hansen et al., 2013

Net biome
exchange of CO2

Regional-global 1◦–5◦ 2010-Present Monthly-annual Net C flux Wang et al., 2020;
Friedlingstein et al.,
2021

These include the biosphere property being estimated, its spatial and temporal resolutions, and the C-cycle process the observation constrains or forces in model-
data fusion. AG, above ground.

biomass (AGB) change generated from a different satellite
sensor?

Robust error quantification is critical for understanding the
utility of observations for decision-making. However, errors
are difficult to quantify, frequently underestimated and vary in
space and time (Mitchard et al., 2014; Santoro et al., 2021).
Zhao et al. (2020) evaluated three EO leaf area index (LAI)
products using field estimates of LAI, demonstrating that the
EO uncertainty estimates were a 3–5 fold underestimate of their
true error. Similarly, the disagreement between independent
approaches has been shown to be substantial, often larger than
the uncertainty estimated for individual products, e.g., Global
GPP (80–170 PgC year−1; Shao et al., 2013; Joiner et al., 2018;
Jung et al., 2020), EO AGB maps (Mitchard et al., 2014; Avitabile
et al., 2016) and LAI (Garrigues et al., 2008; Zhao et al., 2020).
Disagreement between LAI products tend to be greatest across
the tropics (Garrigues et al., 2008) but there is also a persistent
overestimation of seasonality of Boreal needleleaf forests in EO
LAI (e.g., Heiskanen et al., 2012). In the case of LAI and AGB,
strategies for addressing these challenges are being developed,
such as transparent methodologies for validation, determination
of uncertainty, and the creation of a robust network of validation
sites (Duncanson et al., 2019; Fang et al., 2019).

PARAMETER AND MECHANISTIC
UNCERTAINTY IN PROCESS
MODELLING

Terrestrial Biosphere Models (TBMs) simulate the whole
ecosystem, bridging the gap between observations, using
numerical expressions of hypotheses underpinning ecosystem
function. TBMs have varied levels of process-representation
complexity, often connecting modules for specific processes
such as photosynthesis and respiration. While no TBM
has an equivalent complexity of real-world ecosystems, their
interconnected representation of ecosystem processes provide a
means of addressing complex non-linear responses of terrestrial

ecosystems. The hypotheses implemented in TBMs are typically
derived from analyses of field observations (e.g., Huntingford
et al., 2017) and then calibrated at individual sites (e.g., Blyth
et al., 2011) or as the average from trait databases (e.g.,
Harper et al., 2016). From these calibrations a small number
of plant functional types (PFT) are typically defined and then
applied globally.

TBMs have been the focus of substantial research and
development over decades, providing useful insights into
ecosystem function and response to changes in their
environment, but have tended to become increasingly
complicated to include ever more processes and complex
process representations. TBMs are used to assess the response
to land use and land cover change, and the associated climate
change as defined by the shared socio-economic pathways
(SSPs, van Vuuren et al., 2017), forming a key component of
information feeding into international frameworks such as the
IPCC (2021). However, there remains large divergence between
Earth System Models (ESMs, within which TBMs represent
the biosphere) and observation-orientated estimates of current
terrestrial C stocks (Exbrayat et al., 2019) and between ESM
predictions of the trajectory of the terrestrial C-cycle (Eyring
et al., 2016; Exbrayat et al., 2018b; Arora et al., 2020).

The current TBM paradigm faces several obstacles toward
effectively supporting decision-making toward net-zero. The
process representations within TBMs have become progressively
more complex (or complicated), with an increasing number
of parameters that are often weakly calibrated at a limited
number of sites (e.g., Blyth et al., 2011). Furthermore, model
uncertainty and error are not well characterised. For example,
PFTs neglect the fact that traits vary in space within a given
PFT (Butler et al., 2017; Exbrayat et al., 2018a) resulting in
parameters which do not represent real-world variability (Reich
et al., 2014; Harper et al., 2016). Relatedly, TBMs typically
implement land use/cover change by varying the relative amount
of co-existing “tiles” of different PFTs simulated in the same
location. Additionally, TBM calibrations widely assume that the
terrestrial ecosystems are initially in steady state and are only
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varying in response to climate change. Therefore, these analyses
do not typically include direct management impacts such as
residue creation from forest felling, or subsequent regrowth
dynamics. A coalition of large forest plot databases has started
providing uncertainty-bounded observation constraints of post-
disturbance C accumulation rates (Cook-Patton et al., 2020).
However, simulating the C dynamics of regrowing forests under
varied policy-relevant management regimes and future climates,
with biologically plausible parameters and model structures,
remains an outstanding target (Braakhekke et al., 2019; Pugh
et al., 2019; Shiklomanov et al., 2020).

SUPPORTING DECISION-MAKERS
EFFECTIVELY

By 2100 global climate is likely to have changed in ways not seen
by life on Earth in hundreds of thousands of years (IPCC, 2021).
Furthermore, with the Glasgow Climate Pact (GCP) requiring
nations to return with new nationally determined contributions
by the end of 2022 and the upcoming global stocktake (UNFCCC,
2021), we expect that there will only be an increasing focus
on effective change detection capacity for ecosystem C stocks.
The GCP necessitates tools that provide system-level syntheses
of C data that can be updated as and when new observations
are available (e.g., Quegan et al., 2019). Furthermore, to support
adaptation, policy makers and land managers need to understand
the impact of management interventions on the resilience of
existing and regenerating forests under environmental conditions
with no real-world analogues (Hurlbert et al., 2019). TBMs have
been and continue to be vital to addressing these challenges,
through simulations of the full C-cycle. However, alongside
the global and system-level insight provided by TBMs, system-
level uncertainties will be essential for managing risk (e.g., low
probability, high impact scenarios), and identifying key gaps in
observations that can reduce model uncertainty and improve
future decision-making (Hurlbert et al., 2019).

Support for decision-makers would be advanced by giving
the models to decision-makers to explore; allowing direct access
to scenario investigation. Supporting decision-makers to be
model users gives them agency over exploring outcomes. But
existing models are largely too complicated for non-specialists to
use. For effective engagement, models and their user interfaces
need to be simple enough to use and allow rapid scenario
investigation, exploring for example management decisions and
climate interactions under model uncertainty. The degree of
translation from model output to user relevant information
will also vary (e.g., policy makers verses foresters). Decision-
makers will also question models whose initial conditions (e.g.,
woody C stocks) do not match their experience of reality.
Models calibrated and initialised to local conditions have greater
relevance and validity for regional decision-makers. Scientists
can support decision-makers by co-developing model tools.
Collaboration is key to ensuring that the information provided
to decision-makers is the best available but also delivered
in a format which is understandable and relevant to their
specific circumstances.

MODEL-DATA FUSION AS A SOLUTION

We argue that Model-Data Fusion (MDF), or data assimilation
approaches provide an opportunity to address the challenges
we have outlined by exploiting the information available in a
diverse range of observations to inform and improve model
parameterisations and process representations, while accounting
for uncertainty in observational constraints (Figure 1). MDF
can be viewed as theoretically informed meta-analyses, capable
of synthesising multiple data-streams that constrain disparate
aspects of ecosystem through a Bayesian framework. MDF
provides uncertainty-bounded calibrated model analyses, which
can be used to improve our understanding of ecosystem
functioning and make predictions of their likely response
to changes in climate, management and disturbance offering
invaluable information to policy makers, individual farmers and
foresters alike.

MDF approaches which retrieve parameter information
have gained increasing traction over recent years, spanning
TBMs of radically different process complexities and exploiting
different algorithms (e.g., Williams et al., 2005; Fox et al.,
2009; Williams et al., 2009; Kuppel et al., 2012; Keenan et al.,
2013; Caen et al., 2021; Famiglietti et al., 2021). These and
other studies have identified strategies for maximising the value
of MDF. For example, quantifying the information content
of different types of observations and how they impact TBM
predictive capacity has been widely assessed (Kuppel et al., 2012;
Keenan et al., 2013; Smallman et al., 2017; Famiglietti et al.,
2021). Predictive skill has been shown to increase with model
complexity only when sufficiently informed by observations
(Smallman et al., 2017; Famiglietti et al., 2021), i.e., we must
match model structure and complexity to the data available
for constraint. These studies support using simpler C models
supported by available observations. Simpler models are also
more accessible and thus meet the challenge for expanding
the mode- user community and enhancing co-creation with
decision-makers.

The carbon data model framework (CARDAMOM) is
an example of a MDF framework which aims to explore
and address the challenges we have outlined. CARDAMOM
uses a Bayesian approach within an Adaptive Proposal -
Markov Chain Monte Carlo (AP-MCMC, Haario et al., 2001)
to estimate the likelihood of parameters as a function of
observations, observation uncertainty, ecological theory, local
conditions (e.g., meteorology) and model structure (Bloom
et al., 2016). The resultant CARDAMOM analysis provides
pixel-level, i.e., local, ensembles of parameters for the DALEC
suite of intermediate complexity terrestrial ecosystem models
(Famiglietti et al., 2021) that can be combined to inform
national C balance and climate sensitivity (Smallman et al.,
2021). Ecological and dynamical constraints ensure that accepted
parameter combinations and their resultant C stock ratios and
dynamics are consistent with ecological theory (for details see
Bloom and Williams, 2015).

By retrieving ensembles of location-specific parameters,
CARDAMON can quantify the spatial variability of model
parameters (i.e. ecosystem traits). Modelling can then
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FIGURE 1 | Schematic highlighting the strengths (+) and weaknesses (−) of observations and models and how these can be reduced or accounted for to maximise
information content through model-data fusion approaches.

directly estimate how the magnitude and spatial variability
of uncertainty associated with model (DALEC) parameters
affects predictions of C stocks and fluxes. Using this information,
we can determine which parts of the terrestrial ecosystem
are the least constrained, identify opportunities for new
observations to improve constraint (Smallman et al., 2021),
and how uncertainty is propagated into predictions. The
DALEC model has an appropriate level of complexity
relative to typically available calibration data but is simple
enough to use for non-specialists to explore its behaviours and
use operationally.

The carbon data model framework is not alone in adopting
approaches which aim to maximise the benefits of combining
observations with TBMs (e.g., Pinnington et al., 2020; Huang
et al., 2021). Each approach has its own advantages and
disadvantages which should be considered to ensure that the
right analysis framework is used to address a given ecological
question. CARDAMOM and similar frameworks are well
placed to accelerate progress toward addressing the challenges

outlined in the previous sections by building on our existing
capacity to provide uncertainty bounded C-cycle analyses using
observations of forest regrowth (Smallman et al., 2017), to
impose fire (Exbrayat et al., 2018a; Yin et al., 2020) and
deforestation/degradation, and simulate ecosystem responses to
SSP scenarios within multiple model structures and embedded
ecological realism (Smallman et al., 2021).

RECOMMENDATIONS FOR
RESEARCHERS TO SUPPORT
DECISION-MAKING

We have identified key challenges in both observations and
models of the terrestrial C-cycle which must be overcome
to effectively support climate mitigation policies and land
management. We have argued that by fusing models and
observations within numerical frameworks we can maximise the
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benefits of both approaches while minimising the limitations.
From our discussion above we propose four key guidelines
for effectively combining observations and models to support
decision-makers, and to accelerate the process of model-data
integration:

(1) Use simpler models. Increased model complexity only
improves predictive capacity when supported by sufficient
calibration data. For much of the C-cycle these data are
missing. More complex/complicated models are also harder
to explain and understand. Simpler models are quicker to
build, evaluate, use or discard.

(2) Improve observational error estimates. Observations are
expanding in their spatial and temporal coverages but
contain bias and precision error - approaches must be
developed to evaluate and then ameliorate these errors.

(3) Calibrate simpler models (i.e., 1) using observations and
their errors (i.e., 2) and give decision-makers access to
these models. MDF combines models with a diverse
array of observations weighted by their uncertainties.
Bayesian approaches allow analyses to be updated when
new observations become available.

(4) Provide uncertainty estimates on all predictions.
Uncertainties allow decision-makers to balance unlikely
but high impact outcomes of a changing climate and
human interventions. Prediction errors allow decision-
makers to weigh the strength of the scientific advice
against other factors.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the conception, wrote the
manuscript, and approved the submitted version.

FUNDING

TS and MW were supported by the United Kingdom’s National
Centre for Earth Observation. DM and MW received funding
from the DARE-UK project funded by the United Kingdom’s
NERC Research Council (NE/S003819/1). MW and DM
were additionally supported by the Newton Fund through
the Met Office Climate Science for Service Partnership
Brazil (CSSP Brazil).

ACKNOWLEDGMENTS

We thank the Global Change Ecology Lab members for
useful discussions.

REFERENCES
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V.,

Friedlingstein, P., et al. (2020). Carbon-concentration and carbon-climate
feedbacks in CMIP6 models and their comparison to CMIP5 models.
Biogeosciences 17, 4173–4222. doi: 10.5194/bg-17-4173-2020

Avitabile, V., Herold, M., Heuvelink, G. B., Lewis, S. L., Phillips, O. L., Asner, G. P.,
et al. (2016). An integrated pan-tropical biomass map using multiple reference
datasets. Glob. Change Biol. 22, 1406–1420. doi: 10.1111/gcb.13139

Bloom, A. A., and Williams, M. (2015). Constraining ecosystem carbon dynamics
in a data-limited world: integrating ecological “common sense” in a model–
data fusion framework. Biogeosciences 12, 1299–1315. doi: 10.5194/bg-12-1299-
2015

Bloom, A. A., Bowman, K. W., Liu, J., Konings, A. G., Worden, J. R., Parazoo, N. C.,
et al. (2020). Lagged effects regulate the inter-annual variability of the tropical
carbon balance. Biogeosciences 17, 6393–6422. doi: 10.5194/bg-17-6393-
2020

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., and Williams, M. (2016).
The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial
carbon allocation, pools, and residence times. Proc. Natl. Acad. Sci. U.S.A. 113,
1285–1290. doi: 10.1073/pnas.1515160113

Blyth, E., Clark, D. B., Ellis, R., Huntingford, C., Los, S., Pryor, M., et al. (2011). A
comprehensive set of benchmark tests for a land surface model of simultaneous
fluxes of water and carbon at both the global and seasonal scale. Geosci. Model
Dev. 4, 255–269. doi: 10.5194/gmd-4-255-2011

Braakhekke, M. C., Doelman, J. C., Baas, P., Müller, C., Schaphoff, S., Stehfest, E.,
et al. (2019). Modeling forest plantations for carbon uptake with the LPJmL
dynamic global vegetation model. Earth Syst. Dynam. 10, 617–630. doi: 10.5194/
esd-10-617-2019

Butler, E. E., Datta, A., Flores-Moreno, H., Chen, M., Wythers, K. R.,
Fazayeli, F., et al. (2017). Mapping local and global variability in plant trait
distributions. Proc. Natl. Acad. Sci. U.S.A. 114, E10937–E10946. doi: 10.1073/
pnas.1708984114

Caen, A., Smallman, T. L., Anderson de Castro, A., Robertson, E., von Randow, C.,
Cardoso, M., et al. (2021). Evaluating two land surface models for Brazil using a
full carbon cycle benchmark with uncertainties. Clim. Resil. Sustain. [Preprint].
doi: 10.1002/cli2.10

Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-
Teixeira, K. J., et al. (2020). Mapping carbon accumulation potential from global
natural forest regrowth. Nature 585, 545–550. doi: 10.1038/s41586-020-2686-x

Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., and Calders,
K. (2019). The importance of consistent global forest aboveground biomass
product validation. Surv. Geophys. 40, 979–999. doi: 10.1007/s10712-019-
09538-8

Exbrayat, J.-F., Bloom, A., Carvalhais, N., Fischer, R., Huth, A., MacBean, N.,
et al. (2019). Understanding the land carbon cycle with space data: current
status and prospects. Surv. Geophys. 40, 735–745. doi: 10.1007/s10712-019-09
506-2

Exbrayat, J.-F., Smallman, T. L., Bloom, A. A., Huntley, L. B., and Williams, M.
(2018a). Inverse determination of the influence of fire on vegetation carbon
turnover in the pantropics. Glob. Biogeochem. Cycles 32, 1776–1789. doi: 10.
1029/2018GB005925

Exbrayat, J.-F., Bloom, A. A., Falloon, P., Ito, A., Smallman, T. L., and Williams, M.
(2018b). Reliability ensemble averaging of 21st century projections of terrestrial
net primary productivity reduces global and regional uncertainties. Earth Syst.
Dynam. 9, 153–165. doi: 10.5194/esd-9-153-2018

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J.,
et al. (2016). Overview of the coupled model intercom-740parison project
phase 6 (cmip6) experimental design and organization. Geosci. Model Dev. 9,
1937–1958. doi: 10.5194/gmd-9-1937-2016

Famiglietti, C. A., Smallman, T. L., Levine, P. A., Flack-Prain, S., Quetin, G. R.,
Meyer, V., et al. (2021). Optimal model complexity for terrestrial carbon cycle
prediction. Biogeosciences 18, 2727–2754. doi: 10.5194/bg-18-2727-2021

Fang, H., Baret, F., Plummer, S., and Schaepman-Strub, G. (2019). An overview of
global leaf area index (LAI): methods, products, validation, and applications.
Rev. Geophys. 57, 739–799. doi: 10.1029/2018RG000608

Frontiers in Forests and Global Change | www.frontiersin.org 6 January 2022 | Volume 4 | Article 818661

https://doi.org/10.5194/bg-17-4173-2020
https://doi.org/10.1111/gcb.13139
https://doi.org/10.5194/bg-12-1299-2015
https://doi.org/10.5194/bg-12-1299-2015
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.5194/bg-17-6393-2020
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.5194/gmd-4-255-2011
https://doi.org/10.5194/esd-10-617-2019
https://doi.org/10.5194/esd-10-617-2019
https://doi.org/10.1073/pnas.1708984114
https://doi.org/10.1073/pnas.1708984114
https://doi.org/10.1002/cli2.10
https://doi.org/10.1038/s41586-020-2686-x
https://doi.org/10.1007/s10712-019-09538-8
https://doi.org/10.1007/s10712-019-09538-8
https://doi.org/10.1007/s10712-019-09506-2
https://doi.org/10.1007/s10712-019-09506-2
https://doi.org/10.1029/2018GB005925
https://doi.org/10.1029/2018GB005925
https://doi.org/10.5194/esd-9-153-2018
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/bg-18-2727-2021
https://doi.org/10.1029/2018RG000608
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-818661 January 15, 2022 Time: 14:14 # 7

Smallman et al. Model-Data Fusion as an Operational Tool

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife,
T., et al. (2009). The REFLEX project: comparing different algorithms and
implementations for the inversion of a terrestrial ecosystem model against eddy
covariance data. Agric. For. Meteorol. 149, 1597–1615. doi: 10.1016/j.agrformet.
2009.05.002

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E.,
Hauck, J., et al. (2021). Global carbon budget 2021. Earth Syst. Sci. doi: 10.5194/
essd-2021-386

Garrigues, S., Lacaze, R., Jeffrey, B., Frederic, T. M., Weiss, M., Nickeson, J.,
et al. (2008). Validation and intercomparison of global leaf area index products
derived from remote sensing data. J. Geophys. Res 113:G02028. doi: 10.1029/
2007JG000635

Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O. (2018). The
collection 6 MODIS burned area mapping algorithm and product. Remote Sens.
Environ. 217, 72–85. doi: 10.1016/j.rse.2018.08.005

Gwynne, M. (1982). The global environment monitoring system (GEMS) of UNEP.
Environ. Conserv. 9, 35–41. doi: 10.1017/S0376892900019469

Haario, H., Saksman, E., and Tamminen, J. (2001). An adaptive metropolis
algorithm. Bernoulli 7, 223–242. doi: 10.2307/3318737

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A.,
Tyukavina, A., et al. (2013). High-Resolution global maps of 21st-century forest
cover change. Science 342, 850–853. doi: 10.1126/science.1244693

Harper, A. B., Cox, P. M., Friedlingstein, P., Wiltshire, A. J., Jones, C. D., Sitch, S.,
et al. (2016). Improved representation of plant functional types and physiology
in the Joint UK Land Environment Simulator (JULES v4.2) using plant trait
information. Geosci. Model Dev. 9, 2415–2440. doi: 10.5194/gmd-9-2415-2016

Heiskanen, J., Rautiainen, M., Stenberg, P., Mõttus, M., Vesanto, V.-H., Korhonen,
L., et al. (2012). Seasonal variation in MODIS LAI for a boreal forest area in
Finland. Remote Sens. Environ. 126, 104–115. doi: 10.1016/j.rse.2012.08.001

Henry, M., Bombelli, A., Trotta, C., Alessandrini, A., Birigazzi, L., Sola, G., et al.
(2013). GlobAllomeTree: international platform for tree allometric equations
to support volume, biomass and carbon assessment. iForest 6, 326–330. doi:
10.3832/ifor0901-006

Huang, X., Lu, D., Ricciuto, D. M., Hanson, P. J., Richardson, A. D., Lu, X.,
et al. (2021). A model-independent data assimilation (MIDA) module and its
applications in ecology. Geosci. Model Dev. 14, 5217–5238. doi: 10.5194/gmd-
14-5217-2021

Huntingford, C., Atkin, O. K., Martinez-de la Torre, A., Mercado, L. M., Heskel,
M. A., Harper, A. B., et al. (2017). Implications of improved representations
of plant respiration in a changing climate. Nat. Commun. 8:1602. doi: 10.1038/
s41467-017-01774-z

Hurlbert, M., Krishnaswamy, J., Davin, E., Johnson, F. X., Mena, C. F., Morton, J.,
et al. (2019). “Risk management and decision making in relation to sustainable
development,” in Climate Change and Land: an IPCC Special Report On Climate
Change, Desertification, Land Degradation, Sustainable Land Management, Food
Security, And Greenhouse Gas Fluxes In Terrestrial Ecosystems, eds P. R. Shukla,
J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts,
et al. (Geneva: IPCC).

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change. Cambridge, MA: Cambridge University Press.

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., et al. (2018).
Estimation of terrestrial global gross primary production (gpp) with satellite
data-driven models and eddy covariance flux data. Remote Sens. 10:1346. doi:
10.3390/rs10091346

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S.,
et al. (2020). Scaling carbon fluxes from eddy covariance sites to globe: synthesis
and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365. doi:
10.5194/bg-17-1343-2020

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., et al. (2020).
TRY plant trait database-enhanced coverage and open access. Glob. Change Biol.
26, 119–188. doi: 10.1111/gcb.14904

Keenan, T. F., Davidson, E. A., Munger, J. W., and Richardson, A. D. (2013). Rate
my data: quantifying the value of ecological data for the development of models
of the terrestrial carbon cycle. Ecol. Appl. 23, 273–286. doi: 10.1890/12-0747.1

Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., and Richardson, A. D.
(2012). Constraining a global ecosystem model with multi-site eddy-covariance
data. Biogeosciences 9, 3757–3776. doi: 10.5194/bg-9-3757-2012

Lacaze, R., Smets, B., Baret, F., Weiss, M., Ramon, D., Montersleet, B., et al. (2015).
Operational 333m biophysical products of the copernicus global land service
for agriculture monitoring. Int. Arch. Photogramm. Remote Sens Spatial Inf. Sci.
40:53. doi: 10.5194/isprsarchives-xl-7-w3-53-2015

Malhi, Y., Girardin, C., Metcalfe, D. B., Doughty, C. E., Aragão, L. E. O. C., Rifai,
S. W., et al. (2021). The global ecosystems monitoring network: monitoring
ecosystem productivity and carbon cycling across the tropics. Biol. Conserv.
253:108889. doi: 10.1016/j.biocon.2020.108889

Mitchard, E. T. A., Feldpausch, T. R., Brienen, R. J. W., Lopez-Gonzalez, G.,
Monteagudo, A., Baker, T. R., et al. (2014). Divergent forest carbon maps
from plots & space. Glob. Ecol. Biogeogr. 23, 935–946. doi: 10.1111/geb.
12168

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W.,
et al. (2020). The FLUXNET2015 dataset and the ONEFlux processing
pipeline for eddy covariance data. Sci. Data 7:225. doi: 10.1038/s41597-020-
0534-3

Pinnington, E., Quaife, T., Lawless, A., Williams, K., Arkebauer, T., and Scoby,
D. (2020). The land variational ensemble data assimilation framework:
LAVENDAR v1.0.0. Geosci. Model Dev. 13, 55–69. doi: 10.5194/gmd-13-55-
2020

Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., et al.
(2019). Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Sci.
U.S.A. 116, 4382–4387. doi: 10.1073/pnas.1810512116

Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J., Minh, D. H. T., et al.
(2019). The European Space Agency BIOMASS mission: measuring forest
above-ground biomass from space. Remote Sens. Environ. 227, 44–60. doi:
10.1016/j.rse.2019.03.032

Reich, P. B., Rich, R. L., Lu, X., Wang, Y.-P., and Oleksyn, J. (2014). Biogeographic
variation in evergreen conifer needle longevity and impacts on boreal forest
carbon cycle projections. Proc. Natl. Sci. U.S.A. 111, 13703–13708. doi: 10.1073/
pnas.1216054110

Rodríguez-Veiga, P., Quegan, S., Carreiras, J., Persson, H. J., Fransson, J. E. S.,
Hoscilo, A., et al. (2019). Forest biomass retrieval approaches from earth
observation in different biomes. Int. J. Appl. Earth Observ. Geoinf. 77, 53–68.
doi: 10.1016/j.jag.2018.12.008

Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D. M. A., Avitabile, V.,
Araza, A., et al. (2021). The global forest above-ground biomass pool for 2010
estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13,
3927–3950. doi: 10.5194/essd-13-3927-2021

Shao, P., Zeng, X., Sakaguchi, K., Monson, R. K., and Zeng, X. (2013). Terrestrial
carbon cycle: climate relations in eight CMIP5 earth system models. J. Climate
26, 8744–8764. doi: 10.1175/JCLI-D-12-00831.1

Shiklomanov, A. N., Bond-Lamberty, B., Atkins, J. W., and Gough, C. M.
(2020). Structure and parameter uncertainty in centennial projections of forest
community structure and carbon cycling. Glob. Change Biol. 26, 6080–6096.
doi: 10.1111/gcb.15164

Smallman, T. L., Exbrayat, J.-F., Mencuccini, M., Bloom, A. A., and Williams,
M. (2017). Assimilation of repeated woody biomass observations constrains
decadal ecosystem carbon cycle uncertainty in aggrading forests. J. Geophys.
Res. Biogeosci. 122, 528–545. doi: 10.1002/2016JG003520

Smallman, T. L., Milodowski, D. T., Neto, E. S., Koren, G., Ometto, J., and
Williams, M. (2021). Parameter uncertainty dominates C cycle forecast errors
over most of Brazil for the 21st Century. Earth Syst. Dynam. 12, 1191–1237.
doi: 10.5194/esd-2021-17

UNFCCC (2021). Glasgow Climate Pact. Report No. FCCC/PA/CMA/2021/L.16.
Available online at: https://unfccc.int/sites/default/files/resource/cma2021_
L16_adv.pdf (accessed November 15, 2021).

van Vuuren, D. P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori,
S., et al. (2017). The shared socio-economic pathways: trajectories for human
development and global environmental change. Glob. Environ. Change 42,
148–152. doi: 10.1016/j.gloenvcha.2016.10.009

Wang, J., Feng, L., Palmer, P., Lu, Y., Fang, S., Bösch, H., et al. (2020). Large Chinese
land carbon sink estimated from atmospheric carbon dioxide data. Nature 586,
720–723. doi: 10.1038/s41586-020-2849-9

Wang, L., Zhu, H., Lin, A., Zou, L., Qin, W., and Du, Q. (2017).
Evaluation of the Latest MODIS GPP Products across multiple biomes
using global eddy covariance flux data. Remote Sens. 9:5. doi: 10.3390/rs905
0418

Frontiers in Forests and Global Change | www.frontiersin.org 7 January 2022 | Volume 4 | Article 818661

https://doi.org/10.1016/j.agrformet.2009.05.002
https://doi.org/10.1016/j.agrformet.2009.05.002
https://doi.org/10.5194/essd-2021-386
https://doi.org/10.5194/essd-2021-386
https://doi.org/10.1029/2007JG000635
https://doi.org/10.1029/2007JG000635
https://doi.org/10.1016/j.rse.2018.08.005
https://doi.org/10.1017/S0376892900019469
https://doi.org/10.2307/3318737
https://doi.org/10.1126/science.1244693
https://doi.org/10.5194/gmd-9-2415-2016
https://doi.org/10.1016/j.rse.2012.08.001
https://doi.org/10.3832/ifor0901-006
https://doi.org/10.3832/ifor0901-006
https://doi.org/10.5194/gmd-14-5217-2021
https://doi.org/10.5194/gmd-14-5217-2021
https://doi.org/10.1038/s41467-017-01774-z
https://doi.org/10.1038/s41467-017-01774-z
https://doi.org/10.3390/rs10091346
https://doi.org/10.3390/rs10091346
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.5194/bg-17-1343-2020
https://doi.org/10.1111/gcb.14904
https://doi.org/10.1890/12-0747.1
https://doi.org/10.5194/bg-9-3757-2012
https://doi.org/10.5194/isprsarchives-xl-7-w3-53-2015
https://doi.org/10.1016/j.biocon.2020.108889
https://doi.org/10.1111/geb.12168
https://doi.org/10.1111/geb.12168
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.1038/s41597-020-0534-3
https://doi.org/10.5194/gmd-13-55-2020
https://doi.org/10.5194/gmd-13-55-2020
https://doi.org/10.1073/pnas.1810512116
https://doi.org/10.1016/j.rse.2019.03.032
https://doi.org/10.1016/j.rse.2019.03.032
https://doi.org/10.1073/pnas.1216054110
https://doi.org/10.1073/pnas.1216054110
https://doi.org/10.1016/j.jag.2018.12.008
https://doi.org/10.5194/essd-13-3927-2021
https://doi.org/10.1175/JCLI-D-12-00831.1
https://doi.org/10.1111/gcb.15164
https://doi.org/10.1002/2016JG003520
https://doi.org/10.5194/esd-2021-17
https://unfccc.int/sites/default/files/resource/cma2021_L16_adv.pdf
https://unfccc.int/sites/default/files/resource/cma2021_L16_adv.pdf
https://doi.org/10.1016/j.gloenvcha.2016.10.009
https://doi.org/10.1038/s41586-020-2849-9
https://doi.org/10.3390/rs9050418
https://doi.org/10.3390/rs9050418
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-818661 January 15, 2022 Time: 14:14 # 8

Smallman et al. Model-Data Fusion as an Operational Tool

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck,
H., et al. (2009). Improving land surface models with FLUXNET data.
Biogeosciences 6, 1341–1359. doi: 10.5194/bg-6-1341-2009

Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.
(2005). An improved analysis of forest carbon dynamics using data
assimilation. Glob. Change Biol. 11, 89–105. doi: 10.1111/j.1365-2486.2004.
00891.x

Yin, Y., Bloom, A., Worden, J., Saatchi, S., Yang, Y., and Williams, M.
(2020). Fire decline in dry tropical ecosystems enhances decadal land
carbon sink. Nat. Commun. 11:1900. doi: 10.1038/s41467-020-15852-
2020

Zhao, Y., Chen, X., Smallman, T. L., Flack-prain, S., Milodowski, D. T.,
and Williams, M. (2020). Characterizing the error and bias of remotely
sensed LAI products: an example for tropical and subtropical evergreen
forests in south china. Remote Sens. 12:3122. doi: 10.3390/rs1219
3122

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Smallman, Milodowski and Williams. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Forests and Global Change | www.frontiersin.org 8 January 2022 | Volume 4 | Article 818661

https://doi.org/10.5194/bg-6-1341-2009
https://doi.org/10.1111/j.1365-2486.2004.00891.x
https://doi.org/10.1111/j.1365-2486.2004.00891.x
https://doi.org/10.1038/s41467-020-15852-2020
https://doi.org/10.1038/s41467-020-15852-2020
https://doi.org/10.3390/rs12193122
https://doi.org/10.3390/rs12193122
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles

	From Ecosystem Observation to Environmental Decision-Making: Model-Data Fusion as an Operational Tool
	Introduction
	Scaling and Representation Challenges in Observations
	Parameter and Mechanistic Uncertainty in Process Modelling
	Supporting Decision-Makers Effectively
	Model-Data Fusion as a Solution
	Recommendations for Researchers to Support Decision-Making
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


