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The national forest inventory within the US has been experiencing a greater need

to estimate forest attributes over smaller geographic areas than the inventory was

originally designed for. Producing reliable estimates for these areas may require the

use of estimation methods beyond post-stratification. Staying within the dominant

design-based paradigm, this research explores how model-assisted estimation is

impacted by leveraging data outside the area of interest. In particular, we compare

the performance of the post-stratified estimator, the generalized regression estimator

(GREG), and a modified GREG. Typically the assisting model of the modified GREG is

fit over a sample comprising all of the areas of interest. Here we introduce a modified

GREG, denoted as GREGORY, which gives the practitioner a high degree of flexibility

in selecting the sample subset for constructing the assisting model. We use these

estimators to produce county level estimates of the mean of four forest attributes in the

Interior Western US. Comparing the relative efficiencies of the estimators, we find that

the more complex estimators, GREG and GREGORY, generally improve the precision of

the estimates, especially in regions with a high degree of forested land. When using all

the data from a 10-year measurement, fitting the model over a larger region does not

lead to efficiency gains. To explore the impact of smaller sample sizes, we conduct a

simulation study and find that as the sampling intensity decreases, the GREGORY tends

to produce more efficient estimates than the GREG, and its variance estimator exhibits

less negative bias. The GREG and GREGORY can easily be computed and compared

using a new R package, gregRy, available on CRAN.

Keywords: generalized regression (GREG) estimator, post-stratification, model-assisted estimation, ecoregions,

improved precision, domain estimation

1. INTRODUCTION

The US Forest Inventory and Analysis Program (FIA) is responsible for monitoring forest
ecosystems across the United States. Established in 1930, the initial focus of this program was
to estimate the extent and volume of merchantable trees for harvest. But today the extensive
data collected nationwide are valuable for assessing biomass and carbon storage, fuels and fire
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risk, wildlife habitat, effects of insect and disease outbreaks,
forest health and trends in forest conditions. Along with these
new uses, FIA is experiencing a greater demand for estimates
of forest attributes over smaller geographic areas. Specifically,
the “Agricultural Act of 2014” (U.S. Department of Agriculture,
2014) calls for FIA to implement procedures to improve
precision in sub-state estimates, pushing the inventory to provide
information at scales beyond which it was originally intended.
Producing reliable estimates for these smaller areas requires
considering additional data sources and new estimation methods
beyond FIA’s current techniques.

One standard estimation approach is the generalized
regression estimator (GREG), which has the capacity of
combining inventory data and remote-sensing data using a wide
range of predictive modeling techniques (Särndal et al., 1992;
Breidt and Opsomer, 2017). The GREG is a direct estimator, since
it only uses data within the domain of interest and is design-based
in that randomness comes solely from sample selection. The
GREG is asymptotically unbiased, regardless of how well the
model captures the true relationship between the inventory
and auxiliary data. This useful feature is why the estimator is
classified asmodel-assisted and notmodel-based.

Using a variety of assistingmodels, the GREG has been applied
and studied rather extensively in the forest inventory literature
(Baffetta et al., 2009; McRoberts, 2010; Gregoire et al., 2011;
Moser et al., 2017; McConville et al., 2020). A thorough summary
of forest inventory estimators that utilize models, including
model-assisted estimators like the GREG, can be found in Ståhl
et al. (2016). Most of the focus in these articles is on large areas
with adequate sample sizes within the domain of interest. For
areas with few sampled ground plots, the model estimates may
not capture the true relationship well and may be highly variable.
A solution is to leverage sample data outside the domain of
interest to estimate the GREG’s assisting model, resulting in what
is sometimes referred to as a modified GREG (Rao and Molina,
2015). Most commonly the entire sample across all domains of
interest is used to fit the model for the modified GREG. Here we
consider estimating the models over large homogeneous regions
and then combining the model predictions within the domain
of interest. We call this estimator GREGORY for GREG Over
Resolutions of Y , where Y stands for the inventory data, to
emphasize that the additional regions leveraged should depend
on their homogeneity with the inventory data in the domain of
interest. Although the GREGORY leverages data from outside
the domain of interest, Rao and Molina (2015) still classify it as a
direct estimator, since it only applies model parameter estimates
to the plot data within the domain of interest and is still design-
based in that randomness comes solely from sample selection. As
with the GREG, the GREGORY is model-assisted, an important
feature to national statistical agencies.

While the modified GREG, or GREGORY, has been proposed
in the survey statistics literature (section 2.5 in Woodruff, 1966;
Rao and Molina, 2015), it does not, to the best of our knowledge,
appear to have been investigated deeply in the forest inventory
literature. In this article, we hope to provide some insights into
the utility of the GREGORY for forest estimation. Through a
case study focused on estimating county level means of forest
attributes in the US Interior West (IW), we attempt to measure

how the estimator precision changes when the model-estimating
now leverages additional data outside the domain of interest.
Additionally, we investigate how precision gains from estimating
the model over these broader samples change and the bias of the
standard variance estimator as the sample size decreases.

We focus on a design-based, model-assisted approach for
small domain estimation and consider only direct estimators
in this article. Although a wide range of model-based methods
and indirect estimators (Empirical Best Linear Unbiased
Prediction, Hierarchical Bayes) exist, the design-based approach
to estimation is still the prevailing choice for many national forest
inventories because of its freedom from model assumptions.
Therefore, it is important to understand the viability of a model-
assisted estimator when the sample size is small and how
leveraging more data impacts the performance of the estimator
when compared to post-stratification, the standard estimation
technique for larger regions.

2. METHODS

In this article, our domains of interest are counties in the IW
and we focus on estimating the county level mean of four forest
inventory variables: basal area (square-foot per acre), count of
trees per acre, above-ground biomass (pounds per acre), and
net volume (cubic-foot per acre). These inventory variables are
all strongly and positively correlated with one another (with
Pearson correlation coefficients between 0.42 and 0.6 with count
of trees per acre and 0.85 and above for all other combinations of
variables). Let Ud denote the spatial domain of county d, which
has been discretized into Nd units based on the resolution of
the auxiliary data and is enumerated by {1, 2, . . . ,Nd}. We write
the true, unknown mean of Ud for a given inventory variable,
y, as µyd = Nd

−1
∑

i∈Ud
yi. Our goal is to estimate µyd for

d = 1, 2, . . . ,D where D equals the 280 counties with plots in
the IW.

2.1. Data Sources
Computing the estimators requires data on the response
variables, any predictor layers for estimating the assisting models
(via GREG or GREGORY), a post-stratification layer for the PS
estimator, and a layer depicting ecologically similar regions for
leveraging data for the GREGORY. For county d, the set of
sample plots is given by sd, which is a subset of Ud, and the
sample size is denoted by nd. Field plot data were collected by
FIA on a quasi-systematic sample of ground plots over a 10 year
period (2007–2017). FIA data in the western US are collected
on a 10-year measurement cycle. Specifically, plot data are
collected under an annual, non-overlapping panel design, where
each panel consists of one-tenth of the sample plots distributed
roughly equidistant throughout the population (Reams et al.,
2005). After 10 years, data on all plots have been collected and
re-measurement of plots resumes in the first panel. With a base
sampling intensity of one plot per every 6,000 acres, our IW
sample represents one 10-year measurement cycle and includes
data from 86,057 field plots. The plot data include our four
response variables: basal area, count of trees per acre, above-
ground biomass, and net volume, along with the RMRS-FIA
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post-strata classifications and weights. The current IW post-
stratification scheme is a forest/non-forest classification based
on a forest probability map (Blackard et al., 2008). This layer is
no longer being maintained or updated, hence being phased out
of FIA estimation processes. So this variable is not considered
as potential auxiliary data in the GREG or GREGORY. The
inventory data were downloaded on February 6, 2019 from the
FIA database, version FIADB_1.8.9.99 (last updated Dec 3, 2018).

Our predictor variable comes from the 2016 National Land
Cover Database (NLCD) Tree Canopy Cover (TCC) map, which
provides estimates of the percent tree canopy cover for the entire
IW at a resolution of 30 by 30 meters2 (Yang et al., 2018).
Therefore, the discretization of county d is done at a 30-m
resolution and the population size, Nd, is given by the number
of pixels from the NLCD TCC map in county d. In addition to
the unit level pixel TCC data, denoted by {xi}i∈Ud

, we extract the
subset, {xi}i∈sd where unit i is the pixel that is spatially closest to
the center of field plot i.

Since the GREGORY allows the assisting model to leverage
data outside the domain of interest, we must also determine
what subset of s should be used for each county. While the
model could be estimated using s, the entire IW sample, we
focus on estimating themodel over the ecological provinces given
by Cleland et al. (2007) since they delineate the landscape into
ecological units across the conterminous US based on major
vegetation cover types and land forms. See Figure 1 for the
eco-provinces in the IW.

FIA data retrievals and processing of auxiliary data were
done through the R package FIESTA (Frescino et al., 2020). In
summary, we have the following data for each county d and each
response variable:

• {yi, xi, zi, fi}i∈sd where the data for plot i includes yi, the value
of the forest inventory/response variable, xi, the TCC value, zi,
the eco-province, and fi, the post-strata classification.

• {xi}i∈Ud
, the TCC values for each unit in county d.

• {wpl}
14
l=1

, a set of weights where each weight represents the
proportion of county d in a given eco-province.

• {wsl}
2
l=1

, a set of weights where each weight represents the
proportion county d in a given post-stratum.

2.2. Estimators
In this section, we formally introduce the GREG and its
extension, the GREGORY. We also present the post-stratified
estimator (PS), which is featured in our analyses since it is
the standard estimator used in FIA’s production processes.
Additionally, we address variance estimation and provide two
variance estimators. All data analysis was done in the statistical
software package R (R Core Team, 2020) and the estimators were
computed using the gregRy package (Olson andWojcik, 2021).

2.2.1. The Generalized Regression Estimator
The GREG for µyd is given by

µ̂yd ,GREG =
1

nd

∑

i∈sd

(
yi − m̂(xi)

)
+

1

Nd

∑

i∈Ud

m̂(xi) (1)

where for county d, m̂(xi) is the model prediction for unit i based
on the predictor vector xTi = (1, xi). When we assume a linear

regression assisting model, then m̂(xi) = x
T
i β̂ with estimated

least squares regression coefficients, β̂
T
= (β̂0, β̂1), given by

β̂ = argminβ

∑

i∈sd

(
yi − x

T
i β
)2

.

In Equation (1), the first term, the average residuals component,
ensures that the estimator is asymptotically unbiased since it
compensates for any under- or overestimation caused by the
second term, which provides the average predicted value. This
second term is commonly called the synthetic estimator (Rao and
Molina, 2015). Notice that the GREG is only constructed using
data within the domain of interest, Ud, and in particular that
the estimated regression coefficients are computed using only
sd. When nd is small, the variance of the estimated coefficients
may be large, which in turn increases the variance of µ̂yd ,GREG.
Another potential concern is bias. If nd is small, the property of
asymptotic unbiasedness of the estimator may no longer hold.
The GREGORY attempts to overcome these issues by fitting
the model using not just sd but also using ecologically similar
sample data.

2.2.2. The Generalized Regression Estimator Over

Resolutions of Y
For the GREGORY, the estimator form is still given in Equation
(1) but now the models are estimated over a larger region.
To differentiate between the different data sources, we call the
sample data used in estimation, sd, the estimation sample while
that used in modeling is called the modeling sample. For our
data application, the resolution of the modeling samples are eco-
provinces and so the estimated model prediction for unit i is
given by a weighted sum of regression models,

m̂(xi) = x
T
i

(
P∑

l=1

wplβ̂ l

)
,

where the estimated regression coefficient vector for province
l come from

β̂ l = argminβ

∑

i∈s

(
yi − x

T
i β
)2

I(zi = l).

Recall that zi specifies the eco-province of unit i. By separating
the estimation and modeling samples, we are able to estimate the
models using larger sample sizes and eco-province samples that
are likely more ecologically homogeneous than those created by
the arbitrary political boundaries of counties. If an estimation
sample is nested in a modeling sample, then m̂(xi) reduces
to a single regression equation. While we focus on weighting
simple linear regression models here, more nuanced correlation
structures that allow for spatial and/or temporal autocorrelation
could be incorporated through a mixed-model approach.
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FIGURE 1 | A map of counties in the Interior West, colored by eco-provinces.

2.2.3. Post-stratification
The PS is a special case of a GREG where a single categorical
predictor is used in the regression assisting model. In this
case, the estimator of µyd simplifies to a weighted sum of
post-strata means,

µ̂yd ,PS =

2∑

j=1

wsjȳj,

where ȳj = n−1
dj

∑
i∈sd

yiI(fi = j), the sample mean of y for post-

stratum j and ndj is the number of sampled plots in post-stratum
j for county d. Recall that wsj is the proportion of county d in
post-stratum j.

2.2.4. Variance Estimation
Särndal et al. (1992) provide the standard variance estimator of
the GREG,

V̂(µ̂yd ) =

(
1−

nd

Nd

)
1

nd

1

nd − 1

∑

i∈sd

(
yi − m̂(xi)

)2
, (2)

which can also be used to estimate the variance of the
GREGORY. However, the form of the variance estimator relies
on large sample approximations and does not account for model
estimation variation. Note that the model coefficients of the
GREG are chosen to minimize the sum of the squared errors
over sd. Therefore, equation (2) will always report a smaller

value for GREG than GREGORY, by construction. However,
the true variance of the GREGORY may in fact be smaller
than the variance of the GREG since its modeling sample is
typically larger and therefore its model estimation variance is
likely smaller. To compare the efficiency of the estimators, we
want a variance estimator that accounts for both the variability
in the residuals and the variability induced by fitting the model.
Therefore, in our data application we estimate the variance of
the estimators not using Equation (2) but using the following
bootstrap variance estimator

V̂B(µ̂yd ) =

(
nd

nd − 1

)(
Nd − nd

Nd − 1

)
1

B− 1

B∑

b=1

(µ̂(b)
yd

− ¯̂µyd )
2

where µ̂
(b)
yd is the bth bootstrap estimate and ¯̂µyd =

B−1
∑B

b=1 µ̂
(b)
yd is the average of the bootstrapped estimates. See

Mashreghi et al. (2016) for more details on using bootstrap
methods in survey estimation.

Returning to the standard variance estimator, it is important
to understand the degree of its negative bias since it is commonly
used in practice. For simple models and moderately large
sample sizes where model estimation variability accounts for
little of the overall variance, the standard variance estimator
tends to be slightly negatively biased. For more complex models,
Kangas et al. (2016) found that this variance estimator can
significantly underestimate the true variance. In the simulation
study, we explore and compare the bias of the standard variance
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FIGURE 2 | A map of the relative efficiencies of the PS to the GREGORY when estimating the average trees per acre for each county in the Interior West. Values

above 1 indicate that the GREGORY is more efficient. Values greater than 2 were truncated to 2 to increase the readability of the map. A county is gray if the RE is 0,

due to all plots containing values of 0 trees per acre.

FIGURE 3 | A map of the relative efficiencies of the GREG to the GREGORY when estimating the average trees per acre for each county in the Interior West. Values

above 1 indicate that the GREGORY is more efficient. Values greater than 2 were truncated to 2 to increase the readability of the map. A county is gray if the RE is 0,

due to all plots containing values of 0 trees per acre.

estimator for both the GREG and the GREGORY across a
range of sampling fractions. This allows us to study how the
size of the modeling sample impacts the biasedness of the
variance estimator.

3. RESULTS

In the data application and simulation study, we compare how
county level models vs. eco-province level models impact the
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FIGURE 4 | A map of the relative efficiencies of the modified GREG to the GREGORY when estimating the average trees per acre for each county in the Interior West.

Values above 1 indicate that the GREGORY is more efficient. Values greater than 2 were truncated to 2 to increase the readability of the map.

FIGURE 5 | Map (A) contains the estimated slopes of the linear regression model of trees per acre based on TCC for each county in the GREG when the models are

fit at the county level. Map (B) contains the estimated slopes for each county in the GREGORY when the models are fit at the province level.

model-assisted estimator, especially as we vary the sampling
intensity within the counties. While we considered four response
variables, we present the results for estimating the average trees
per acre in this section. We found similar patterns for the other
three response variables.

3.1. Case Study
Our data application investigates the impact of leveraging more
data when estimating the model for a modified GREG. We focus
on producing county level estimates of the mean trees per acre

for the IW and compare the performance of the PS and GREG,
which uses only data within the domain, to the GREGORY,
which uses additional data from outside the domain. We also
consider the modified GREG which uses the entire IW sample
for model fitting.

The first step is to determine the resolution of the model
samples for the GREGORY, which could range from using just
the sampled plots in the county of interest to the entire set of
sampled plots in the IW to something in between. Using just the
sampled plots, as the GREG does, runs the risk of high variance
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in its estimates, especially for small sample sizes. On the other
hand, using the entire sample, as the modified GREG does, could
also be ill-advised if it means lumping together heterogeneous
landscapes where the relationship between TCC and trees per
acre may vary. And, though GREG is asymptotically unbiased,
concerns of bias arise from the small sample sizes of areas being
estimated. To reduce the bias of the eventual estimate in finite
samples, it would be ideal to estimate GREGORY’s model using
plot data from areas that have a similar relationship between
TCC and trees per acre as that found in the county of interest.
Keeping this in mind, we constructed modeling samples based
on ecology, in particular, the eco-provinces given by Cleland
et al. (2007). When considering at what level to estimate our
models, we were motivated to utilize the eco-province level
after considering the different levels of ecologies used by FIA.
The principal map unit design criterion for eco-provinces is
the dominant potential natural vegetation, compared to more
granular levels such as eco-sections, which are delineated by the
physical and biological components of an ecology such as climate,
physiography, lithology, soils, and potential natural communities
(McNab et al., 2007).

Figures 2–4 allow for a spatial look at how the relative
efficiencies of the estimators, given by the ratio of the estimated
bootstrapped variances, compare to one another when estimating
the average count of trees per acre for each county. A county is
gray if all county plots had a response value of 0 and therefore a
variance estimate of 0 for PS or GREG. GREGORY and modified
GREG circumvent this issue by using data from outside of these
problematic counties. As seen in Figure 2, the GREGORY has
a lower variance estimate than the PS for most counties (71%).
This trend was similar when comparing GREG to PS. However,
we see from Figure 3 that GREG and GREGORY are roughly
matched in the number of counties in which one outperforms
the other (with GREGORY outperforming 53% of the time). This
implies that constructing the model over a larger resolution did
not, generally, reduce the variance of the estimates.

We can expand the modeling sample even further, as the
modified GREG does, and compare that to the GREGORY,
as seen in Figure 4. While GREGORY only outperformed
the modified GREG 54% of the time, the precision gains
were rather large for some counties and the precision losses
were not as extreme. On average, the estimated variance
of the modified GREG is 1.14 times the estimated variance
of the GREGORY, suggesting that building the model over
ecologically homogeneous samples can improve the efficiency of
the estimator.

It should be noted that we did see a higher degree of variability
in the estimated slopes (β̂1) for the county level models than
the eco-province level models (see Figure 5). We conjecture
that this extra variability did not translate into higher variance
estimates because the predictive accuracy of the estimated model
is a much more dominant component of the variance. This
actually provides justification for the standard variance estimator,
given in Equation (2), only being a function of the prediction
errors and not accounting for model estimation variability. In the
next section, we conduct a simulation study to more concretely

TABLE 1 | Table of the counties included as domains in the simulation.

County State Number of plots

Beaverhead county Montana 597

Bonner county Idaho 202

Catron county New Mexico 507

Clearwater county Idaho 215

Custer county Idaho 493

Duchesne county Utah 250

Eureka county Nevada 403

Flathead county Montana 542

Gallatin county Montana 279

Garfield county Colorado 292

Grand county Colorado 201

Grant county New Mexico 258

Gunnison county Colorado 340

Idaho county Idaho 810

Lander county Nevada 456

Lemhi county Idaho 479

Lewis and Clark county Montana 274

Lincoln county Montana 381

Madison county Montana 377

Meagher county Montana 235

Missoula county Montana 264

Park county Wyoming 343

Park county Montana 282

Park county Colorado 230

Powell county Montana 231

Ravalli county Montana 242

Rio blanco county Colorado 289

Routt county Colorado 225

Saguache county Colorado 226

San Miguel county New Mexico 215

Sanders county Montana 278

Sevier county Utah 205

Shoshone county Idaho 274

Teton county Wyoming 304

Uintah county Utah 270

Valley county Idaho 389

White Pine county Nevada 929

Also listed are the number of plots from the county that are used. Only plots within

provinces M313, M331, M332, M333, and M341 were included.

compare the variability and bias of the estimators as the sample
size shrinks.

3.2. Simulation Study
The application in the previous section compares estimated
variances and so observed differences may be due to random
variability and are not necessarily indicating that one estimator
is truly more precise than another in a given county. To better
understand how themodeling sample size impacts the estimator’s
bias and precision, we conducted a simulation study. We treated
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FIGURE 6 | Boxplots of the percent relative bias of the county estimates of average trees per acre across the sampling intensities. The average percent relative bias is

denoted by the stars.

part of the IW as the true, finite population and drew 1000Monte
Carlo samples from the population. By using the plot data as
the population, we know the true mean trees per acre for each
county and therefore can obtain both the percent relative bias and
the empirical mean squared error for the estimators, along with
the percent relative bias of the standard variance estimator, by
averaging across the samples. Due to the computational intensity
of the bootstrap variance estimator, we only measure the bias
of the standard variance estimator, given by Equation (2), in
this study.

To ensure we had enough data and sampling variability, we
selected for the population the 5 IW Mountain eco-provinces
which each had at least 3,000 plots. Within these 5 eco-provinces,
we selected the counties which had at least 200 plots and where a
majority of the county plots were in the selected eco-provinces.
It should be noted that we did not include plots from outside
these 5 eco-provinces, even if they were in one of the selected
counties. Table 1 contains information on the 37 counties that
comprised the finite population. For each replicate sample, we
randomly sampled p% of each county. To explore the effect of
sampling intensity, we varied p from 2 to 10 in 0.5 increments.

While the GREG and GREGORY are asymptotically unbiased,
the estimators are applied in practice to samples with finite
sample sizes. Therefore, it is important to study the degree of
bias in the estimators and their variance estimators, especially as a
function of sample size. Figures 6, 7 capture the percent relative
bias of the estimators across the sampling fractions and sample
sizes. Both estimators exhibit little bias for the moderate to large

sampling intensities but for the smallest intensities the GREG’s
percentage relative bias across the 37 counties is rather variable,
more so than the GREGORY’s.

Figures 8, 9 compare the mean square error of the GREGORY
and the GREG across the sampling fractions and sample sizes.
For the lower sampling fractions, the GREGMSE ismore variable
and larger, on average, than the MSE of the GREGORY. From
Figure 8, we see that the GREGORY is typically more efficient
than the GREG for smaller sample sizes and then the estimators
perform similarly once a county has at least 30–40 sampled plots.
This result demonstrates an advantage to using GREGORY in
settings where data are sparse.

The distributions of the percent relative bias of the
standard variance estimator, given in Equation (2), are
displayed in Figures 10, 11. The variance estimators for
both the GREG and GREGORY are negatively biased for
the smaller sampling intensities but the GREGORY is
less so. And by a sampling fraction of around 6.5%, or a
sample size of at least 20, the variance estimator of the
GREGORY exhibits little bias, while the GREG variance
maintains some amount of negative bias, even for the largest
sample sizes.

4. CONCLUSION

This paper considers how the variability of a direct
estimator is impacted when the assisting model is built
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FIGURE 7 | The percent relative bias of the county estimates of average trees per acre by sample size across the following sampling intensities: (A,B) 2%, (C,D) 4%,

(E,F) 6%, and (G,H) 8%.

using data from a larger region, some of which falls
outside the domain of interest. We found that efficiency
gains are achieved from these larger modeling samples
when the sample size within the domain of interest
is small.

A key interest for a practitioner is under what conditions
to use GREGORY instead of GREG. We believe this primarily
comes down to four questions. First, does survey data exist
beyond the domains of interest that samples similar domains?
Here, we used eco-province boundaries to identify similar areas
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FIGURE 8 | Boxplots of the mean squared error of the county estimates of average trees per acre across the sampling intensities. The average mean squared error is

denoted by the stars.

FIGURE 9 | The MSE ratio of the GREG to the GREGORY when estimating the average trees per acre at the county level by sample size across the following

sampling intensities: (A) 2%, (B) 4%, (C) 6%, and (D) 8%. A loess smoother is included.
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FIGURE 10 | Boxplots of the percent relative bias of the standard variance estimator when estimating the average trees per acre across the sampling intensities. The

average percent relative bias is denoted by the stars.

that resulted in less variable estimates and avoided the problem of
introducing bias caused by modeling from completely different
populations. If the entire sample region is ecologically similar,
then the modified GREG, which utilizes all the sample data to
fit the model, should be considered. Second, does borrowing
over this larger region result in diverse models? In our case,
adjacent eco-provinces in the Interior Western US are often
dramatically different due to topography, but borrowing over a
larger area that is quite homogeneous could have little impact
on the performance of estimators. Third, are there domains
of interest with small sample sizes? In our application in the
Interior West, enough data were available and the GREG was
adequate for the situation. However, our simulation results show
that GREGORY generally produced less biased estimates and
better relative precision than GREG as sample size decreased.
And fourth, how will the uncertainty of the estimates be
calculated? We found that the standard variance estimator
exhibited less negative bias for the GREGORY and eventually
showed little bias for moderate sample sizes. On the other hand,
the standard variance estimator of the GREG continued to exhibit
negative bias across all sampling intensities. Lastly, we’d note
that for very small sample sizes, a practitioner should consider
model-based methods which more directly leverage information
from outside the domain as these methods are likely to be
more efficient.

Whether fitting a GREG or a GREGORY, there are additional
considerations for a practitioner about what assisting model

to employ and what auxiliary data to incorporate. These
choices should be guided by extensive exploratory data
analyses and visualizations. For the GREGORY, we fit
separate linear models for each eco-province and then for
each county, weighted the eco-province estimated model
coefficients by the proportion of the eco-province in the
county. There are many other potential approaches, such
as building a single model with eco-province indicator
functions or taking a mixed-model approach with eco-
province random effects. Time spent up front thinking about
the model, how the estimated model coefficients may vary
across subsets, the inclusion of relevant ancillary data, spatial
variations in the data, and domain sample sizes may be
profitable by increasing the precision of particular small area
estimates, in addition to motivating the choice between GREG
and GREGORY.

For understanding operational implications for FIA,
GREGORY should be evaluated as an alternative to post-
stratification for more response variables, over different
geographic regions, and using alternative auxiliary
information. Further, much work is underway to expand
forest inventory capacity to address new user needs
through small area estimation. Through GREGORY, new
investigations can determine just how far FIA can push
direct, model-assisted estimators suitable for generic
inference to meet small domain needs before turning to
model-based methods.
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FIGURE 11 | The percent relative bias of the county standard variance estimator when estimating the average trees per acre by sample size across the following

sampling intensities: (A,B) 2%, (C,D) 4%, (E,F) 6%, and (G,H) 8%.
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