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Small Area Estimation of Postfire
Tree Density Using Continuous
Forest Inventory Data
George C. Gaines III* and David L. R. Affleck

Department of Forest Management, University of Montana, Missoula, MT, United States

Wildfire activity in the western United States is expanding and many western forests

are struggling to regenerate postfire. Accurate estimates of forest regeneration following

wildfire are critical for postfire forest management planning and monitoring forest

dynamics. National or regional forest inventory programs can provide vegetation data

for direct spatiotemporal domain estimation of postfire tree density, but samples within

domains of administrative utility may be small (or empty). Indirect domain expansion

estimators, which borrow extra-domain sample data to increase precision of domain

estimates, offer a possible alternative. This research evaluates domain sample sizes and

direct estimates in domains spanning large geographic extents and ranging from 1 to

10 years in temporal scope. In aggregate, domain sample sizes prove too small and

standard errors of direct estimates too high. We subsequently compare two indirect

estimators—one generated by averaging over observations that are proximate in space,

the other by averaging over observations that are proximate in time—on the basis of

estimated standard error. We also present a new estimator of the mean squared error

(MSE) of indirect domain estimators which accounts for covariance between direct and

indirect domain estimates. Borrowing sample data from within the geographic extents of

our domains, but from an expanded set of measurement years, proves to be the superior

strategy for augmenting domain sample sizes to reduce domain standard errors in this

application. However, MSE estimates prove too frequently negative and highly variable for

operational utility in this context, even when averaged over multiple proximate domains.

Keywords: forest inventory, wildland fire, forest regeneration, bias estimation, forest inventory and analysis,

monitoring trends in burn severity

INTRODUCTION

Wildfires in the western USA are increasing in frequency, size and severity and many western
forests are struggling to regenerate postfire (Stevens-Rumann et al., 2017). Hot, dry climatic
conditions fueled a 2020 wildfire season of unprecedented dimension, with over 1.5 million ha
burned in California alone (Higuera and Abatzoglou, 2021). In the USA, securing regeneration
of burned forest areas can be important for compliance with federal legislation, atmospheric CO2

sequestration, and perpetuation of forest products availability. Accurate estimates of residual tree
cover and new seedling recruitment following wildfire are thus critical for understanding postfire
forest dynamics and maximizing the impact of limited resources for postfire management activities
like tree planting.
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Many countries now monitor forest resources using a
network of sample locations distributed at a nationwide or
broad, regional level. In the USA, the sample plot network
administered by the United States Forest Service (USFS) Forest
Inventory and Analysis (FIA) program provides nationwide
ground observations of vegetation attributes, including tree
regeneration (Bechtold and Patterson, 2005). In addition,
the Monitoring Trends in Burn Severity (MTBS) program
provides fire perimeters and burn severities for all large
wildfire events from 1984 to 2018 (Eidenshink et al., 2007).
Together these two sources of information provide a means
of estimating postfire forest characteristics. Yet the spatial
and temporal resolution of the FIA sample relative to the
spatiotemporal frequency of wildland fires is expected to
render traditional estimation techniques unreliable for domains
defined by individual fire perimeters or collections thereof.
Here we investigate the viability of direct domain estimators
of postfire tree density across various domain resolutions, and
compare them to indirect estimators. Indirect estimators, a
class of small area estimation (SAE) techniques, borrow sample
observations from proximate domains to increase effective
sample sizes for domains requiring more precise estimation, or
small areas.

Applications of SAE techniques have proliferated in the
forestry literature, reflective of the need in public and private
sectors alike to increase the spatiotemporal resolution of
estimates of forest attributes without major investments in
additional data collection. Examples include approaches to
estimation proceeding from design-based (e.g., Breidenbach and
Astrup, 2012; Hill et al., 2018), model-based (e.g., Breidenbach
and Astrup, 2012; McRoberts, 2012; Coulston et al., 2021) and
hybrid (e.g., Magnussen et al., 2014b) inferential paradigms.
For detailed contrasts of differing inferential frameworks see
Gregoire (1998) and Ståhl et al. (2016).

Breidenbach and Astrup (2012) evaluated alternative
approaches to domain estimation of above-ground forest
biomass using Norwegian National Forest Inventory (NFI) data.
Domains consisted of 14 municipalities forming an exhaustive
partition of the study area. They compared domain sample
means with synthetic and generalized regression (GREG)
domain estimators, as well as with empirical best linear unbiased
predictor (EBLUP) composite domain estimators. The GREG
and EBLUP estimators both leveraged remotely-sensed canopy
height data. Both also resulted in more accurate estimates than
domain sample averages, as indicated by smaller estimated
variances in the case of GREG and by smaller estimated mean
squared errors (MSEs) in the case of EBLUP. Notably, the MSEs
estimated for the domain EBLUPs were of an unconditional
nature (Datta et al., 2011), being averaged over an explicit
(Gaussian) model of domain heterogeneity.

McRoberts (2012) presented model-based nearest neighbor
(NN) techniques for SAE, illustrated using USFS FIA data and
Landsat-derived attributes. The NN domain estimates of volume
(Mg ha−1) proposed were synthetic in the sense that observations
from the complete population were eligible to serve as neighbors
for any given location within a domain. Evaluation of the
relationship between observations and NN predictions of volume

for lack of fit was suggested in the model-based context as a
means of assessing the presence of domain-level estimation bias.

Adopting a design-based approach, Hill et al. (2018) evaluated
(two-stage) domain-level GREG estimators for application with
German NFI data. They related timber volume at a plot
level to LiDAR-derived variables and a species classification
map, and compared a weighted domain sample average with
approximately design-unbiased GREG estimators incorporating
domain-specific intercepts. The GREG estimators reduced
estimated variances of domain sample means by 43% in larger
geographic domains and 23% in smaller domains.

Coulston et al. (2021) compared post-stratified estimators
with model-based estimators of domain-level forest removals
across the southeastern US. They related FIA ground data
to Landsat-based tree cover loss and sawmill survey data at
the area level. The model-based SAE strategies they developed
for domain-level forest removals provided smaller estimated
(unconditional) MSEs relative to the estimated variances of post-
stratified domain estimators, at both county and multi-county
domain resolutions.

More generally, several themes can be identified from the
literature on small area estimation in forest inventory. The first is
that most applications consider only domains with fixed spatial
delineation, defined for example by administrative/political
boundaries (e.g., Breidenbach and Astrup, 2012; McRoberts,
2012; Hill et al., 2018). As described below, domains of interest
that arise from forest disturbances have spatial and temporal
bounds that are important—both in defining the parameters
of interest and in determining what measurements are within
or outside the domains. Second, there are often asymmetries
in how data from spatially-proximate vs. temporally-proximate
(but potentially spatially-coincident) domains are used in
domain estimation. Numerous studies evaluated the use of data
drawn only from spatially-proximate domains, perhaps because
data from other years were unavailable. Other studies have
drawn on inventory data from multiple years, but only while
correspondingly broadening the definition of the target estimand
from an attribute specific to a point in time to one averaged
over a (multi-year) period. In each of the four studies cited
above, measurements spanning a multi-year period are used
in a “temporally indifferent” sense (Bechtold and Patterson,
2005) to form domain estimates that explicitly or implicitly
encompass a multi-year extent. A third theme is that most
previous applications (including all of those cited above) leverage
relationships between ground observations of the target attribute
and one or more auxiliary variables. That is, they evaluate gains
in accuracy that might be achieved through the incorporation
of extra-domain data and of statistical relationships between the
attribute of interest and other data products.

An additional theme that emerges from the SAE literature
is that estimation of the bias or MSE of indirect domain
estimators is challenging. Under a design-based approach, the
ability to estimate the bias of domain estimators is hindered
by the same constraint that motivates indirect estimation in
the first place, namely a lack of sufficient data. As such, both
Hill et al. (2018) and Breidenbach and Astrup (2012) eschew
synthetic regression domain estimation; they focus instead on
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approximately unbiased regression estimators, precluding the
need for bias orMSE estimation. Under a model-based approach,
domain differences are incorporated into an explicit probabilistic
model. This elevates a need for model validation strategies (see
e.g., McRoberts, 2012), but also allows for derivation of MSEs
and of estimators thereof. Datta et al. (2011) describe alternative
MSEs that can be pursued under the model-based approach,
but suggest that the conditional MSE of interest under the
design-based approach is least readily estimated. In line with
this, many SAE studies adopting EBLUP domain estimation
have employed estimators of unconditional MSEs characterizing
average performance over a distribution of possible domain
effects (e.g., Breidenbach and Astrup, 2012; Coulston et al., 2021).

In this study, we investigate two methods for augmenting
domain samples for indirect estimation of tree attributes in
disturbed areas: one method borrows explicitly in space; the
other in time. Also, inasmuch as indirect estimation necessarily
introduces bias, with different strategies incorporating different
sources of bias, we also evaluate estimators of the MSE and bias
of the indirect domain estimators. Overall, our objectives are
to i) advance a framework for defining wildfire-origin domains
and estimating forest attributes at specified postfire intervals;
ii) evaluate the feasibility of direct estimation of postfire tree
regeneration across varying domain extents using FIA data;
iii) determine the advantages and limitations associated with
alternative strategies for incorporating FIA data from proximate
spatial and temporal domains into indirect estimators; and, iv)
investigate the utility of estimators of the MSE and bias of
indirect estimators. Our approach is developed in the next section
and then exemplified using fire perimeters from the western
coterminous US and field data from the FIA program.

FRAMEWORK FOR DOMAIN DELINEATION
AND ESTIMATION

We assume that interest lies in resources distributed across a
population defined over both spatial X and temporal T extents.
Also, we assume the resources are monitored via a probability-
based sample design that selects a finite number of locations in
space x ∈ X and designates each for measurement at a time
t ∈ T. Our research then focuses on the estimation of resource
parameters over (small) domains of the population.

Domains of interest in forest management may persist over
time and be defined only by their spatial extents. For example,
a domain may be defined administratively, such as the State
of Wyoming or the Shoshone National Forest (WY). However,
the domains of interest here are those that are created by a
disturbance event (or complex of disturbance events) and that
thus also have a temporal component. For example, a domain
may consist of all lands burned by a particular wildfire event in
1990. Such a domain has a spatial extent defined by the 1990 burn
perimeter and a temporal extent running from 1990 forward.
Generalizing, a domainmay instead consist of all lands within the
Shoshone National Forest burned by wildfires in 1990, or all lands
withinWyoming that burned in wildfires between 1990 and 1999.
In the latter example, the spatial extents of the constituent fires

may overlap (e.g., a subset of the area burned in 1990 could burn
again in 1999). This could be handled in various ways depending
on research or management interests, but in the subsequent we
attribute any such overlap to the most recent burn and effectively
clip it from the spatial extent of the earlier burn. Thus, a domain
defined by a 1990 wildfire event may have a spatial extent that is
constant from 1990 to 1998, and a reduced spatial extent from
1999 onwards owing to a partial reburn event in 1999. Notably,
such domains are not likely to form an exhaustive partition of the
population in any given year, and in any given year not all existing
disturbance-generated domains will have persisted over the same
time interval.

Owing both to the potential for the spatial extent of a domain
to change over time and to the fact that the resources of interest
are dynamic, domain properties are referenced by a domain
index d (d = 1, 2, . . .) and a temporal index l (l = 0, 1, 2, . . .).
The latter index measures time (numbers of years) elapsed since
the defining disturbance event(s). Define A(d, l) ⊆ A(d, 0)
as the spatial extent of domain d at l years post-disturbance,
corresponding to the original spatial extent of the disturbance
less any regions subsequently disturbed within l years. Interest
centers on the spatial density of a resource attribute y at given
points in time, or

λ(d, l) = 1

|A(d, l)|

∫

A(d,l)
y(x, l)dx (1)

where |A(d, l)| is the area of the domain d after a lag of l years,
and y(x, l) is the resource value at spatial coordinate x as it exists
l years after the domain-defining disturbance event. That is, we
adopt a continuous population perspective (see e.g., Grafström
et al., 2017) and focus on y(x, l) as defining the number of live
trees per unit area at location x in year l, which in practice
necessitates counting live trees over a fixed support area, such as
a circular plot. Thus, for example, if the domain d corresponds
to a particular 1990 wildfire, then interest may lie in the number
of live trees per unit area that are standing in 1995 [= λ(d, 5)] or
that are standing in 2000 [= λ(d, 10)]. In either case, it must be
recognized that the spatial extent of the domain could be different
in 2000, 1995, and 1990 owing to subsequent disturbance [i.e.,
A(d, 10) ⊆ A(d, 5) ⊆ A(d, 0)]. Moreover, if the domain d
corresponds to all lands burned by wildfires inWyoming between
1990 and 1999, then λ(d, 5) still defines the density of the resource
5 years post-disturbance. In this case, the parameter integrates
regeneration density in 1995 over areas burned in 1990 as well
as regeneration density in 1999 over areas that burned in 1994.
That is, as defined here, the lag index l does not denote a period
of time initiating at the oldest (or most recent) disturbance event
subsumed within a domain of interest, but rather a fixed interval
allowed to elapse over all disturbances within a domain.

In the small area estimation terminology of Rao and Molina
(2015), a direct estimator of λ(d, l) would draw only on the set
s(d, l) of sample observations yk = y(xk, lk) located in domain
d and observed after a lag of l years. The size of s(d, l), denoted
n(d, l), is assumed to be a random variable because A(d, l) is not
an independently sampled stratum of the population. One direct
estimator applicable to equal-probability inventory designs is the
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domain sample mean

ȳ(d, l) = 1

n(d, l)

∑

k∈s(d,l)
yk (2)

Under simple random sampling (SRS), ȳ(d, l) is a conditionally
unbiased estimator of λ(d, l) provided n(d, l) > 0 (see
Appendix A). However, this result does not hold for other equal
probability sampling designs; bias of the domain sample mean
accrues from variability in n(d, l) and generally decreases only as
n(d, l) increases (Särndal et al., 2003, pp. 176–177).

For small domains, the domain samplemean (Equation 2) and
other direct estimators are expected to have high variance owing
to small and variable sample sizes. Thus, we also consider indirect
estimators of λ(d, l) that utilize data from an augmented sample
set s̃(d, l) ⊇ s(d, l) of observations coming from within and
beyond the spatiotemporal domain A(d, l). For example, s̃(d, l)
may supplement s(d, l) with observations drawn from another
domain d′ but made at the same time-since-disturbance [i.e.,
by borrowing data from A(d′, l)], or from the same domain
but at different lags-since-disturbance l′ [from A(d, l′)], or from
a combination of these extensions. Denoting the size of the
augmented sample by ñ(d, l), a simple indirect domain estimator
that might be applied under equal probability sampling is the
augmented sample mean

ˆ̄y(d, l) = 1

ñ(d, l)

∑

k∈s̃(d,l)
yk (3)

Implicit in the use of this estimator is the assumption that the
spatial density of the attribute of interest differs little within
the domain vs. over the region from which data are borrowed.
Generally, this assumption becomes less tenable as that extra-
domain region is expanded in space or time but, regardless,
Equation (3) is a biased estimator of λ(d, l), even under SRS.
Its bias under SRS will depend on the relative size of the region
from which data are borrowed and on the extent to which the
spatial density of y differs over that region relative to λ(d, l)
(see Appendix B). At the same time, the variance of an indirect
estimator such as ˆ̄y(d, l) is expected to be lower than that of ȳ(d, l)
owing to the augmented sample size.

Inasmuch as indirect domain estimators are generally biased,
MSE should provide a more informative statistical summary
than variance. Unfortunately, useful analytical expressions (or
estimators) of the MSE of an indirect domain estimator are
difficult to obtain. Building on Rao and Molina (2015, p. 43) and
suppressing the domain and lag indices (d and l) for brevity, the
MSE of an indirect estimator λ̂i can be written as

MSE

[
λ̂i

]
= E

[
λ̂i − λ

]2
= E

[
λ̂i − λ̂u

]2
− V

[
λ̂u

]

+2C
[
λ̂i, λ̂u

]
(4)

where λ̂u is an unbiased estimator of the domain parameter,

V

[
λ̂u

]
is its variance, and C

[
λ̂i, λ̂u

]
is its covariance with λ̂i.

Going further, from the basic definition of MSE (i.e., variance

plus squared bias), Equation (4) can be re-arranged to provide
an expression for the squared bias K of an indirect domain
estimator, viz.

K

[
λ̂

]
=

(
E

[
λ̂i

]
− λ

)2
= E

[
λ̂i − λ̂u

]2
− V

[
λ̂u

]
− V

[
λ̂i

]

+2C
[
λ̂i, λ̂u

]
(5)

The above expressions for MSE and squared bias have been used
to derive several estimators for indirect domain estimation (e.g.,
Gonzalez and Waksberg, 1973, pp. 6; Marker, 1995, pp. 67–
71; Rao and Molina, 2015, pp. 44–45). Commonly however,
the covariance term in expresssions (Equations 4, 5) has been
ignored. Dropping the covariance term may be justified in
applications where the indirect estimator draws on a considerably
larger sample than the direct estimator—for then the two
estimators can be expected to have low correlation. Yet in settings
where the domain sample size is an appreciable component of the
data used by the indirect estimator, the covariance term cannot
be expected to be negligible. Instead, it is expected to be positive,

tending to V

[
λ̂u

]
as ñ approaches the domain sample size and

tending to 0 only as ñ becomes much larger than n.

METHODS

Forest Inventory Data
This study utilizes data from the USFS annualized Phase 2 (P2)
plot network spanning all lands (forested and non-forested, all
ownerships) in the 11 contiguous states of the western USA
(Figure 1). The plot network is based on an equal-intensity
sampling design that began with tessellation of the landbase
into approximately 2,400 ha hexagons, followed by the selection
of 1 plot location per hexagon (Bechtold and Patterson, 2005).
Implementation of the annualized FIA program in the western
states involves the remeasurement of one of 10 interpenetrating
panels of plots each year, yielding a nominal sampling intensity
of approx. one plot measurement per 24,000 ha per year.

At the time this research was undertaken, FIA plot data were
publicly available for measurements taken in 2018 back through
the year of initial implementation (which varied by state). All
FIA plots are assessed for condition (e.g., forested vs. non-
forested) and the attributes measured on forested conditions
permit computation of live tree density over a range of age and
size classes (seedlings, saplings, and larger trees) for each of the
4 subplots comprising an FIA plot (see Bechtold and Patterson
2005). Such data also exist for some regionally intensified
FIA plot grids and regional post-fire FIA plot remeasurement
designs, but these were not included in the analysis as they
have variable spatial and temporal measurement intensities. For
various reasons (e.g., presence of seasonal water, hazardous
field conditions), vegetation data are not available for every
subplot; such subplots were necessarily excluded from the
analysis dataset and not utilized in averaging tree densities to a
plot level. However, NFI subplot condition mapping procedures
permitted the incorporation of data from subplots that were only
partially measurable. The numbers of measurements of (at least)
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FIGURE 1 | Study area spanning 11 states in the western USA. Areas spanned by MTBS burn polygons 1984–2018 are shown in red where they overlap USFS

National Forest System (NFS) lands and in orange otherwise; unburned NFS lands are shown in gray.

partially-forested FIA plots by state and year are summarized in
Supplementary Figure 1.

Domains
This research centers on estimating post-fire tree density in
forested areas of the western US experiencing wildland fire
events. Thus, domains were defined using 1984–2018 burn
perimeters obtained from the MTBS program (Eidenshink
et al., 2007), which maps all wildland fires ≥404 ha in
the western US. Also, in order to facilitate a focus on
forested areas, where maintaining or re-establishing forest
cover is a management objective, domains were restricted
to the intersection of MTBS burn perimeters and USFS
National Forest System (NFS) lands (excluding grasslands or
other non-forest land designations, see Figure 1). Burned areas
outside of these lands and burned areas on non-forested lands

more generally were not considered parts of the domains
of interest. Finally, US state boundaries were overlaid over
the burn perimeters. This was done in part to account for
differential sampling intensities over time across states (see
Supplementary Figure 1), as well as to allow for estimation at a
state-level resolution.

Given these constraints, the most finely resolved domains
considered here consist of a complex of NFS lands within an
individual western US state that are spanned byMTBS perimeters
of a specific burn year. But also considered are aggregates of
these domains taken over different time spans. Thus, allowing
for a 2-year burn period, a domain can consist of NFS lands
within a western US state spanned by MTBS perimeters from
a given biennium; a 10-year burn period allows for domains
consisting of NFS lands within an individual state spanned by
MTBS perimeters from a given decade. In these instances, only
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non-overlapping time spans are considered; that is, in the 10-
year case, we consider decadal domain burn periods ranging from
1990–1999 to 2000–2009.

The parameters of interest for each domain are taken as the
mean tree densities at specified post-burn intervals. That is, as
λ(d, l) defined by Equation (1) with y(x, l) denoting tree density
(numbers of trees per ha) at location x at a temporal lag of l years
post-fire. Below we consider only lags of 2 years or greater owing
to the fact that data on first year germinants are not collected on
FIA plots.

Domain Estimation
The FIA sample is distributed across all lands, while the domains
of interest here span only burned, forested lands under NFS
ownership. Therefore, the full FIA sample was first subset to
plots falling withinMTBS perimeters and within the states shown
in Figure 1. The geographic coordinates of these plots and the
standard cluster configuration were then used to determine the
burned status of subplots. Data for subplots outside the bounds
of any MTBS perimeters dating back to 1984 were dropped;
measurement data for all remaining subplots were tied to the
most recent MTBS burn and an associated fire-measurement
lag computed. FIA condition mapping procedures then enabled
elimination of subplots or portions of subplots classified to non-
forest conditions (e.g., rangeland condition). Notably, subsetting
to forested subplot data did not eliminate any plot measurements
from our analysis set, it changed only the subplot support of those
FIA plot measurements spanning multiple conditions. Finally,
subplot measurement data were associated with the domains
described above or with none of those domains (e.g., because
a subplot was not located on NFS lands); data from the same
domain and having the same lag were then aggregated to the
plot level. All geospatial operations were undertaken in R (R Core
Team, 2021).

Sample sizes available for direct estimation n(d, l) were
determined from the number of FIA plot measurements falling
within the domain d of interest and at the lag l of interest. In this,
and in the subsequent estimators, plot-level records were treated
the same irrespective of potentially differing numbers of subplots
(e.g., because some subplots were outside the domain of interest
or measured at a different lag). Plot-level compilations of trees
per ha (all size classes, all species) were used for direct estimation
of λ(d, l) via estimator (Equation 2). This domain sample mean
ȳ(d, l) is not an unbiased (or conditionally unbiased) estimator
of λ(d, l) under the FIA design. For instance, consider a domain
known to completely encompass 10 hexagons comprising a 10-
year remeasurement panel (see Bechtold and Patterson 2005) as
well as portions of neighboring hexagons. Then, conditioning
on a domain sample size of 1 also means conditioning on the
location of the singular plot measurement coming from within
one of the 10 completely spanned hexagons (and not from any of
the incompletely spanned hexagons), meaning that the domain
sample mean cannot be conditionally unbiased in general. Still,
as with other ratio-type estimators the bias will decrease with
increasing sample size. As an aside, we note that the domain
sample mean (Equation 2) differs from the ratio estimation
approach adopted by the FIA program. In this application, a

yk in Equation (2) is the number of trees on burned, partially-
forested subplots of an FIA plot divided by the aggregate area of
those burned, partially-forested subplots. The strategy advanced
by Bechtold and Patterson (2005) is to instead (i) average the
numbers of trees on burned forest land per unit plot area; (ii)
average the areas of burned forest land per unit plot area; (iii)
form a ratio of these two averages. Williams (2001) describes
some of the key differences between these ratio estimators.

The standard error of ȳ(d, l) was estimated using

SE
[
ȳ(d, l)

]
=

σ̂y(d, l)√
n(d, l)

(6)

where

σ̂ 2
y (d, l) =

1

n(d, l)− 1

∑

k∈s(d,l)

[
yk − ȳ(d, l)

]2
(7)

is an estimator of the within-domain sample variance.
Direct estimates of λ(d, l) [where n(d, l) ≥ 1] and associated

standard errors [where n(d, l) ≥ 2] were computed for all
domains and all feasible lags. Tree density could not be estimated
for all possible lags on all domains, however, because the
annualized FIA program began only in 2001 (and only then
for some states; see Supplementary Figure 1). Also, at the time
of this research measurements were available only through
2018. Thus, for example, mean tree densities at the 5- and 10-
year lags are estimable for the domain defined as NFS lands
burned in California in 2000, but only at the 5-year lag for
the domain defined as NFS lands burned in California in 2010.
Variability in the numbers of domains for which tree density
can be estimated by burn period and lag is summarized in
Supplementary Figure 2 for domains of various burn interval
lengths. It’s also worth noting that for multi-year domains, lag
remains constant and the applicable plot measurement years vary
over theMTBS perimeters. For example in the case of the domain
d comprised of NFS lands in ID burned in 2006 or 2007, the direct
estimator of λ(d, l) for l = 10 uses only 2016 plot measurements
for areas burned in 2006 fires and only 2017 measurements over
the 2007 burns. This preserves the length of time elapsed between
burns and corresponding plot observations.

Every direct domain and lag estimate was compared against
two types of indirect estimates. The first type augmented the
domain sample size by borrowing data from a broader spatial
extent. Specifically, for a given domain d and lag l, all FIA
plot measurements with the same lag l and falling within
MTBS perimeters intersected by a spatial buffer extended around
domain A(d, l) were drawn into s̃(d, l). Buffer distances ranging
from 25 to 250 km were implemented in R (R Core Team, 2021).
Note that under this procedure the augmented sample s̃(d, l) can
include plot data that are not within any domain of interest (i.e.,
in MTBS perimeters but outside the administrative state and/or
NFS delineation), but only if the plot measurements were taken l
years post-fire.

The second type of indirect estimate was obtained from
augmented samples formed by borrowing data from a broader
temporal extent. For a given domain d and lag l of interest, any
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FIA plot measurements made within the spatial extent A(d, l)
and at l ± δ years post-fire were drawn into s̃(d, l). With this
approach the augmented sample s̃(d, l) can include only plot data
from the same domain of interest [same MTBS perimeter(s)] but
measurements taken prior or subsequently to the lag of interest.
Thus, for a domain d defined as all 2010 MTBS burns on NFS
lands in Montana and a lag of interest of l = 5 years, s(d, l) would
consist only of plot data measured in 2015 within A(d, 5); but
s̃(d, l) would consist also of plot data measured in 2015±δ within
the spatial extent A(d, 5) (provided 2015 − δ ≥ 2012 because
only l ≥ 2 year data are considered, and provided 2015 + δ ≤
2018 because FIA measurements from 2019 or later were not
available). Lag buffers δ ranging from 1 to 7 years were evaluated.

With both sample augmentation strategies, the indirect
estimator (Equation 3) was applied. Furthermore, estimates of
standard error were obtained similarly to direct estimation as

ŜE

[
ˆ̄y(d, l)

]
=

ˆ̂σ y(d, l)√
ñ(d, l)

(8)

where

ˆ̂σ 2
y(d, l) =

1

ñ(d, l)− 1

∑

k∈s̃(d,l)

[
yk − ˆ̄y(d, l)

]2
(9)

Thus, the estimated standard error for the indirect estimator is
a function of both a potentially larger sample size and of the
variability within that larger sample. Relative standard error was
obtained by relating ŜE to estimated tree density.

MSE Estimation
Equation (8) can be used to estimate the precision of the indirect
estimator, but makes no attempt to account for its inherent bias;
a useful indicator of this estimator’s accuracy would account
for both. Equation (4) led to two estimators of the MSE of the
indirect domain estimators (see Appendix B for details). The
simplest, again suppressing the domain and lag indices d and l
for brevity, takes the form

M̂SE

[
ˆ̄y
]
1
=

(
ˆ̄y− ȳ

)2
−

σ̂ 2
y

n
(10)

This MSE estimator is based on an approximation suggested by
Rao and Molina (2015, p. 44) but employs ȳ in place of a strictly
unbiased domain estimator. It does not attempt to account for the
covariance between the direct and indirect domain estimators.
As such, it can be expected to be more appropriate in contexts
where augmented sample sizes are consistently much larger than
domain sample sizes. The other estimator evaluated here takes
the form

M̂SE

[
ˆ̄y
]
2
=

(
ˆ̄y− ȳ

)2
−

σ̂ 2
y

n

[
1− 2

n

ñ

]
(11)

In this estimator the factor
[
1− 2 n

ñ

]
results from the inclusion

of an estimated covariance between ˆ̄y and ȳ. We note that

M̂SE

[
ˆ̄y
]
2
≥ M̂SE

[
ˆ̄y
]
1
(though neither estimator is guaranteed

to be positive) and expect that M̂SE

[
ˆ̄y
]
2
will be more accurate

when augmented samples are not substantially larger than the
corresponding domain samples. Finally, as suggested by Marker
(1995) we computed estimated squared bias as of the indirect
domain estimator as

K̂

[
ˆ̄y
]
= M̂SE

[
ˆ̄y
]
q
− ˆ̂σ 2

y(d, l) (12)

for q = 1, 2.
Estimates of MSE and squared bias were computed for each
domain and lag individually, and also averaged over groups
of proximate domains. The latter strategy was suggested by
Gonzalez and Waksberg (1973) to reduce instability in MSE
or squared bias estimates. In this study, we averaged MSE and
squared bias estimates over all domains within the same state
and having the same burn period length (e.g., any biennium
for domains with 2-year burn periods), as well as over all
estimation lags.

RESULTS

Over the 11 states of the western USA shown in Figure 1,
there were 4,778 FIA P2 plot locations falling at least partially
within MTBS burn perimeters dating from 1984 to 2018. These
locations provided 5,946 plot measurements from burned areas
with measurement lags ranging from 2 to 35 years post-fire.

The distribution of domain sample sizes for domains of
different temporal extents is shown in Figure 2. For domains
spanning only a single burn year (e.g., all NFS lands burned in
OR in 2000), sample sizes are almost so small as to prohibit direct
estimation: in only 6% of cases (domains × lags) did the sample
size exceed 5 observations. Even for domains spanning 4-years
(e.g., all NFS lands burned in OR between 2000 and 2003), the
median sample size is only 2 observations. This rises to 7 in
the case of decadal domains (e.g., all NFS lands burned in OR
between 2000–2009), the lowest temporal resolution considered
to be of administrative utility.

Though small, and inherently random, these domain sample
sizes are governed in part by the FIA sampling intensity of
approximately 1 plot measurement per 2,400 ha per decade. That
nominal intensity is shown as the dotted line in Figure 2; realized
intensities are captured by the solid lines that consistently fall
short of the approximately 1:24,000 nominal rate.

Figure 2 also highlights two distinct domains for reference.
Shown in red is the domain comprising OR NFS lands burned
between 2000 and 2009 (lags 2–9 year). At lag 2 year, this domain
spanned an areal extent of 605,690 ha, but with partial reburns the
extent dropped to 550,806 ha at lag 9 year. Sample sizes ranged
from 15 (lag 6 year) to 28 (lag 4 year), reflecting the generally
high inter-annual variation in domain sample sizes. In blue is
the domain comprising ID NFS lands burned between 1990 and
1999 (lags 14–19 years). This domain spanned an area of 332,272
ha at lag 14 year and captured sample sizes ranging from 6 to
15 observations.

Restricting attention to decadal domains, the relationship
between area and estimated standard error of the domain sample
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FIGURE 2 | Domain sample sizes and areas for annual, quadrennial, and decadal domains, showing data for all lags. Dotted line is the nominal FIA sampling intensity;

solid lines are linear regressions for particular lag buffers. Red symbols denote various lags for the OR 2000–2009 domain; blue symbols denote estimable lags for the

ID 1990–1999 domain.

means is shown in Figure 3. Domains with larger areal extents
generally had larger sizes (see Figure 2) and smaller standard
errors (Figure 3, left panel), though there is substantial variation
around the latter trend.Moreover, standard errors could not even
be computed for 15% of cases owing to domain sample sizes less
than 2; over the remaining cases the median relative standard
error was 47%. Figure 3 also shows the relationship between
estimated standard errors (where these could be computed) and
domain sample means. On the natural logarithm scale, there is a
strong linear association between the domain sample mean and
its estimate standard error.

Borrowing data from an extended spatial extent generally
augments the sample sizes available for indirect domain
estimation (Figure 4). The dotted lines in Figure 4 correspond
to the same nominal sampling intensity as in Figure 4, while the
solid lines now show the realized augmented sampling intensities.
As expected, the larger the spatial buffer and the larger the
initial domain extent, the greater the increase in sample size.
However, the spatial buffering operation yields erratic results
at the domain level. For the domain spanning OR NFS lands
burned between 2000 and 2009 (red symbols), spatial buffering
greatly and consistently increases the sample sizes available for
estimation. Yet the effect is much less pronounced for the domain
spanning ID NFS lands burned between 1990 and 1999.

The distribution of estimated standard errors for indirect
estimates borrowing proximate spatial data, relative to those
for direct estimates, is shown in Figure 5 for 10-year domains.
Although the relative standard errors of indirect estimates are

larger than those for the corresponding direct estimates in some
cases (even with 200 km buffers), spatially augmented samples
tend to reduce relative standard errors. The extent of the shift in
the distribution of standard errors is a function of the magnitude
of the spatial buffer, as expected. However, the magnitude of
the shift is not pronounced and the median relative standard
error using a 200 km buffer is still 38%. In addition, even at a
200 km buffer, 5% of cases (10-year domains × estimable lags)
have augmented sample sizes less than 2 and thus do not permit
estimation of standard errors.

Relative to spatial buffering, borrowing data from an
expanded temporal extent augments domain sample sizes at
a consistent rate (Figure 6). The dashed lines in Figure 6

represent the nominal sampling intensity of a domain augmented
according to the expanded temporal range of measurements.
Specifically, one would expect approximately 1 FIA plot
measurement at a given lag l within a domain of 24,000 ha; by
extension, in allowing for plot measurement lags of l ± δ one
would expect to collect 1+2δ plot measurements for a domain of
that size. Mean augmented sample sizes (solid lines in Figure 6)
fall short of the expected augmented sample sizes, but the sample
augmentation effect is more consistent across domains than with
spatial buffering. That is, with an expanded temporal extent
there is less variability in the proportionate increases in sample
sizes across domains, as indicated for the highlighted OR and
ID domains.

Corresponding to the more consistent sample augmentation
of temporal buffering, the impacts on the distribution of
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FIGURE 3 | Relationships between estimated relative standard errors of domain sample means and domain areas (left) and between estimated standard errors and

domain sample means (right; log scale). Only results for 10-year domains (any lags) and domain sample sizes above 2 are shown.

FIGURE 4 | Augmented sample sizes and domain areas for 10-year domains (all lags) and different spatial buffers (50, 100, and 200 km). Dotted line is the nominal

FIA sampling intensity; solid lines are linear regressions for particular spatial buffers.

estimated standard errors of indirect estimates were larger and
more consistent (Figure 7). Comparison to Figure 5 also shows
that relative standard errors of indirect estimates under l ± δ

borrowing are generally lower than under space borrowing. At
the least intensive lag-borrowing level (δ = 1 yr), they exceed

the corresponding standard errors of the direct estimator much
less frequently than under space borrowing, at even the largest
buffer distance (200 km). Also, unlike under space borrowing
(Figure 5). Figure 7 shows substantial reductions in relative
standard errors of both domains represented by red and blue
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FIGURE 5 | Estimated relative standard errors of augmented sample means for 10-year domains (all lags) under for different spatial buffers; domains and lags are

ordered according to relative standard errors of domain means (as represented by the black curve). Horizontal axis labels are individual domain and lag identities and

have been suppressed for clarity.

FIGURE 6 | Augmented sample sizes and domain areas for 10-year domains (all lags) and different lag buffers (δ =1, 2, 4 year). Dotted line is the nominal FIA

sampling intensity r ≈ 1 :24, 000; dashed lines are augmented intensities (2δ + 1)r; solid lines are linear regressions for particular burn intervals.
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FIGURE 7 | Estimated relative standard errors of augmented sample means for 10-year domains (all lags) under for different temporal buffers; domains and lags are

ordered according to relative standard errors of domain means (represented by the black curve). Horizontal axis labels are individual domain and lag identities and

have been suppressed for clarity.

points, which consistently decline with increasing δ until they are
approximately equal across lags for both domains at δ = 4 yr.

Turning to MSE and bias estimation, for the decadal
domains considered above MSE of the indirect estimators
couldn’t be estimated in 14% of cases (19 of 132 domains
× lag combinations) regardless of temporal or spatial buffers
employed. This was a result of domain sample sizes less than 2,

which precluded estimation of σ̂ 2(d, l) and thus of M̂SE

[
ˆ̄y
]
1
or

M̂SE

[
ˆ̄y
]
2
. Even setting aside such cases, both MSE estimators

frequently produced negative estimates when applied at the
domain level. For example, for the indirect estimates employing

data with a lag buffer of δ = 1 year, M̂SE

[
ˆ̄y
]
2
was negative in

41% of cases (domains × lags) while M̂SE

[
ˆ̄y
]
1
was negative in

71% of cases. As δ increased, the frequency of negative M̂SE

[
ˆ̄y
]
1

declined (though never fell below 50%), but the frequencies of

negative M̂SE

[
ˆ̄y
]
2
increased to converge with those of M̂SE

[
ˆ̄y
]
1
.

Figure 8 shows estimated relative MSE (%) for the indirect
domain estimator with δ = 2 year plotted against domain
area (ha), computed individually for each 10 year domain ×
lag combination, using Equation (11). While variability declined
with domain area, it is clear that both MSE estimators are too
variable across domains and within domains across lags to be of
operational utility at the domain level.

Furthermore, both MSE estimators were still negative when
averaged over proximate domains. Specifically, across different

FIGURE 8 | Estimated relative MSE (%) for the indirect domain estimator with

δ = 2 plotted against domain area (ha), computed individually for each 10 year

domain × lag combination using Equation (11).

temporal buffers δ, M̂SE

[
ˆ̄y
]
2
yielded negative estimates for 20–

40% of groups and M̂SE

[
ˆ̄y
]
1
for 50–90% of groups. Squared bias
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as estimated by Equation (12), which subtracts the variance of
the indirect estimator from a corresponding MSE estimate, was
necessarily negative even more often than either MSE estimator
taken alone.

DISCUSSION

The framework for indirect domain estimation we propose
could be generalized to any probability sample of a target
forest attribute (e.g., mean forest biomass density, total
merchantable timber volume) distributed across spatiotemporal
domains. Domains may span any time periods (for which
requisite inventory data are available) and be comprised of
contiguous or disjoint spatial polygons. It’s worth remarking
on the inherently complex nature of spatiotemporal domains
comprised of burn perimeters intersecting a specific ownership
category. Polygons are disjoint, often intersecting (reburns),
and irregularly distributed in time and space according to
neighborhood fire legacies.

When we expand domain delineations in space or time, the
number of FIA P2 plot measurements will increase at a pace
just below the nominal rate of approximately 1 measurement
per 24,000 additional hectare-years (Figure 2). As we expand
domains, however, they gradually lose administrative utility.
For example, estimates of post-fire regeneration in areas
burned over a reasonably narrow burn period length but
extending over a vast geographic region (e.g., multiple states),
or alternatively over a reasonably small geographic area but
extending between 1984 and 2004 (20-year burn year window),
would provide information of little utility to managers trying to
optimize limited post-fire management resources for maximal
regeneration impact.

Domain samples fluctuate around their anticipated sizes
(given the nominal FIA sampling intensity and domain areas)
owing in part to how the stratified random spatial distribution
of plots intersects historic burn patterns. However, that the
relationship between realized domain sample sizes and areas
consistently falls short of its expectation must be due in large
part to the fact that tree data are available only for FIA plots
that are classified as partially forested. It may also be due in
part to a tendency to fall short of annual plot remeasurement
targets (see e.g., Roesch 2018). It is important to note that
the consistent 1 observation per additional 24,000 ha−1 yr−1

burned area sample augmentation rate can only be expected
to reliably emerge in years following the implementation
of FIA’s annualized inventory measurement protocols. This
wasn’t until 2001 at the earliest, 2011 in Wyoming, and with
irregularities due to inconsistencies in funding in the interim
(Supplementary Figure 1).

Our analysis of domain and augmented sample sizes and
associated standard errors showed 10-year state-level domains
to be the smallest spatiotemporal domains of administrative or
management utility feasible for estimation of post-fire forest
density using the domain estimators evaluated. As a general
approach to estimation, direct FIA-based domain expansion
estimation is unfeasible due to insufficiently small domain

sample sizes and resultant high domain-level standard errors,
even in 10-year domains. We note as well that we didn’t
account for the effects of retained plot size (e.g., only burned
subplots) as implemented here on variance estimates. Hill et al.
(2018) describe a methodology for incorporating differential plot
sizes. Finally, though it wasn’t an objective of this research,
experimentation with other means of estimating the variance
of domain estimates may be warranted (e.g., through the use
of generalized variance functions as described by Wolter 2007,
Chapter 7). A strong relationship between direct domain tree
density estimates and their relative standard errors (Figure 3,
right panel) was observed, as has been noted in other studies (e.g.,
Breidenbach et al. 2018).

Indirect estimators may offer an alternative. They are
attractive in their potential to decrease domain-level standard
errors. However, they rely on an implicit model that has the
density of the attribute of interest changing slowly beyond
the domain, at least relative to the variance of the attribute.
We considered two strategies for borrowing data to augment
domain samples for indirect estimation: borrowing in time (lag
borrowing) and borrowing in space (space borrowing).

Under space borrowing, the rate of increase of the augmented
sample size is dependent on the neighborhood fire legacy,
the neighborhood land use patterns, and the overall sampling
intensity. If many nearby forested hectares burned in the time
range of interest, the augmented sample size will increase
more quickly when data are drawn from a region only slightly
expanded in space. Conversely, in areas with lower levels of
nearby historic fire activity or lower levels of nearby forest
land, one would need to expand further in space to obtain
comparable increases in sample size. Yet borrowing extra-
domain sample data in this way necessarily introduces bias to
domain estimates. As plot observations from further away are
selected for inclusion in the augmented domain sample, the biotic
and abiotic environmental conditions of disparate forests may
resemble those of the focal domain to a lesser extent. For example,
borrowing in space can (and was observed to) draw on plot
observations from distinct ecological conditions.

Another means of borrowing data that are proximate in
space is to restrict the augmented sample to measurements (with
appropriate postfire lag) from the same or similar ecological
domains, regions or subsections (e.g., as delineated by Cleland
et al. 1997). Nationwide availability of ecoregion designations of
varied resolution would permit such restrictions. The capacity to
augment the domain sample at a consistent rate, however, would
still be governed by regional fire perimeter distributions in time
and space. It would also then be impacted by regional landscape
heterogeneity as exemplified by, for instance, varied ecoregions
in mountainous terrain (with distinct forest and wildfire fuel type
changes occurring over relatively short distances). An alternative
approach wherein the augmented sample sizes could be fixed
would be to borrow from the ideas underlying coarsened exact
matching (see e.g., Van Deusen and Roesch 2013). That is,
an initial spatial and/or ecological buffer could be evaluated
and then, for domains still having an insufficient augmented
sample size, the spatial buffer could be extended or the ecological
classification coarsened. More generally, drawing data from
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outside the domain of interest but from regions that share other
characteristics (e.g., ecological subsection) has parallels in the
ideas underlying post-stratification. Yet post-stratified estimation
is most commonly implemented as a strictly direct estimation
approach (e.g., Haakana et al. 2020) without drawing on data
from strata that extend beyond the domain of interest.

The spatial buffering algorithm utilized here can also be
related to nearest neighbor techniques (e.g., McRoberts 2012) in
that both define a neighborhood from which to borrow data.
However, nearest neighbor techniques select a fixed number
of observations using a neighborhood defined in a broader
auxiliary space (typically not restricted to or even dependent on
geographic variables), while under space borrowing the number
of observations selected into the augmented sample is a random
function of neighborhood fire legacy. For domains where few
additional observations are obtained under space borrowing
even with large buffer distances, nearest neighbor techniques
may need to reach very far in geographic space to obtain
the specified fixed number of neighbors, with the potential to
increase estimation bias.

Adoption of the temporal buffering algorithm allows for the
use of plot observations from the same geographic extent as the
domain of interest but measured at differing lengths of time-
since-disturbance. Though data from additional plot locations
falling within that extent are introduced, this method borrows
only in time. Other SAE applications in forest inventory have
pooled data from multiple years to generate domain estimates
for domains with fixed spatial extents and (usually implicit)
multi-year temporal extents (e.g., Breidenbach and Astrup, 2012;
McRoberts, 2012; Hill et al., 2018). Here, we explicitly borrow
sample observations with measurement years other than those
denoted by the spatiotemporal domain parameters and target
estimation lag. Spatiotemporal disturbance domains require a
high degree of specificity in domain definition, and by extension
in the definition of the temporal component of the target
attribute. This specificity led to the determination that to include
observations with measurement years other than those specified
by the relevant disturbance lag is to operate in the realm
of indirect estimation. Thus, the general estimation strategy
employed by Breidenbach and Astrup (2012) that integrates data
measured between 2005 and 2010 to estimate a periodic mean
is distinct from our lag-borrowing indirect estimation strategy.
With δ = 2 year, the latter would draw on observations from
2005 to 2009 to indirectly estimate a target attribute in 2007, but
on observations from 2006 to 2010 to indirectly estimate a target
attribute in 2008.

Even in areas exhibiting highly unfavorable conditions for
post-fire forest regeneration, some seeds will germinate, some
seedlings will establish, and some patches of forest will eventually
begin to regenerate over time. Thus, to include plots with
measurement years earlier than specified by d and l in s̃(d, l) is
to include observations which may not capture the full extent of
forest stand development in the focal domain, leading to negative
bias. Conversely, to include plots with later measurement years
is to include observations which may exaggerate the extent of
true forest stand development in the focal domain, leading to
positive bias.

As implemented in this study, lag borrowing augmented
domain samples (Figure 6) and decreased relative domain
standard errors (Figure 7) to a greater extent, and in a faster,
more consistent manner, than space borrowing (Figures 4, 5).
The smaller increases in precision of the indirect estimator
achieved via space borrowing relative to lag borrowing largely
reflect instances where few additional plots were obtained by
space borrowing (e.g., as in the case of the domain represented
by blue points in Figure 4). This could also result from instances
where plots from adjacent ecoregions with markedly different
regeneration conditions were selected, adding to within-sample
variability. Space borrowing has been shown to be effective
in domains whose spatiotemporal neighborhoods yield more
observations available for sample augmentation, for instance the
estimation of an attribute over a single time period distributed
across most or all adjacent forested area (e.g., Breidenbach and
Astrup, 2012; Magnussen et al., 2014a).

As methods for borrowing increase in complexity, so do their
associated sources, and likely magnitudes, of bias. For this reason
we evaluated explicit space and lag borrowing only. Overall,
lag borrowing exhibited greater magnitude and consistency of
increases in both augmented samples and precision of estimates
relative to space borrowing. These facts combine to suggest
lag borrowing to be a superior borrowing strategy to space-
borrowing for indirect expansion estimation of post-fire tree
density in western US-wide spatiotemporal domains with respect
to domain-level standard errors. That said, estimation of the
bias of indirect domain estimators remains a challenge. An
obstacle in formulating estimators of the MSE or squared bias
of an indirect domain estimator from Equations (4) to (5) is
the difficultly of reliably estimating the variance of an unbiased
domain estimator—for the absence of a precise direct estimator
is generally what motivates indirect estimation in the first place.
The MSE estimators proposed by Rao and Molina (2015) and
Gonzalez and Waksberg (1973), and squared bias estimator
proposed by Marker (1995), can be negative and yield widely
disparate MSE estimates for a single domain at lags separated
by just one or several years, as occurred in our application.
This resulted from subtraction of the unstable and often large
estimated variance of the direct domain estimator.

The MSE estimator we proposed, which accounts for the
covariance between direct and indirect domain estimates,
constituted some improvement but was still unstable and
frequently negative (Figure 8). It was also very high in some
domains, and in fact is necessarily larger than the other estimator
investigated. As suggested by Gonzalez and Waksberg (1973)

and Rao and Molina (2015), we also averaged M̂SE

[
ˆ̄y
]
1
and

M̂SE

[
ˆ̄y
]
2
over proximate domains to improve stability, but this

yielded only marginal improvements.
Indirect FIA-based expansion estimation of post-fire tree

regeneration in US state-level domains is probably most feasible
in domains with burn year periods of 10 years, owing to small
augmented sample sizes in many domains of shorter burn period
lengths. By δ = 2 yr, the vast majority of standard errors
of indirect lag-borrowed estimates are substantially lower than
their direct counterparts (Figure 7), suggesting δ = 2 or 3 as a
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potential starting point for operational domain estimation. This
is with the understanding that we were unable to effectively
characterize the bias of indirect estimates. Composite estimators
(Rao and Molina, 2015) seek to balance the instability of an
unbiased (or approximately unbiased) direct estimator with the
bias of a more precise indirect estimator. Weights controlling
the relative contributions of the component estimators are
typically constructed using either domain sample sizes or their
relative MSEs. Owing to our unreliable estimates of the MSE
of the indirect estimator, we could not have constructed a
composite estimator based on MSE. Though we could have
devised weights using domain sample sizes, we did not expect
the resultant composite estimates to be more precise than
the indirect estimates based on lag borrowing alone, and in
any case did not expect MSE estimation techniques to apply
successfully to the composite estimator for the same reasons
discussed above. These results point to the need for exploration
of model-assisted or model-based SAE strategies that could draw
on systematic associations (or effective post-stratifications) of
postfire tree density as a function of auxiliary variables available
across the population.

CONCLUSION

Direct FIA-based estimation of postfire tree density at
particular times-since-disturbance is deemed unfeasible
due to insufficiently small domain sample sizes. Indirect domain
ratio estimators that borrow sample observations from outside a
focal domain are alternatives to auxiliary-assisted methods and
have the potential to consistently and rapidly augment decrease
domain level standard errors. Borrowing in time proved to
augment domain samples more consistently than borrowing in
space. On the basis of relative standard errors alone, indirect
estimation of postfire tree regeneration in 10-year state-level
domains with δ = 2 or 3 presents a promising alternative to
direct estimation.

As indirect estimators necessarily add bias to domain
estimates, reliable estimators of MSE are required. MSE

estimators of indirect domain estimators have been proposed
and evaluated in the literature, and we evaluate a new MSE
estimator that accounts for the covariance between direct
and synthetic domain estimates. However, none of the MSE
estimators evaluated performed adequately.

Our results highlight the difficulties of estimating MSE and
squared bias, and point to the need for further experimentation
with methods for estimating MSE, including potentially
modeling MSE using appropriate covariates. Alternatively,
unbiased SAE techniques that preclude the need for bias
estimation, and that leverage auxiliary data, warrant inquiry in
this context.
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APPENDIX

Appendix A: Mean & Variance of the Direct
Estimator
Adopting the continuous population framework of Cordy (1993),
we consider equal probability sampling designs that can be
described by specifying a constant inclusion density function
π(x, t) = π(t) for all possible measurements locations over
a land surface in a given year t. For such designs, the direct
domain estimator (2) can be formulated as a ratio of the two
Horvitz-Thompson domain estimators

τ̂π (d, l) =
∑

k∈s(d,l)

yk

π(l)
=

∑
k∈s(d,l) yk
π(l)

(A1a)

Âπ (d, l) =
∑

k∈s(d,l)

1

π(l)
= n(d, l)

π(l)
(A1b)

where π(l) is the inclusion density function at l years following
the defining disturbance event. Estimators (A1) are unbiased for
the total of y over A(d, l) at year l from disturbance, and for the
total area of A(d, l), respectively. Yet the nonlinear combination
of these estimators is generally biased for λ(d, l). The domain
sample mean (2) can be described as “approximately unbiased” in
the sense that its bias diminishes with increasing expected n(d, l)
(see Särndal et al., 2003, p. 185), though this is of limited utility in
a small area estimation context where we anticipate small n(d, l).

Cordy (1993) provides a number of general results concerning
the bias and variance of estimators such as ȳ(d, l). In particular,
his results allow that if the conditional inclusion density function
πn(x, l) given n(d, l) is positive for all measurement locations
withinA(d, l), then

E
[
ȳ(d, l)

∣∣ n(d, l)
]
= λ(d, l) (A2)

provided n(d, l) > 0. This conditional unbiasedness result
holds for SRS because under that design

πn(x, l) =
n(d, l)

|A(d, l)| (A3)

for all x ∈ A(d, l). However, conditional unbiasedness does not
extend to all equal probability designs. For example, conditional
on the hexagonal tessellation employed by the FIA’s unaligned
systematic design it is possible to have πn(x, l) = 0 for some
x ∈ A(d, l) given n(d, l). In particular, suppose A(d, l) spans
one entire FIA phase 1 hexagon (see Bechtold and Patterson,
2005) slated for measurement in year l as well as portions
of several other phase 1 hexagons; if n(d, l) = 1 then the
conditional inclusion density function will be positive over the
completely subsumed hexagon but must be 0 over the other
intersected hexagons. This will generally result in bias. The
above also assumes that yk = y(xk, lk) is a point-measurement
(or a measurement employing protocols suitably adjusted for
boundary overlap) and that one can thus ignore any boundary
overlap effects (see e.g., Gregoire, 1998).

The variance of ȳ(d, l) for random n(d, l) has no analytically
tractable form as it is a function of the variability of both
estimators in (A1). From Cordy (1993), under SRS the
conditional variance of ȳ(d, l) given n(d, l) can be written in the
familiar form

V
[
ȳ(d, l)

∣∣n(d, l)
]
= 1

n(d, l) |A(d, l)|

∫

A(d,l)

[
y(x, l)− λ(d, l)

]2

dx =
σ 2
y (d, l)

n(d, l)
(A4)

Furthermore, that variance can be (conditionally) unbiasedly
estimated using

V̂
[
ȳ(d, l)

]
= 1

n(d, l) [n(d, l)− 1]

∑

k∈s(d,l)

[
yk − ȳ(d, l)

]2 =
σ̂ 2
y (d, l)

n(d, l)

(A5)

For spatially structured designs such as the USFS FIA, the
variance will be a function of more complex pairwise inclusion
density functions (see Cordy, 1993). Moreover, it may not be
possible to derive (conditionally) unbiased variance estimators
because the pairwise inclusion density function can be 0 for sets
of proximate locations. In such settings, estimator (A5) has been
recommended as a conservative variance estimator in the sense
that it is expected to overestimate variability in cases where the
spatial design effectively reduces sampling error (e.g., Baffetta
et al., 2009; see also Wolter, 2007, pp. 47–48). Alternatively,
variance estimation strategies developed for systematic designs
(e.g., Frank and Monleon, 2021) could be evaluated.

Appendix B: Mean, Variance, & MSE of the
Indirect Estimator
Certain properties of the indirect domain estimator (3) follow
directly from the results of Appendix A. These are extended
below suppressing the parenthetical domain and lag dependence
notation (d, l) unless necessary.

Under SRS the conditional expectation of ˆ̄y is a function of
the distribution of y over the expanded spatiotemporal region
Ã = Ã(d, l), i.e.,

E

[
ˆ̄y
∣∣∣ñ

]
= 1

|Ã|

∫

Ã

y(x, l) dx = |A|
|Ã|

λ + |Ã| − |A|
|Ã|

◦
λ = λ̃

where λ̃ is the density of y over Ã and
◦
λ is the density of y

over only the extra-domain region supplying additional data. The
conditional bias of (3) as an estimator of λ will therefore be a
function of the extent to which the density of y over the “small
area” A differs from that over the “large area” Ã. Additionally,
under SRS the conditional variance of ˆ̄y can be written as

V

[
ˆ̄y
∣∣∣ñ

]
= 1

ñ |Ã|

∫

Ã

[
y(x, l)− λ̃

]2
dx =

σ̃ 2
y

ñ
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where σ̃ 2
y is the variance in y over Ã. This conditional variance

can be unbiasedly estimated using

V̂

[
ˆ̄y
]
= 1

ñ [ñ− 1]

∑

k∈s̃

[
yk − ˆ̄y

]2
(A6)

conditional on the realized sample size ñ. As for the direct sample
mean (2) these results do not extend generally to other (equal or
unequal probability) spatial designs, but equation (A6) can again
be applied as a conservative estimator of variance.

To describe the MSE of ˆ̄y, it is useful to note that it can be
broken down much like its expectation above

ˆ̄y = 1

ñ

∑

k∈s̃
yk =

1

ñ




∑

k∈s
yk +

∑

k∈s̃
k/∈s

yk


 = n

ñ
ȳ+ ñ− n

ñ
¨̄y (A7)

where ¨̄y = ¨̄y(d, t) is the mean of the observations in
s̃ but not in s (i.e., of the observations that have been
borrowed from outside the domain of interest). Then, adopting
the approach used by Rao and Molina (2015, p. 43), write
the conditional MSE of the indirect estimator (3) given
n as

MSE

[
ˆ̄y
∣∣∣n

]
= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
+ E

[(
ȳ− λ

)2∣∣∣n
]

+ 2E
[(

ˆ̄y− ȳ
) (

ȳ− λ
)∣∣∣n

]

= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
+ E

[(
ȳ− λ

)2∣∣∣n
]

− 2E
[
ȳ
(
ȳ− λ

)∣∣n
]
+ 2E

[
ˆ̄y
(
ȳ− λ

)∣∣∣n
]

(A8)

The second and third terms on the right hand

side of (A8) relate to the variability of ȳ(d, t) while
the last term connects to the association between
ȳ(d, t) and ˆ̄y(d, t). Indeed, under SRS, (A8) can be
simplified to

MSE

[
ˆ̄y
∣∣∣n

]
= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
− V

[
ȳ
∣∣n

]
+ 2C

[
ˆ̄y, ȳ

∣∣∣n
]

(A9)

where C

[
ˆ̄y, ȳ

∣∣∣n
]

denotes (conditional) covariance. Further

simplification is possible under SRS by focusing on the
covariance term

C

[
ˆ̄y, ȳ

∣∣∣n
]
= E

[
ˆ̄y
(
ȳ− λ

)∣∣∣n
]

= E

{
E

[
ˆ̄y
(
ȳ− λ

)∣∣∣n, ñ, s
]∣∣∣n

}

= E

{(
ȳ− λ

)
E

[
ˆ̄y
∣∣∣n, ñ, s

]∣∣∣n
}

(A10)

Substituting (A7), the inner expectation of (A10) becomes

E

[
ˆ̄y
∣∣∣n, ñ, s

]
= n

ñ
ȳ+ ñ− n

ñ
E

[ ¨̄y
∣∣n, ñ, s

]
= n

ñ
ȳ+ ñ− n

ñ

◦
λ

Thus,

C

[
ˆ̄y, ȳ

∣∣∣n
]
= E

{(
ȳ− λ

) n
ñ
ȳ+

(
ȳ− λ

) ñ− n

ñ

◦
λ

∣∣∣∣n
}

= E

{n
ñ

∣∣∣n
}
E

{(
ȳ− λ

)
ȳ
∣∣n

}
+

◦
λE

{
ñ− n

ñ

(
ȳ− λ

)∣∣∣∣n
}

= E

{n
ñ

∣∣∣n
}
V

[
ȳ
∣∣n

]

Finally, substituting this last result into (A9) gives

MSE

[
ˆ̄y
∣∣∣n

]
= E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
− V

[
ȳ
∣∣n

] [
1− 2E

{n
ñ

∣∣∣n
}]

(A11)

Note that if ñ = n so that no observations are borrowed and that
therefore ˆ̄y = ȳ, thenMSE

[
ˆ̄y
∣∣∣n

]
collapses to simply V

[
ȳ
∣∣n

]
, as it

should. However, if data are drawn from a much larger area such

that ñ≫ n then MSE

[
ˆ̄y
∣∣∣n

]
tends to E

[(
ˆ̄y− ȳ

)2∣∣∣∣n
]
− V

[
ȳ
∣∣n

]
.

The latter expression is suggested as an approximation by Rao
and Molina (2015, p. 44), but will be too small unless data
are drawn from a substantially larger area than the domain of
interest. Finally, note again that this expression applies in the case
of SRS, but not more generally.

Expression (A11) suggests a simple sample-based estimator of
the conditional MSE

M̂SE

[
ˆ̄y
∣∣∣n

]
=

(
ˆ̄y− ȳ

)2
−

σ̂ 2
y

n

[
1− 2

n

ñ

]
(A12)

This estimator differs from the framework suggested by Rao and
Molina (2015, p. 44) only by the factor

[
1− 2 n

ñ

]
; this factor

guarantees larger estimates of MSE, but still cannot guarantee
non-negative estimates. We are unaware of any investigation of
its sampling properties, however.
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