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Stands are the primary unit for tactical and operational forest planning. Forest managers
can use remote-sensing-based forest inventories to precisely estimate attributes of
interest at the stand scale. However, remote-sensing-based inventories typically rely
on models relating remote-sensing information to forest attributes for fixed area plots
with accurate coordinates. The collection of that kind of ground data is expensive
and time-consuming. Furthermore, remote-sensing-based inventories provide precise
descriptions of the forest when the remote-sensing data were collected, but they
inevitably become outdated as the forest evolves. Fay–Herriot (FH), models can be
used with ground information from variable radius plots even if the plot coordinates
are unknown. Thus, they provide an efficient way to update old remote-sensing-based
inventories or develop new ones when fixed radius plots are unavailable. In addition,
FH models are well described in the small-area estimation literature and allow reporting
estimation uncertainties, which is key to incorporating quality controls to remote-sensing
inventories. We compared two scenarios developed in the Willamette National Forest,
OR, United States, to produce stand-level estimates of above-ground biomass (AGB),
and Volume (V) for natural and managed stands. The first, Case 1, was developed using
auxiliary data from a recent lidar acquisition. The second, Case 2, was developed to
update an old remote-sensing-based inventory. Results showed that FH models allowed
for improvements in efficiency with respect to direct stand-level estimates obtained
using only field data for both case scenarios and both typologies of stands. Average
improvements in efficiency in natural stands were 37.36% for AGB and 33.10% for
Volume for FH models from Case 1 and 20.19% for AGB and 19.25 for V for Case 2.
For managed stands, average improvements for Case 1 were 2.29 and 19.92% for AGB
and V, respectively, and for Case 2, improvements were 15.55% for AGB and 16.05%
for V.
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INTRODUCTION

Stands are the primary unit for tactical–operational planning and
management. A stand is an area or polygon with a relatively
homogeneous forest structure and different from surrounding
areas in terms of structure, composition, or management
objectives. The size of a forest stand typically ranges from about
1 to 20–40 ha, and obtaining stand-level information is critical
to inform management and planning decisions (Breidenbach
et al., 2018; Mauro et al., 2019). Traditional forest inventories
produce stand-level information using field surveys or stand
exams where it is common to use variable radius plots (VRPs).
These field surveys allow obtaining estimates for different
variables of interest for the forest managers and assessing the
quality of those surveys using methods described in the forest
inventory literature.

Remote sensing inventories typically follow an area-based
approach (ABA), where fixed area plots and remote sensing data
are combined to produce maps with estimates of forest attributes
at resolutions in the range of 10–30 m (Næsset, 2002). This
methodology has been extensively used with lidar (e.g., Maltamo
et al., 2004; González-Ferreiro et al., 2012; Babcock et al., 2015;
Fekety et al., 2018), data from other sensors such as Landsat
(LeMay et al., 2008; Pflugmacher et al., 2012) or Sentinel I and II
(Forkuor et al., 2020), or different combinations of sensors (e.g.,
Vafaei et al., 2018; Forkuor et al., 2020). This methodology is
well known and produces, in a very efficient manner, estimates
in high-resolution grids (i.e., 10–30 m resolution) for a large
number of forest attributes. These estimates can be summarized
to generate stand-level maps for forest planning tasks. Besides,
several studies have conducted small area estimation analysis
showing that, with this methodology it is possible to obtain not
only stand-level estimates of forest attributes but also measures
of uncertainty for those stand-level estimates (Mauro et al., 2016,
2019; Breidenbach et al., 2018; Frank et al., 2020). Stand-level
measures of uncertainty are a desirable output of any inventory
method because they can be used as a measure of quality
control. Reported uncertainties can be used to identify stands
with more unreliable estimates that can be targeted in further field
measurements efforts, saving resources for field data collections.
Furthermore, even when additional ground measurements are
not an option, stand-level measures of uncertainty are useful
and can be incorporated in decision making processes and
sensitivity analyses.

While the ABA method has been extensively developed during
the last decade, it presents several drawbacks for operational
inventories. This methodology’s main problem is that it is
based on using fixed-radius plots with accurate coordinates. The
collection of that kind of ground information is costly on a per
plot basis or stand when stands are the sample units (Hummel
et al., 2011). Fixed-radius plot inventories are efficient at the
level of a whole landscape or project area (Hudak et al., 2014),
which is typically stratified to distribute the sample plots across
the range of stand structure conditions without regard to stand
boundaries. However, for stand-level inventory, collecting fixed-
radius plot data with highly accurate GPS coordinates requires
more resources per sampled stand than typical stand exams based

on VRP. This is because in the later, field plot coordinates are
not recorded or are obtained using less expensive low-grade GPS
equipment. Recent studies have demonstrated that it is possible to
use VRP combined with remote sensing data in several ways. One
possibility is to optimize the basal area factor (BAF) used in the
VRP to the stand structure variation (Deo et al., 2016), or to use
VRP and a constant BAF, using arbitrary but consistent support
areas for the remote sensing predictors throughout the study area
and operate as in the traditional ABA method (Grafström et al.,
2017). While these methods are very interesting for operational
inventories because they allow using VRP data, they do not
eliminate the need to obtain accurate coordinates for the VRP.
Another option that fits better with standard practices for stands
exams is the use of Fay–Herriot (FH), models (Fay and Herriot,
1979). These models are sometimes referred to as stand-level
models in forestry contexts and allow combining remote sensing
data with different ground measurements in stands, eliminating
the need for precise coordinates for ground measurements.

While traditional ABA models are developed considering
field plots as the primary modeling unit, FH models operate
at a coarser scale. FH models are developed with stands as the
primary element. This implies several departures from traditional
ABA models. One difference is that auxiliary information for
FH models needs to be associated with stands for operational
inventories (Goerndt et al., 2011; Mauro et al., 2017; Green
et al., 2019) or with larger-scale domains such as counties for
national inventories (Coulston et al., 2021). For example, stand-
level summaries of lidar variables have been used in previous
studies using FH models in stand-level forest inventories in
Europe and the United States (Magnussen et al., 2017; Mauro
et al., 2017; Ver Planck et al., 2018). But the most critical
difference between FH and traditional ABA models is that ground
information for the modeling units of FH models is typically
incomplete. Fixed radius plots used in traditional ABA models
are exhaustive and all or most of the trees within the plots are
measured. This allows treating forest attributes (i.e., response
variables) computed for the plots as known quantities. However,
in operational settings stands are never fully measured; instead,
they are sampled with many field plots that can vary between
stands. This implies that the response variables used to develop
stand-level FH models are subject to sampling errors that need
to be accounted for in the modeling stage. FH models include a
variance component to account for these sampling errors and can
be seen as measurement error models where the response used
for modeling has an inherent uncertainty because it comes from
a sample and not from a complete measurement.

The coarse resolution of stand-level FH models can be a
drawback for certain applications. However, FH models have
advantages in terms of flexibility and data requirements over
ABA methods. The most interesting properties of FH models are:
(1) that they can be developed with any ground measurement
from which it is possible to obtain unbiased estimators for stand-
level attributes and their associated variances (i.e., VRP, transects,
and sector plots) and (2) that they eliminate the need to record
precise plot coordinates in the field (Goerndt et al., 2011; Ver
Planck et al., 2018). Thus, FH models can use VRP data and plots
without accurate GPS coordinates, making them a very appealing
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alternative for operational forest inventories based on lidar or
other remote sensing auxiliary information sources. Despite their
potential, very few applications of stand-level FH models exist
in forest inventory literature and are focused on developing
a new inventory using available auxiliary information. In this
manuscript, we aim to analyze two possible scenarios where FH
models can be used to combine remote sensing data and VRP
data from stand exams. These scenarios or cases are:

1. Case 1: Developing a new stand-level inventory using
recently collected lidar auxiliary information for an area
where no fixed radius plot data is available.

2. Case 2: Updating an old remote-sensing-based inventory
combining the same ground data used in Case 1 with
remote sensing datasets developed at regional scales and
with no access restrictions. The old remote sensing-
based inventory was developed 5 years prior to the
ground data collection. The auxiliary information included
climate data, topographic variables, and spectral changes
in Landsat images. These auxiliary variables aimed at
capturing possible changes in the study area during the
years between the old-remote sensing inventory and the
updating date.

Both cases under analysis use stand exams based on VRP from
the US Forest Service Field Sampled Vegetation (FSVeg) database
but they can be directly replicated in many other areas managed
by the US Forest Service or in other regions in the world.

MATERIALS AND METHODS

Study Area
The study area comprises 31,209 ha inside the Willamette
National Forest, OR, United States covered by different remote
sensing datasets that include a recent lidar acquisition and a 30 m
resolution map with above-ground biomass (AGB) predictions
(Figure 1). Details on these datasets are provided in sections
“Case 1: Fay–Herriot Models for New Inventories” and “Case
2: Fay–Herriot Models to Update Inventories.” Elevations range
from 450 to 1700 m above sea level. Two forks of the Santiam
river cross the study area from East to West and have numerous
tributaries that form a complex drainage network where slopes do
not have a dominant orientation. Conifers dominate vegetation
with Douglas-fir, Pseudotsuga menziesii (Mirb) Franco, the most
abundant species, and other conifers such as noble fir, Abies
procera Rehder, silver fir, Abies amabilis Douglas ex J.Forbes,
western hemlock, Tsuga heterophylla (Raf.) Sarg., and western red
cedar, Thuja plicata Donn ex D.Don, as secondary species with a
much lower abundance. Hardwood species have a minor presence
with red alder, Alnus rubra Bong, and golden chinquapin,
Chrysolepis chrysophylla (Douglas ex Hook.) Hjelmq., as the most
important species in this group.

The study area contains 1616 stands with different
management goals. Stand boundaries are the result of a
continuous effort performed by forest managers in the study
area and is based on the management history, structure, and
composition of the forest. Stands are classified according to

their management objectives into “Natural” and “Managed”
(Figure 2). While the terms natural and managed can be the
subject of lengthy discussions, we will keep this terminology as it
is used in the FSVeg database. There are 696 natural stands and
920 managed stands. Natural stands occupy approximately two-
thirds of the area. They are typically of larger size (i.e., average
size = 31.04 ha, median size = 11.61 ha) than managed stands
(i.e., average size = 9.90 ha, median size = 7.94 ha) (Figure 2).
Managed stands have a past history of silviculture entry and
often include artificial regeneration. In most cases, even-aged
structures are subject to thinning and logging operations. Natural
stands are subject to less intense management and tend to have
larger dimensions and a larger internal variability in forest
structure and ages (Figure 2).

Sampled Stands and Field Sampled Vegetation
Ground Data
In total, 37 natural and 238 managed stands in the study area
were sampled in 2018 by field crews that used VRP with BAFs
that changed depending on the stand characteristics. Natural and
managed sampled stands were selected by forest managers in the
region using a randomize procedure and also expert knowledge
to ensure that most prevalent forest types were present in the
sample. The proportion of natural stands sampled (i.e., 5.31%)
was about five times smaller than the proportion of managed
stands sampled (i.e., 25.86%).This reflects the larger information
needs for the managed stands derived from their more intensive
sylviculture. VRP were randomly located within the stands by
the field crews. The number of VRP collected in the 37 sampled
natural stands was 157 and the number of plots in the 238
sampled managed stands was 943 plots. The number of field plots
in the sampled stands varied from 2 to 18, but 3, 4, and 5 were
the most frequent number of field plots per stand (Figure 3).
The field plot density, for the entire study area (i.e., including
sampled and unsampled stands), was 0.017 plots ha−1 for natural
stands (1 plot every 58.01 ha) and 0.044 plots ha−1 for managed
stands (1 plot every 22.90 ha). For each VRP, the species, diameter
at breast height (dbh), height (ht), and the live or dead status
of each selected tree were recorded. Field crews used standard
devices to measure dbh (i.e., caliper or logger’s tape) and ht
(i.e., hypsometer or laser rangefinder). Finally, the BAF used
in the plot allowed computing an expansion factor for each
tree in the plot.

Parameter of Interest
For both Case 1 and Case 2, we considered estimating, for every
stand in the study area, the total of AGB, and merchantable
volume (V), for the year 2018, both expressed on a per unit area
basis. Thus, for every stand, the unknown parameter of interest
was

µi =
1
Ai

Ni∑
t=1

AGBti (1)

when considering AGB and

µi =
1
Ai

Ni∑
t=1

Vti (2)
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FIGURE 1 | Location of the study area. In pink are stands excluded from the analysis because they were not covered by the remote sensing inventory from 2013.
Stands in green color with red outline are sampled stands; and green stands with black outline are unsampled stands.

when considering V. In equations 1, 2 AGBti and Vti are the
AGB and V of the t-th tree in the i-th stand, and Ni and Ai are,
respectively, number of trees and the area of the i-th stand. It

is important to note that while µi, AGBti, Vti, and Vti were all
unknown quantities, the stand area was known for every stand
in the study area.
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FIGURE 2 | Upper left panel displays the location of natural and managed stands. Upper right and middle right panels display the size distribution within the study
area for natural and managed stands, respectively. Bottom panel, sampled area showing the orthophoto on the western side and the CMS AGB map on the eastern
side of the image. Managed stands are labeled with the letter M, natural stands are labeled with the letter N, and special habitat areas (small size non-forested
polygons within stands) are labeled with letter S.
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FIGURE 3 | Distribution of the number of VRP per sampled stand in natural and managed stands.

Direct Above-Ground Biomass and
Volume Estimators and mse Estimators
We used the Forest Vegetation Simulator (FVS), to compute an
estimate, µ̂gij, of each parameter of interest for each VRP using
the Horvitz–Thompson (HT), estimator

µ̂gij =

nij∑
t=1

yijt

EFijt
. (3)

In equation 3, yijt represents either AGBtij or Vtij for the t-th
tree measured in j-th VRP in the i-th sampled stand and EFijt
represents their respective expansion factors. The number of
measured trees in the j-th VRP in the i-th stand is nij and the
subindex g in µ̂gij indicates that it is a direct estimate based on
the ground data.

For each sampled stand, VRP estimates µ̂gij from the ni plots
measured in the stand were averaged to produce a final direct
ground estimate µ̂gi∗ of AGB and V

µ̂gi. =
1
ni

ni∑
j=1

µ̂gij. (4)

A summary of the stand estimates based on the VRP data is
presented in Table 1.

The HT estimator is unbiased and each VRP is assumed
to provide an independent sample drawn under a sampling
design that remains constant for all VRP in the stand. Thus,
for a given stand, all µ̂gij were considered to be realizations
of a random variable with mean µi and unknown variance
σ2

ei0 . The final direct estimate for the stand, µ̂gi∗, is the
average of ni independent and identically distributed random
variables. Therefore, µ̂gi∗ is also a random variable with mean

µi and its variance, σ2
ei equals σ2

ei0
ni

. This allows establishing the
following relation, equation 5, between the stand estimate µ̂gi∗,
the unknown parameter of interest µi and the sampling error ei

µ̂gi. = µi + ei (5)

For any two stands, sampling errors are assumed to be
independent of each other. Furthermore, due to the unbiasedness
property of the HT estimator, errors are assumed to be distributed
with zero mean and variance σ2

ei. The variance σ2
ei0 is unknown,

but an unbiased estimator can be obtained pooling together the
estimates of all VRP in a given stand as

σ̂2
ei0 =

ni∑
j=1

(µ̂gij−µ̂gi ∗)
2

ni−1
. (6)

Based on equation 6 the variance and the mean square error of
µ̂gi∗ is estimated using

mse
(
µ̂gi.

)
= σ̂2

ei =
σ̂2

ei0
ni

. (7)

Estimators in equations 4, 7 are typically used in stand-level
inventories using only ground data when reporting estimates and
measures of uncertainty for sampled stands.

Stand-Level Fay–Herriot Models and
Estimators
Stand-Level Fay–Herriot Models
Stand-level FH models explicitly acknowledge that the stand-level
information on the parameter of interest is subject to sampling
errors. The first component in an FH model postulates a relation
between the true and unknown parameters of interest for stands
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TABLE 1 | Summary of stand-level estimates based on VRP data.

Variable Stand
type

Weighted
mean

Arithmetic
mean

Min Max SD

AGB (Mg ha−1) Natural 279.24 259.05 61.99 526.32 95.76

Managed 107.25 103.94 7.00 222.39 34.04

V (m3 ha−1) Natural 1016.85 944.53 195.40 1890.23 362.41

Managed 325.11 312.02 11.19 661.49 120.56

Weighted mean are the means of the stand-level estimates based on VRP data
with weights proportional to the stand area. SD is the standard deviation of the
VRP estimates of the sampled stands. AGB stands for above-ground biomass,
and V for volume, V.

and the available auxiliary information through a regression
model

µi = xt
iβ+ vi. (8)

In equation 8, vi is the model error that is assumed to be normally
distributed with mean 0 and variance σ2

v [i.e., viN(0, σ2
v)], β is a

vector of model coefficients where the first element is the model
intercept and xi is a vector of stand-level auxiliary variables where
the first element equals 1 when β includes an intercept term
(see sections “Case 1: Fay–Herriot Models for New Inventories”
and “Case 2: Fay–Herriot Models to Update Inventories” for a
description of the auxiliary variables used for Case 1 and Case 2,
respectively). These models cannot be fit because the true values
of µi are unknown. In practice, only the direct ground estimates
µ̂gi. are available, however, both, µi and µ̂gi∗ are related through
the sampling model indicated in equation 5. When the regression
model (8) and the sampling model (5) are combined, assuming
that vk and el are independent for all k and l, we obtain the basic
FH model (9)

µ̂gi. = xt
iβ+ vi + ei. (9)

Fay–Herriot models explicitly acknowledge the presence of the
sampling errors and require information on the variances σ̂2

ei of
the direct ground estimates. These variances can be estimated
from the VRP data, equation 7, and then used with the known
auxiliary information for the stands xt

i and the direct estimates
µ̂gi. to estimate the remaining model parameters, i.e., β and
σ2

v . These models are typically fit using restricted maximum
likelihood, REML, under the implicit assumption that sampling

errors are normally distributed, i.e., ei∼N(0,
σ2

ei 0
ni

).

Fay–Herriot Estimators
Once FH models are fitted, they can be used to obtain stand-
level estimates and their corresponding uncertainty metrics. For
sampled stands, estimates based on the FH model, µ̂FH,i, are
obtained using the empirical best linear unbiased predictor,
EBLUP,

µ̂FHi>1VRP = γiµ̂gi + (1−γi) xt
i β̂. (10)

For unsampled stands and stands with only one VRP, estimates,
µ̂FH,i, are obtained as synthetic estimates entirely based on the
fitted model

µ̂FHi≤1VRP = xt
i β̂. (11)

For sampled stands, the EBLUP, equation 10, is a weighted
average of the direct estimator obtained using only the ground

information and the synthetic estimator. The weight and the
degree of shrinking of µ̂FHi toward the synthetic estimator xt

i β̂,
is controlled by the parameter

γi =
σ̂2

v
σ̂2

v + σ̂2
ei

, (12)

in the following manner. For stands where the direct estimates
are reliable and have small errors compared to the unexplained
variance of the fitted models (i.e., σ̂2

v > σ̂2
ei), γi is close to 1,

and µ̂FH,i is approximately equal to the ground estimate for
the stand. That is, in stands with low sampling errors, the
direct ground estimate is “trusted” more than the model and
µ̂FHi ∼= µ̂gi∗. For stands where direct estimates are unreliable,
σ̂2

v = σ̂2
ei the parameter γi is close to 0, and most weight and

confidence will be put in the synthetic prediction µ̂FHsi ∼= xt
i β̂.

For unsampled stands or stands with only one VRP, γi cannot
be computed because it is not possible to obtain the variance
of the direct estimator, σ̂2

ei, with less than two VRP. Therefore,
for stands with less than two VRP, all weight needs to be put in
the model, and then the stand-level estimates based on the FH
model are synthetic.

For stands with two or more VRP, for models fitted using
REML, an approximately unbiased estimator of the mean square
error of µ̂FHi is

mse (µ̂FHi>1VRP) = gi 1
(̂
σ2

v
)
+ gi 2

(̂
σ2

v
)
+ 2gi 3

(̂
σ2

v
)
. (13)

This mean square error estimator has three components g1
(̂
σ2

v
)
,

g2
(̂
σ2

v
)
, and 2g3

(̂
σ2

v
)

indicated in equations 14–16:

gi 1
(̂
σ2

v
)
= γîσ

2
ei (14)

gi 2
(̂
σ2

v
)
= (1−γi)

2xt
i

∑
i:ni>2

xt
i xi

σ̂2
v + σ̂2

ei


−1

xi (15)

gi 3
(̂
σ2

v
)
= σ̂4

ei(̂σ
2
v + σ̂2

ei)
−3V (̂σ2

v). (16)

The term V
(̂
σ2

v
)

in equation 15 is the inverse of the Fisher
information matrix for the model (9). Details on V

(̂
σ2

v
)

can be
found in Rao and Molina (2015, p. 136). This estimator has a bias
whose order of magnitude is o

(
m−1), where m is the number of

sampled stands. Thus in applications where a large number of
stands are sampled it can be expected to provide almost unbiased
estimates of the mean square error of µ̂FHi. For unsampled stands
or stands with only one plot, an estimator of the mean square
error of µ̂FHi can be obtained using equation 17 (Rao and Molina,
2015, p. 139)

mse
(
µ̂FHi≤1VRP

)
= xt

i

∑
i:ni≥2

xt
i xi

σ̂2
v + σ̂2

ei


−1

xi + σ̂2
v . (17)

Note that we only use the subindexes >1VRP and ≤1VRP in
equations 10, 11, 13, 17 to explicitly state the formulas to use
depending on the number of VRP in the stand. In the remaining
sections these subindexes will be omitted to simplify the notation;
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and µ̂FHi and mse (µ̂FHi) will refer to the estimator and mse
estimator needed depending on the number of VRP in the
stand. The root mean square error, rmse, and relative root mean
square error, rrmse, for estimates based the FH models were
computed as rmse (µ̂FHi) =

√
mse (µ̂FHi) and rrmse (µFHi) =

rmse(µ̂FHi)
µ̂FHi

, respectively.

Comparisons Between Fay–Herriot Estimators and
Ground-Based Estimators
Comparisons between models for Case 1 and Case 2 for a given
variable were based on the ratio of the estimated model variances
σ̂2

v case 2/̂σ
2
v case 1. To compare the uncertainty of stand-level

estimates from the FH models, we used both rmse (µ̂FHi) and
rrmse (µFHi). Finally, improvements with respect to estimates
based only the field data were measured using the relative
efficiency. This metric was only computed for stands with two
or more VRP.

4eff i = 1−
rmse (µ̂FHi)

rmse
(
µ̂gi
) (18)

Models for Case 1 and Case 2
Case 1: Fay–Herriot Models for New Inventories
For the first case scenario, auxiliary variables were computed
from a recent lidar data collection completed in the fall of 2016.
The lidar data were acquired using a Leica ALS70-HP lidar system
mounted on a fixed-wing platform flying at an average altitude
of 1965 m above the ground level with a nominal speed of 110
knots. The scanning angle was 30◦, and the nominal pulse density
4.2 pulses per m2.

A 30 m resolution grid was cast over the study area and
lidar metrics including (1) percentiles and summaries (i.e.,
means, standard deviations, and moments) of the distribution
of elevations above the ground of the lidar returns, (2)
proportions of points in different height strata, and (3)
topographic metrics were computed for each pixel using
FUSION (Mc Gaughey, 2019). In total 134 variables were
available. For each stand, we computed the mean and standard
deviation of the pixel-level values of these metrics. The
result was a total of 268 (i.e., 134 means and 134 standard
deviations) stand-level metrics. These stand-level metrics were
considered descriptors of the stands’ structure for the FH
models for Case 1.

Case 2: Fay–Herriot Models to Update Inventories
The second case scenario consists of updating an old remote-
sensing-based inventory using VRP ground measurements and
FH models. For this case, auxiliary variables are stand-level
predictions from a previous map and Landsat-based indexes of
disturbances for the period between the old map and the date for
which updated estimates were sought.

For our analyses, we used the 30 m resolution AGB map
developed by Fekety and Hudak (2019) for 2013 as an old remote-
sensing-based inventory. This map, CMS1-AGB map hereafter,
was created in the context of the NASA Carbon Monitoring
System project described in Hudak et al. (2020) using a two-step
process. The first step consisted of using fixed radius plots from a
set of lidar acquisitions across the northwestern United States that

did not include the study area, to develop traditional ABA models
where AGB was expressed as a function of lidar, topographic, and
climate metrics. This model was developed at a regional scale
and the plots used in the training stage included forested areas
with structures and species compositions that were similar to
those observed in the study area. A sample of lidar predictions
in those lidar acquisitions was later used to develop a regional
model to predict AGB across the forested region of the northwest
United States. This regional model was primarily based on a
climate metrics and Landsat time-series and was used to generate
annual predictions of AGB for the period 2000–2016 at a 30 m
resolution (Hudak et al., 2020). Pixel level predictions from
the 2013 CMS1-AGB map were aggregated at the stand level
to produce stand-level means and standard deviations of AGB
predictions for 2013. These values are descriptors of the state
of the forest at the moment of completion of the old inventory
and are not considered to be true stand values for 2013 but
approximated ones that can be used as auxiliary variables for the
FH models for Case 2.

To account for changes between 2013 and 2018, we introduced
additional auxiliary variables potentially correlated with growth,
removals, or disturbances between 2013 and 2018 in the stands
of the study area. For every stand in the study area, we computed
changes between 2013 and 2018, for stand-level means, standard
deviations, and modes of: (1) the red, green, blue, near-infrared,
and short wave infrared one and two Landsat 8 bands, (2)
band ratios including the normalized difference vegetation index
(Rouse et al., 1974), NDVI, and normalized burn ratio index (Key
and Benson, 2006), NBR, and (3) the brightness, wetness, and
greenness tasseled cap components (Kauth and Thomas, 1976).
Landsat scenes used to compute Landsat predictors correspond
to the worldwide reference system path-rows 45–29 and 46–29.
Median values of each Landsat band for the period going from
the first of June to the 30th of September of the corresponding
year were obtained and used to compute the derived indexes for
each year. Stand-level means, standard deviations, and modes
for bands and indexes were computed and the differences
between the values obtained for 2018 and 2013 were used as
auxiliary variables for the FH models. Finally, for each stand,
we computed the number and proportion of pixels identified as
disturbed during the period 2013–2018 by the landscape change
monitoring system (LCMS) map, and the average disturbance
value of all pixels identified as disturbed within the stand. The
identification of disturbed pixels in LCMS is based on time
series analysis of Landsat images to segment spectral trajectories.
Segmentations and disturbance identification are performed with
an essemble of algorithms [i.e., LandTrendr (Kennedy et al.,
2010), VeRDET (Hughes et al., 2017), and CCDC (Zhu and
Woodcock, 2012)]. The magnitude of the disturbances were
derived as 2013–2018 changes in the relativized differenced
normalized burn ratio RdNBR (Miller and Thode, 2007). In total,
38 predictors were available for Case 2. Two were the mean and
standard deviation of the 2013 CMS1-AGB predictions, 18 were
stand level summaries of changes in Landsat bands, 15 were stand
level summaries of changes in Landsat spectral indexes and the
last three were the number, proportion, and average magnitude
of the disturbance metrics reported by LCMS.
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Model Selection
For both scenarios, the final number of auxiliary variables
available for the modeling was large (i.e., 268 for Case 1 and 38
for Case 2) and a model selection step was necessary. The model
selection was performed for each combination of case scenario
(i.e., Case 1 vs. Case 2), stand-type (i.e., natural vs. managed),
and response variable (i.e., AGB vs. V) separately. The model
selection consisted of a first step in which we used an automatic
variable selection approach using best subsets regression and
the R-package leaps (Lumley, 2020). In this step, we directly
regressed direct estimates for AGB and V against each case’s
stand-level auxiliary variables to select candidate combinations

auxiliary variables. Selected combinations of auxiliary variables
had lengths that ranged from 1 to 6 variables. For each
number of variables, the five combinations with the lowest
adjusted R2 when directly regressing against the direct ground
estimates were kept. This resulted in a list of 30 candidate
combinations of predictors for each case scenario, stand type,
and response variable. We obtained the corresponding FH
models for each candidate in these lists using the R package
sae (Molina and Marhuenda, 2015) using REML. Finally, the
modeler selected the model to use for each case scenario,
stand type and response variable, based on the estimated
model error variance, σ̂2

v , the significance of the β̂ coefficients,

FIGURE 4 | Predicted vs. residuals plots for FH models for above-ground biomass (AGB) and volume (V) for Case 1 and Case 2. Whiskers around each point with a
width of 1.96 times the standard deviation of the direct ground estimate are included to reference the uncertainty of the field estimates associated with each data
point. Residuals were computed as µ̂gi∗−xt

i β̂, with µ̂gi∗ the direct ground estimate for the stand and xt
i β̂ prediction entirely based on the model (prediction before

computing the EBLUP).
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the Bayesian information criterion, BIC, and predicted vs.
observed diagrams.

RESULTS

Selected Models
Different patterns were observed regarding the selected models
for Case 1 and Case 2 and for natural and managed stands.
Regardless of the case and variable of interest, residuals for both
cases tended to be centered around zero, and no significant
departures with respect to the model assumptions were observed.
The variability of these residuals was substantially larger for
natural stands than for managed stands. Models for Case 2 tended
to provide a shorter range of predicted values when compared
with the models for Case 1 (Figure 4). In general, models for
natural stands had a smaller number of predictors. This result was
expected. The number of sampled stands is substantially smaller
for natural stands than for managed stands, therefore estimated
model coefficients for natural stands tend to have larger standard
errors and less coefficients appeared as significant in the fitted
models. The intercepts for models for natural stands for Case 1

were not significant and were removed. For both managed and
natural stands, models for Case 1 had lower values of σ̂2

v . For
managed stands, σ̂2

v for AGB and V of the FH models for Case
2 were 26 and 42% larger than σ̂2

v for Case 1, respectively. For
natural stands, we observed a 4.14 and 3.27-fold increase in σ̂2

v for
AGB and V when comparing the values obtained for Case 2 with
those obtained for Case 1 (Tables 2, 3). This indicates FH models
based on a recent lidar acquisition explain more variance than
the models for Case 2 (Tables 2, 3). When comparing models for
managed and natural stands obtained under a given case scenario,
we observed that for Case 1, σ̂2

v for AGB and V in natural
stands was 2.35 and 3.48 times larger than in managed stands,
respectively. For Case 2, models for natural stands explained
almost no variance, and for AGB and V, σ̂2

v was 7.73 and 8.02
times larger than the one obtained in managed stands.

Stand Level Estimates
Selected models for Case 1 and Case 2 were used to obtain
stand-level estimates and their associated mean squared errors
for sampled and unsampled stands (Figure 5). For both cases
and response variables, estimates based on FH models for

TABLE 2 | Summary of selected models for Case 1 and Case 2 for above-ground biomass, AGB (Mg ha−1), and volume, V (m3 ha−1).

Stand type Variable Case Auxiliary variable β̂ std.error t-Value p-Value σ̂2
v

σ̂2
vCase2

σ̂2
vCase1

Natural AGB Case 1 Mean(Cov48to100m) 662.48 247.56 2.68 7.45E−03 1323.95 4.14

Mean(1st_elev_mode) 6.08 1.25 4.87 1.09E−06

Sd(elev_ave) 15.27 5.59 2.73 6.28E−03

Case 2 Intercept 276.34 19.91 13.88 8.63E−44 5479.22

Diff_Sd(NDVI) −3.71 1.78 −2.09 3.69E−02

Diff_Sd(Blue) 3.58 1.52 2.35 1.86E−02

V Case 1 Mean(Cov48to100m) 2266.71 947.29 2.39 1.67E−02 23339.52 3.27

Sd(elev_ave) 64.61 21.45 3.01 2.59E−03

Mean(1st_elev_mode) 20.07 4.81 4.17 3.07E−05

Case 2 (Intercept) 814.81 120.66 6.75 1.45E−11 76354.06

Diff_Mode(B)e 0.79 0.40 1.97 4.83E−02

Diff_Mode(Blue) −2.97 1.41 −2.11 3.49E−02

Managed AGB Case 1 Intercept 50.21 20.83 2.41 1.60E−02 563.33 1.26

Mean(1st_cov_ab_mean) 7.16 1.56 4.58 4.70E−06

Mean(all_1st_cov_ab_mean) −4.89 1.32 −3.69 2.21E−04

Mean(prop_6-9m) −369.68 81.16 −4.55 5.24E−06

Case 2 Intercept 171.28 10.32 16.59 8.24E−62 708.58

Sd(PRED_AGB) −0.58 0.10 −5.89 3.76E−09

Diff_Mean(W) −0.66 0.15 −4.31 1.62E−05

Diff_Mean(NDVI) −1.15 0.40 −2.85 4.39E−03

Diff_Mean(NBR) 1.92 0.50 3.85 1.19E−04

V Case 1 Intercept 143.53 60.51 2.37 1.77E−02 6699.72 1.42

Mean(1st_cov_ab_mean) 29.96 5.69 5.26 1.43E−07

Mean(all_1st_cov_ab_mean) −20.76 4.85 −4.28 1.87E−05

Mean(prop_9-12m) −1577.41 240.47 −6.56 5.39E−11

Case 2 Intercept 507.54 31.56 16.08 3.36E−58 9519.56

Diff_Sd(PRED_AGB) −1.75 0.35 −5.03 4.89E−07

Diff_Mean(swir1) 0.49 0.12 4.25 2.16E−05

Auxiliary variables were computed applying a function to rasterized layers (lidar metrics, Landsat bands, and predicted biomass) to summarize pixel level values and
produce stand level metrics. Resulting metrics are indicated using the following naming convention Function(layer). Functions and layers are described in Table 3.
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TABLE 3 | Stand-summarizing functions applied to the 30 m resolution layers of auxiliary variables and description of metrics included in the selected models.

Layers

Summarizing functions Case Acronym Description

Mean Mean of pixel level values within the
stand

Case 1 1st_cov
_ab_mean

Number of first returns above mean\total number of first returns

Sd Standard deviation of pixel level
values within the stand

all_1st_cov
_ab_mean

Number of returns above mean\total number of first returns

Cov48to100m Number of first returns with heights between 48 and 100 m\total number of first returns

Mode Mode of pixel level values within the
stand

prop_9-12m Proportion of returns between 6 and 9 m

prop_6-9m Proportion of returns between 9 and 12 m

Diff_Mean Difference between 2013 and 2018
means of pixel level values within
the stand, i.e., Diff_Mean(Layer)=
Mean(Layer-2018)-Mean(Layer-
2013)

1st_elev_mode
elev_ave

Mode of elevation of first returns
Average of elevation returns

Case 2 PRED_AGB CMS predicted biomass 2013

Diff_Sd Difference between 2013 and 2018
standard deviations of pixel level
values within the stand,
i.e.,Diff_Sd(Layer)=
Sd(Layer-2018)-Sd(Layer-2013)

NBR Normalized burn ratio

NDVI Normalized difference vegetation index

SWIR1 Band 6. Short-wave infrared, 1.57–1.65 µm

W Wetness tasseled cap index

Diff_Mode Difference between 2013 and 2018
modes of pixel level values within
the stand, i.e., Diff_Mode(Layer)=
Mode(Layer-2018)-Mode(Layer-
2013))

B Brightness tasseled cap index
Blue Band 1. Blue band, 0.441–0.514 µm

managed stands tended to be smaller than estimates for natural
stands and the same pattern was observed for the corresponding
rmse (Figure 5). When considering rrmse, managed stands
showed larger relative uncertainties. This is partly caused
by the fact that managed stands stock substantially less
AGB and V.

For both AGB and V, estimates and rrmse obtained for
Case 1 tended to agree spatially with estimates and rrmse
for Case 2 (Figure 5). For natural stands, Spearman rank
correlation between estimates for Case 1 and Case 2 was 0.22 (p-
value = 1.04 × 10−8) for AGB and 0.12 (p-value = 1.39 × 10−3)
for V. The low agreement for natural stands seems to be caused
by the low explanatory power of the models for Case 2 in natural
stands. For managed stands, Spearman rank correlation between
estimates for Case 1 and Case 2 were 0.69 (p-value < 10−6)
for AGB and 0.50 (p-value < 10−6) for V, and when each
map was grouped into 10 deciles, these categories tended to
coincide. The same occurred with the estimated rmse maps (see
Supplementary Figure 1).

Efficiency Improvements in Sampled
Stands
For both types of stands, FH models for Case 1 and Case 2
provided improvements for direct ground estimates for AGB and
V. Estimates from Case 1 were consistently more precise than
those from Case 2 (Figure 6). This result was expected after
observing the values obtained for σ̂2

v for the different models.
In general, improvements in efficiency and differences between
cases were larger for natural stands (Figure 6). For natural stands,
improvements in efficiency for Case 1 had an average 4eff i of
37.36% for AGB and 33.10% for V (Table 4). For Case 2, the

average of 4eff i was 20.19% for AGB and 19.25% for V. For
managed stands, the average of 4eff i for Case 1 was 20.29% for
AGB and 19.91% for V, and for Case 2, the average of 4eff i
was 17.55% for AGB and 16.05% for V (Table 4). The smaller
values of 4eff i in managed stands is explained by the larger
homogeneity of this type of stands for which many of the direct
ground estimates were already precise, leaving little room for
improvements to the FH models. Differences in 4eff i between
cases for managed stands were smaller than the differences
for natural stands. This seems to be the consequence of both
the low explanatory power of the auxiliary variables for Case
2 in natural stands and the smaller room for improvements
in managed stands.

DISCUSSION

This study presents and analyzes two possible case scenarios
where FH models can be used to assist forest inventories with
remote sensing information. We compared results for different
stand typologies and case scenarios. We start this section by
discussing the differences between cases and stand typologies and
then address general issues related to the use of FH models in
forest inventories.

Differences Between Case 1 and Case 2
When both scenarios were compared, estimates for Case 1
had, in general, lower errors than estimates from Case 2. The
differences between cases were more important for natural stands
than for managed stands. Multiple studies have shown that
forest structural attributes correlate better with lidar auxiliary
information than auxiliary variables from optical sensors.
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TABLE 4 | Summary of stand-level estimates, uncertainties, and improvements in efficiency for FH models by type of stands (i.e., natural vs. managed stands), response
variable (i.e., above-ground biomass, AGB, and volume, V), and case scenario (i.e., Case 1 and Case 2).

Stand type Variable Case Sampled/
unsampled

Mean
estimate

SD estimates Mean rmse Mean rrmse
(%)

Mean4effi (%)

Natural AGB (Mg ha−1) Case 1 Sampled 248.23 75.58 31.01 6.49 37.36

Unsampled 212.56 75.47 40.35 18.73

Case 2 Sampled 250.59 67.54 44.18 8.45 20.19

Unsampled 242.96 44.10 78.70 14.90

Ground Sampled 259.05 95.76 64.52 12.67

V (m3 ha−1) Case 1 Sampled 906.90 278.28 119.22 1.88 33.10

Unsampled 778.54 265.99 166.82 6.01

Case 2 Sampled 914.56 252.84 158.80 2.29 19.25

Unsampled 933.89 188.17 298.00 4.08

Ground Sampled 944.53 362.41 230.60 3.46

Managed AGB (Mg ha−1) Case 1 Sampled 101.63 27.40 13.48 17.33 20.29

Unsampled 64.44 27.17 25.03 105.61

Case 2 Sampled 102.06 27.51 14.12 18.18 17.55

Unsampled 86.10 34.69 28.23 105.82

Ground Sampled 103.94 34.04 19.00 26.45

V (m3 ha−1) Case 1 Sampled 302.90 99.86 45.74 7.88 19.92

Unsampled 207.41 78.25 86.23 30.77

Case 2 Sampled 303.57 98.61 48.88 8.25 16.05

Unsampled 284.89 77.99 99.96 15.57

Ground Sampled 312.02 120.56 64.50 11.18

Auxiliary information for Case 1 proceeded from lidar. For
Case 2, we used a previous remote sensing-based inventory the
CMS1-AGB map, which heavily relies on metrics derived from
30-year climate normals, topographic, and Landsat variables, to
which we added proxies for disturbances directly derived from
Landsat images. This explains that Case 1 outperforms Case 2
for all response variables and stand types. Nevertheless, estimates
from Case 2 are more efficient than direct ground estimates and
regardless of the case, the rank correlations between estimates
for Case 1 and Case 2 for managed stands indicated that both
methods agree in the way the sort stands according to the
predicted AGB or V. These results indicate that Case 2 is
also useful for managed stands, and that certain management
decisions, for example, concentrating harvest activities in the 10%
of the managed stands with more volume, would tend to coincide
regardless of which map (i.e., Case 1 or Case 2) is used to inform
those decisions (see Supplementary Figure 1).

Two remarks should be made about the initial map for Case 2.
On the one hand, the CMS1-AGB map has spatial and temporal
coverage that cannot be matched by previous maps based only on
lidar. Thus, this map can be used to develop similar stand-level
inventories anywhere in the western United States. Furthermore,
the multitemporal component of this map allow for possible
applications of FH models to estimate changes and monitor
vegetation dynamics that are not an option using single date
lidar data. On the other hand, the CMS1-AGB map is expected
to provide predictions with more noise than similar maps based
on the ABA method and lidar data. This implies that results
obtained in this study for Case 2 might improve substantially
when the previous inventory is an ABA lidar-based inventory.

Many countries have developed nationwide lidar acquisitions or
are on the verge of completing such data collections, and national
forest inventories can provide the necessary fixed area plots to use
the ABA to develop maps based on lidar at national or regional
scales. The effort required to develop these maps is large, and re-
mapping is not expected to happen with a high frequency. This
indicates that a potential niche of application of FH models and
Case 2 is updating national or regional level ABA maps.

Differences Between Natural and
Managed Stands
When comparing natural and managed stands, we observed
that the former had larger estimated model variances, resulting
in stand-level estimates with larger uncertainties in absolute
terms. These differences are explained by the fact that natural
stands are inherently more complex and variable than managed
stands. Part of that complexity is not captured by predictors
computed at the stand level. Relative uncertainties (i.e., rmse)
were lower for natural stands than for managed stands. The
higher stocking levels cause that in natural stands. Improvements
in efficiency for natural stands were larger than those observed
for managed stands, especially for Case 1. Finally, the differences
in 4eff i for Case 1 and Case 2 were relatively small for managed
stands (i.e., about 3% difference between average values of 4eff i)
but large for natural stands (i.e., approximately 15% difference
between average values of4eff i). The interaction of three different
factors can explain this differentiated behavior. The first is
that managed stands are relatively homogeneous units, and
their direct ground estimates were more reliable than those
obtained in natural stands. Thus, the potential for improved
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FIGURE 5 | Stand-level predictions of above-ground biomass (AGB) and volume (V) for all stands in the study area (sampled and unsampled) and stand-level RMSE
based on the FH models for Case 1 and Case 2.

managed stands was more limited and made differences between
cases smaller. Another factor is that the larger stocking levels
are frequently associated with remote sensing predictions with
larger uncertainties (Magnussen et al., 2014; Mauro et al., 2016;
Breidenbach et al., 2018). Large uncertainties in the previous
inventory must result in a poorer characterization of the initial
state of the stands, which partially explains the performance
drop for Case 2 in natural stands. The auxiliary information
for Case 2 is primarily based on metrics derived from 30-year
climate normals to capture steep AGB (and V) gradients, which
largely compensated for signal saturation of Landsat variables
(Hudak et al., 2020), albeit without sensitivity to local variation
in stand structure. On the other hand, the lidar data used for
Case 1 neither saturates in forested areas with closed canopies
nor is insensitive to structure variation between or within stands,
thus elevating the performance of the FH models for Case 1
compared to Case 2.

General Considerations for the Use of
Fay–Herriot Models in Forest Inventories
For all cases, response variables and stand types analyzed in
this study, FH models allowed for gains in efficiency with
respect to direct ground estimates. These results are concurrent
with previous research using FH models in forest inventories

(Goerndt et al., 2011; Magnussen et al., 2017; Mauro et al., 2017;
Breidenbach et al., 2018; Ver Planck et al., 2018) and confirm
that FH models: (1) allow using ground measurements that are
easier to obtain than those used in ABA approaches and (2)
results in efficiency improvements when compared to methods
based only on ground data. Thus, while research efforts on using
FH models are still necessary, there is substantial evidence that
these models can play an essential role in operational forest
inventory applications.

To the best of our knowledge, FH models have not been used
in any operational forest inventory, and it somehow surprises
how little attention FH models have received in the literature.
While some research applications of FH models exist, the study of
this type of model has been negligible compared to applications
using conventional ABA approaches. The dominance of the
traditional ABA approach can be explained by (1) its ability
to produce high resolution maps with predictions of forest
attributes and (2) its typically better predictive performance
than FH models (Mauro et al., 2017; Breidenbach et al., 2018;
Green et al., 2019). However, developing ABA models is not
always a possibility. There are many scenarios where FH models
can be a very appealing alternative; for example, only stand-
level inventory data may be available. During the last decades,
forest inventories have been consistently less constrained by
the availability of useful auxiliary information, but the costs
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FIGURE 6 | Reduction of uncertainty achieved by Fay–Herriot models with respect to an inventory based only on ground data(4effi) for Case 1 and Case 2 for
above-ground biomass (AGB) and volume (V).

associated with ground data collection have increased, or at least
not decreased at comparable rates. Simply put, ground data are
too valuable to ignore, and FH models allow for an effective
combination of those valuable datasets with different sources of
auxiliary information.

A critical difference between traditional ABA models
and FH models is the auxiliary information used by each
technique. Workflows for preprocessing auxiliary information
for traditional ABA models are well established and documented,
with multiple tools available to implement these processing
steps (i.e., Mc Gaughey, 2019; Roussel et al., 2020); this is not
the case for FH models. In this study, we used as predictors
stand summaries of: (1) gridded products (i.e., gridmetrics
rasters) generated with FUSION (Mc Gaughey, 2019), (2)
previously mapped estimates of forest attributes, and (3)
changes in Landsat imagery from LCMS or computed using
Google earth engine (Gorelick et al., 2017). Summarizing the
entire point clouds within the stands under analysis is an
alternative used in previous studies to compute lidar-based
predictors (Ver Planck et al., 2018). Both options are valid from

a methodological perspective as they provide standardized ways
to compute auxiliary variables. Their effectiveness can differ
if one preprocessing technique provided auxiliary variables
that correlated better with the target responses than the other.
However, as far as we know, no study to date has analyzed the
differences in performance and tradeoffs of these two methods to
generate stand-level predictors for FH models. Thus, this is an
area where future research can help in establishing standardized
processing workflows for lidar-assisted forest inventories
using FH models.

This study presents two case scenarios in which basic
FH models are used with VRP and demonstrates that FH
models are a suitable alternative to use available auxiliary
information to improve the efficiency of the estimation
process. Our analysis presents a baseline for stand-level FH
models and could be improved in different ways. One way
is developing models that account for spatial correlations
like those developed by Ver Planck et al. (2018). Another
option is to use FH variants where the model variance is not
constant (Breidenbach et al., 2018). A third option is to use
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multivariate FH models where correlations between different
response variables can be considered to improve the results of
univariate models (Benavent and Morales, 2016; Frank, 2020).
In all cases, one factor that must be constantly considered is
that estimates obtained from FH models are always based on
a model (i.e., “model-based”). Thus, extrapolations entail high
risks of producing biased estimates and model validation steps
are critical to ensure that the fitted models correctly describe the
populations under study.

Based on our findings and previous results (Goerndt et al.,
2011; Breidenbach et al., 2018; Ver Planck et al., 2018), we
envision that niche of application of stand-level FH models is not
a replacement of traditional ABA methods but a complement for
situations in which the time and resources available for ground
data collection are limited or fixed radius plots with precise
locations to develop ABA models are otherwise unavailable. This
niche is larger than it might seem a priori for several reasons.
One reason is that obtaining accurate coordinates for the ground
measurements is not a constraint for FH models. For example,
only the identifier of the stand where each ground observation
was taken was necessary to develop this study using FSVeg
data. Another reason, and probably the most compelling one,
is that FH models can be applied with data from VRP or other
sampling techniques such as sector plots (Iles and Smith, 2006)
or transects (Warren and Olsen, 1964; Woodall and Monleon,
2008). This flexibility indicates numerous applications for fast
inventories and monitoring problems in which FH models can
be the preferred alternative. These applications include, but are
not limited to, annual inventories for timber sales or fast updates
of inventories after events like floods or wildland fires.

Improved AGB and V benefit both private companies and
public land management agencies. Given the extremely high
cost of establishing ground plots and the increasing demand for
accurate biomass and carbon stock assessment, the inventory
solution will require the innovative use of combined sources
of remotely sensed and other auxiliary data. FH models based
on VRP allow using remotely sensed information combined
with an operative ground truth data collection and enable cost-
effectively estimating forest attributes. In this study, the FH
models have shown to be a viable and flexible option to estimate
AGB or V and maximize the utility of both the ground inventory
and environmental datasets. Moreover, different information for
forest management planning is required at different levels or
scales. For tactical planning, reasonably precise and unbiased
estimates of forest variables for individual stands or polygons
are already obtained using VRP because of its low cost and
sampling efficiency at the stand level. Thus, FH models are an
alternative for many established inventory programs to integrate
their VRP data with lidar or other remote-sensing datasets to
obtain more efficient and better information for sustainable
forest management.

CONCLUSION

The main conclusion obtained when comparing estimates from
FH models for Case 1 and Case 2 indicated that estimates from

FH models based on a recent lidar acquisition were the most
efficient alternative. For managed stands, differences between
case scenarios were small, but in natural stands, FH models
based on data from a recent lidar data collection produced more
efficient results substantially. However, in all cases, estimates
from FH models for both case scenarios and both types of forest
stands were more efficient than direct ground estimates. Based on
this result, we conclude that FH models are a valuable alternative
for many forest inventory tasks if fixed area plots or their precise
geolocations are unavailable.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because this study was developed using data from Field
Sampled Vegetation (FSVeg) database. USDA Federal employees,
contractors, and affiliates need to follow the steps indicated in
the link below to access the data. https://www.fs.fed.us/nrm/
documents/fsveg/cse_user_guides/FSVegQuickGuide.pdf.

AUTHOR CONTRIBUTIONS

HT wrote some parts of the manuscript, verified the analytical
methods, critically reviewed the manuscript, and supervised the
findings of this work. FM conceived of the presented idea,
performed the computations, and wrote the first version of the
manuscript. AH, BF, and VM critically reviewed the manuscript
and provided critical feedback. PF, MP, and TB contributed to the
final version of the manuscript. All authors discussed the results
and contributed to the final manuscript.

FUNDING

This work was supported by Challenge Cost Share Agreement
20-CS-11062754-066 between Oregon State University and the
USDA Forest Service, Pacific Northwest Region and by a NASA
Carbon Monitoring System Program award (80HQTR20T0002)
through a Joint Venture Agreement (20-JV-11221633-112)
between the USDA Forest Service, Rocky Mountain Research
Station and Oregon State University.

ACKNOWLEDGMENTS

We would like to acknowledge Cheryl Friesen, James Rudisill, and
Karin Wolken that were an active part in discussions that led to
the ideas presented in this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/ffgc.2021.
745916/full#supplementary-material

Frontiers in Forests and Global Change | www.frontiersin.org 15 October 2021 | Volume 4 | Article 745916

https://www.fs.fed.us/nrm/documents/fsveg/cse_user_guides/FSVegQuickGuide.pdf
https://www.fs.fed.us/nrm/documents/fsveg/cse_user_guides/FSVegQuickGuide.pdf
https://www.frontiersin.org/articles/10.3389/ffgc.2021.745916/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/ffgc.2021.745916/full#supplementary-material
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-745916 October 13, 2021 Time: 15:48 # 16

Temesgen et al. Fay-Herriot Models for Stand-Level Inventories

REFERENCES
Babcock, C., Finley, A. O., Bradford, J. B., Kolka, R., Birdsey, R., and Ryan, M. G.

(2015). LiDAR based prediction of forest biomass using hierarchical models
with spatially varying coefficients. Remote Sens. Environ. 169, 113–127. doi:
10.1016/j.rse.2015.07.028

Benavent, R., and Morales, D. (2016). Multivariate Fay–Herriot models for small
area estimation. Comput. Stat. Data Anal. 94, 372–390. doi: 10.1016/j.csda.2015.
07.013

Breidenbach, J., Magnussen, S., Rahlf, J., and Astrup, R. (2018). Unit-level and
area-level small area estimation under heteroscedasticity using digital aerial
photogrammetry data. Remote Sens. Environ. 212, 199–211. doi: 10.1016/j.rse.
2018.04.028

Coulston, J. W., Green, P. C., Radtke, P. J., Prisley, S. P., Brooks, E. B., Thomas,
V. A., et al. (2021). Enhancing the precision of broad-scale forestland removals
estimates with small area estimation techniques. Forestry 94, 427–441. doi:
10.1093/forestry/cpaa045

Deo, R. K., Froese, R. E., Falkowski, M. J., and Hudak, A. T. (2016). Optimizing
variable radius plot size and LiDAR resolution to model standing volume in
conifer forests. Can. J. Remote Sens. 42, 428–442.

Fay, R. E., and Herriot, R. A. (1979). Estimates of income for small places: an
application of james-stein procedures to census data. J. Am. Stat. Assoc. 74,
269–277. doi: 10.2307/2286322

Fekety, P. A., Falkowski, M. J., Hudak, A. T., Jain, T. B., and Evans, J. S. (2018).
Transferability of lidar-derived basal area and stem density models within a
Northern Idaho Ecoregion. Can. J. Remote Sens. 44, 131–143. doi: 10.1080/
07038992.2018.1461557

Fekety, P. A., and Hudak, A. T. (2019). Annual Aboveground Biomass Maps
for Forests in the Northwestern USA, 2000-2016. Oak Ridge, TN: National
Laboratory Distributed Active Archive Center, doi: 10.3334/ORNLDAAC/1719

Forkuor, G., Benewinde Zoungrana, J.-B., Dimobe, K., Ouattara, B., Vadrevu, K. P.,
and Tondoh, J. E. (2020). Above-ground biomass mapping in West African
dryland forest using sentinel-1 and 2 datasets - a case study. Remote Sens.
Environ. 236, 111496. doi: 10.1016/j.rse.2019.111496

Frank, B. M. (2020). Aerial Laser Scanning for Forest Inventories: Estimation
and Uncertainty at Multiple Scales. Ph.D. thesis. Corvallis, OR: Oregon State
University.

Frank, B., Mauro, F., and Temesgen, H. (2020). Model-based estimation of
forest inventory attributes using lidar: a comparison of the area-based and
semi-individual tree crown approaches. Remote Sens. 12:2525. doi: 10.3390/
rs12162525

Goerndt, M. E., Monleon, V. J., and Temesgen, H. (2011). A comparison of
small-area estimation techniques to estimate selected stand attributes using
LiDAR-derived auxiliary variables. Can. J. For. Res. 41, 1189–1201.

González-Ferreiro, E., Diéguez-Aranda, U., and Miranda, D. (2012). Estimation of
stand variables in Pinus radiata D. don plantations using different LiDAR pulse
densities. Forestry 85, 281–292. doi: 10.1093/forestry/cps002

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.
(2017). Google earth engine: planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. doi: 10.1016/j.rse.2017.06.031

Grafström, A., Schnell, S., Saarela, S., Hubbell, S. P., and Condit, R. (2017). The
continuous population approach to forest inventories and use of information
in the design. Environmetrics 28:e2480. doi: 10.1002/env.2480

Green, P. C., Burkhart, H. E., Coulston, J. W., and Radtke, P. J. (2019). A novel
application of small area estimation in loblolly pine forest inventory. Forestry
93, 444–457. doi: 10.1093/forestry/cpz073

Hudak, A. T., Fekety, P. A., Kane, V. R., Kenedy, R. E., Filipelli, S. K., Falkowski,
M. J., et al. (2020). A carbon monitoring system for mapping regional,
annual aboveground biomass across the northwestern USA. Environ. Res. Lett.
15:095003.

Hudak, A. T., Haren, A. T., Crookston, N. L., Liebermann, R. J., and Ohmann, J. L.
(2014). Imputing forest structure attributes from stand inventory and remotely
sensed data in western Oregon, USA. For. Sci. 60, 253–269.

Hughes, M. J., Kaylor, S. D., and Hayes, D. J. (2017). Patch-based forest change
detection from landsat time series. Forests 8:166. doi: 10.3390/f8050166

Hummel, S., Hudak, A., Uebler, E., Falkowski, M., and Megown, K. (2011).
A comparison of accuracy and cost of LiDAR versus stand exam data for
landscape management on the Malheur National Forest. J. For. 109, 267–273.

Iles, K., and Smith, N. J. (2006). A new type of sample plot that is particularly
useful for sampling small clusters of objects. For. Sci. 52, 148–154. doi: 10.1093/
forestscience/52.2.148

Kauth, R. J., and Thomas, G. (1976). “The tasselled cap–a graphic description of
the spectral-temporal development of agricultural crops as seen by Landsat,” in
Proceedings of the Machine Processing of Remotely Sensed Data, (West Lafayette,
IN: Purdue University).

Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest
disturbance and recovery using yearly landsat time series: 1. landtrendr —
temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910. doi:
10.1016/j.rse.2010.07.008

Key, C. H., and Benson, N. C. (2006). “Landscape assessment (LA),” in FIREMON:
Fire Effects Monitoring and Inventory System, eds D. C. Lutes, R. E. Keane,
J. F. Caratti, C. H. Key, N. C. Benson, S. Sutherland, et al. (Ogden, UT: US
Department of Agriculture, Forest Service, Rocky Mountain Research Station),
1–55.

LeMay, V., Maedel, J., and Coops, N. C. (2008). Estimating stand structural details
using nearest neighbor analyses to link ground data, forest cover maps, and
Landsat imagery. Remote Sens. Environ. 112, 2578–2591. doi: 10.1016/j.rse.
2007.12.007

Lumley, T. (2020). Leaps: Regression Subset Selection. Available online at: http:
//CRAN.R-project.org/package=leaps. (accessed October 6, 2021).

Magnussen, S., Mandallaz, D., Breidenbach, J., Lanz, A., and Ginzler, C. (2014).
National forest inventories in the service of small area estimation of stem
volume. Can. J. For. Res. 44, 1079–1090. doi: 10.1139/cjfr-2013-0448

Magnussen, S., Mauro, F., Breidenbach, J., Lanz, A., and Kändler, G. (2017). Area-
level analysis of forest inventory variables. Eur. J. For. Res. 136, 839–855. doi:
10.1007/s10342-017-1074-z

Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., and Vehmas, M. (2004).
Estimation of timber volume and stem density based on scanning laser altimetry
and expected tree size distribution functions. Remote Sens. Environ. 90, 319–
330.

Mauro, F., Molina, I., García-Abril, A., Valbuena, R., and Ayuga-Téllez, E. (2016).
Remote sensing estimates and measures of uncertainty for forest variables at
different aggregation levels. Environmetrics 27, 225–238. doi: 10.1002/env.2387

Mauro, F., Monleon, V. J., Temesgen, H., and Ford, K. R. (2017). Analysis of
area level and unit level models for small area estimation in forest inventories
assisted with LiDAR auxiliary information. PLoS One 12:e0189401. doi: 10.
1371/journal.pone.0189401

Mauro, F., Ritchie, M., Wing, B., Frank, B., Monleon, V., Temesgen, H., et al.
(2019). Estimation of changes of forest structural attributes at three different
spatial aggregation levels in northern California using multitemporal LiDAR.
Remote Sens. 11:923. doi: 10.3390/rs11080923

Mc Gaughey, R. J. (2019). FUSION\LDV: Software for LIDAR Data Analysis and
Visualization. Washington, D.C: USDA Forest Service.

Miller, J. D., and Thode, A. E. (2007). Quantifying burn severity in a heterogeneous
landscape with a relative version of the delta Normalized Burn Ratio (dNBR).
Remote Sens. Environ. 109, 66–80. doi: 10.1016/j.rse.2006.12.006

Molina, I., and Marhuenda, Y. (2015). sae: an R package for small area estimation.
R J. 7, 81–98.

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning
laser using a practical two-stage procedure and field data. Remote Sens. Environ.
80, 88–99.

Pflugmacher, D., Cohen, W. B., and Kennedy, R. E. (2012). Using landsat-derived
disturbance history (1972–2010) to predict current forest structure. Remote
Sens. Environ. 122, 146–165. doi: 10.1016/j.rse.2011.09.025

Rao, J. N. K., and Molina, I. (2015). “Empirical best linear unbiased prediction
(EBLUP): basic area level model,” in Small Area Estimation, ed. P. Lahiri
(Hoboken, NJ: John Wiley & Sons, Inc), 123–172.

Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring
vegetation systems in the Great Plains with ERTS. NASA special publication 351,
309.

Roussel, J.-R., Coops, N. C., Tompalski, P., Goodbody, T. R. H., Meador, A. S.,
Bourdon, J.-F., et al. (2020). lidR: an R package for analysis of airborne laser
scanning (ALS) data. Remote Sens. Environ. 251:112061. doi: 10.1016/j.rse.2020.
112061

Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., et al.
(2018). Improving accuracy estimation of forest aboveground biomass based

Frontiers in Forests and Global Change | www.frontiersin.org 16 October 2021 | Volume 4 | Article 745916

https://doi.org/10.1016/j.rse.2015.07.028
https://doi.org/10.1016/j.rse.2015.07.028
https://doi.org/10.1016/j.csda.2015.07.013
https://doi.org/10.1016/j.csda.2015.07.013
https://doi.org/10.1016/j.rse.2018.04.028
https://doi.org/10.1016/j.rse.2018.04.028
https://doi.org/10.1093/forestry/cpaa045
https://doi.org/10.1093/forestry/cpaa045
https://doi.org/10.2307/2286322
https://doi.org/10.1080/07038992.2018.1461557
https://doi.org/10.1080/07038992.2018.1461557
https://doi.org/10.3334/ORNLDAAC/1719
https://doi.org/10.1016/j.rse.2019.111496
https://doi.org/10.3390/rs12162525
https://doi.org/10.3390/rs12162525
https://doi.org/10.1093/forestry/cps002
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1002/env.2480
https://doi.org/10.1093/forestry/cpz073
https://doi.org/10.3390/f8050166
https://doi.org/10.1093/forestscience/52.2.148
https://doi.org/10.1093/forestscience/52.2.148
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2007.12.007
https://doi.org/10.1016/j.rse.2007.12.007
http://CRAN.R-project.org/package=leaps
http://CRAN.R-project.org/package=leaps
https://doi.org/10.1139/cjfr-2013-0448
https://doi.org/10.1007/s10342-017-1074-z
https://doi.org/10.1007/s10342-017-1074-z
https://doi.org/10.1002/env.2387
https://doi.org/10.1371/journal.pone.0189401
https://doi.org/10.1371/journal.pone.0189401
https://doi.org/10.3390/rs11080923
https://doi.org/10.1016/j.rse.2006.12.006
https://doi.org/10.1016/j.rse.2011.09.025
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.rse.2020.112061
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-745916 October 13, 2021 Time: 15:48 # 17

Temesgen et al. Fay-Herriot Models for Stand-Level Inventories

on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine
learning: a case study of the hyrcanian forest area (Iran). Remote Sens. 10:172.
doi: 10.3390/rs10020172

Ver Planck, N. R., Finley, A. O., Kershaw, J. A., Weiskittel, A. R., and Kress,
M. C. (2018). Hierarchical Bayesian models for small area estimation of forest
variables using LiDAR. Remote Sens. Environ. 204, 287–295. doi: 10.1016/j.rse.
2017.10.024

Warren, W. G., and Olsen, P. F. (1964). A line intersect technique for
assessing logging waste. For. Sci. 10, 267–276. doi: 10.1093/forestscience/10
.3.267

Woodall, C., and Monleon, V. (2008). Sampling Protocol, Estimation,
and Analysis Procedures for the Down Woody Materials Indicator
of the FIA Program. Newtown Square, PA: Northern
Research Station.

Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow
detection in landsat imagery. Remote Sens. Environ. 118, 83–94. doi: 10.1016/
j.rse.2011.10.028

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Temesgen, Mauro, Hudak, Frank, Monleon, Fekety, Palmer and
Bryant. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Forests and Global Change | www.frontiersin.org 17 October 2021 | Volume 4 | Article 745916

https://doi.org/10.3390/rs10020172
https://doi.org/10.1016/j.rse.2017.10.024
https://doi.org/10.1016/j.rse.2017.10.024
https://doi.org/10.1093/forestscience/10.3.267
https://doi.org/10.1093/forestscience/10.3.267
https://doi.org/10.1016/j.rse.2011.10.028
https://doi.org/10.1016/j.rse.2011.10.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles

	Using Fay–Herriot Models and Variable Radius Plot Data to Develop a Stand-Level Inventory and Update a Prior Inventory in the Western Cascades, OR, United States
	Introduction
	Materials and Methods
	Study Area
	Sampled Stands and Field Sampled Vegetation Ground Data

	Parameter of Interest
	Direct Above-Ground Biomass and Volume Estimators and mse Estimators
	Stand-Level Fay–Herriot Models and Estimators
	Stand-Level Fay–Herriot Models
	Fay–Herriot Estimators
	Comparisons Between Fay–Herriot Estimators and Ground-Based Estimators

	Models for Case 1 and Case 2
	Case 1: Fay–Herriot Models for New Inventories
	Case 2: Fay–Herriot Models to Update Inventories
	Model Selection


	Results
	Selected Models
	Stand Level Estimates
	Efficiency Improvements in Sampled Stands

	Discussion
	Differences Between Case 1 and Case 2
	Differences Between Natural and Managed Stands
	General Considerations for the Use of Fay–Herriot Models in Forest Inventories

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


