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As atmospheric carbon dioxide concentrations continue to rise and global temperatures
increase, there is growing concern about the sustainability, health, and carbon
sequestration potential of forest ecosystems. Variable retention harvesting (VRH) has
been suggested to be a potential method to increase forest biodiversity, growth, and
carbon (C) sequestration. A field trial was established in an 88-year-old red pine (Pinus
resinosa Ait.) plantation in southern Ontario, Canada, using a completely randomized
design to examine the response of tree productivity and other forest values to five
harvesting treatments: 33% aggregate retention (33A), 55% aggregate retention (55A),
33% dispersed retention (33D), and 55% dispersed retention (55D) in comparison to an
unharvested control (CN). In this study, we explored the impacts of VRH on aboveground
stem radial growth and annual C increment. Standard dendrochronological methods
and allometric equations were used to quantify tree- and stand-level treatment effects
during a five-year pre-harvest (2009–2013) and post-harvest (2014–2018) period. Tree-
level growth and C increment were increased by the dispersed retention pattern
regardless of retention level. At the stand level, the total C increment was highest at
greater retention levels and did not vary with retention pattern. These results suggest
that the choice of retention level and pattern can have a large influence on management
objectives as they relate to timber production, climate change adaptation, and/or climate
change mitigation.

Keywords: Pinus resinosa, forest management, carbon sequestration, variable retention harvesting,
dendrochronology, tree rings

INTRODUCTION

Atmospheric carbon dioxide (CO2) concentrations have increased from approximately 280 ppm
in the mid-1700s to >411 ppm in 2020 due to fossil fuel combustion and other anthropogenic
activities (Dlugokencky and Tans, 2018; Lindsey, 2018). Depending on global efforts to reduce
emissions in the coming decades, atmospheric CO2 concentrations are predicted to further increase
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to as high as 1000 ppm by 2100 (IPCC, 2014; Lindsey, 2018).
Forests play an important role in the global carbon (C) cycle
and can be managed to offset a proportion of these emissions by
sequestering atmospheric C via photosynthesis into biomolecular
C sinks (Unwin and Kriedemann, 2000; Pan et al., 2011).
However, climate change and the associated projected increase in
frequency, extent, and severity of natural disturbances represent
a serious threat to the ecological functioning of forest ecosystems
and their capacity to act as significant C sinks (Gauthier et al.,
2014; Peterson et al., 2014).

A variety of silvicultural approaches can be used to manage
forests to minimize the adverse effects of climate change
stresses on productivity (Puettmann, 2011; Peterson et al.,
2014; Williamson et al., 2019) and maintain or enhance the
rate of C sequestration (Colombo et al., 2005; Peterson et al.,
2014). Reduction of stand density by thinning and use of
partial harvesting systems can reduce resource competition
and increase the growth and C sequestration rates of residual
trees and stands (Davis et al., 2009; Dwyer et al., 2010;
Nunery and Keeton, 2010), as well as improve soil moisture
availability, tree water status, and resilience to periodic drought
(D’Amato et al., 2013; Sohn et al., 2016; Bradford and Bell,
2017). Variable retention harvesting (VRH) is a relatively new
approach to partial harvesting used to balance economic with
ecological objectives by creating a post-harvest forest structure
that emulates that resulting from the natural disturbance regime
(Franklin et al., 2007; Palik and D’Amato, 2019). Specifically,
this approach retains a proportion of canopy trees and other
biological structures at various densities and spatial patterns to
enhance the structural complexity, biodiversity, and resilience
of the resulting stand, while maintaining acceptable levels of
productivity (Franklin et al., 2007; Palik and D’Amato, 2019). The
primary considerations in application of VRH systems are the
trees and structures to be retained, and the level, spatial pattern,
and the period of retention best suited to the forest type being
managed (Palik and D’Amato, 2019). Generally, VRH is used to
create stands containing areas of both uniformly dispersed trees
of different densities and aggregated patches of residual trees
differing in size and shape (Palik and D’Amato, 2019; Franklin
and Donato, 2020).

The effect of VRH on productivity and other forest values
has been the focus of several, operational scale experiments
established in North America over the past two decades (Palik
et al., 2002, 2014; Aubry et al., 2009; Puettmann et al., 2016;
Xing et al., 2018; Beese et al., 2019). The impact of VRH on
productivity varies with forest type, tree species, the level and
spatial pattern of tree retention, time after treatment, and other
factors (Roberts and Harrington, 2008; Xing et al., 2018). In
general, VRH has been shown to increase stem growth rates of
individual trees as compared with unharvested areas (Roberts
and Harrington, 2008; Powers et al., 2010; Xing et al., 2018). Tree
growth rates and mortality are negatively related to retention
level, but this relationship varies with species (Maguire et al.,
2006; Xing et al., 2018). As well, trees located near the perimeter
of retained patches have shown higher (Powers et al., 2009) or
no difference in growth rate (Roberts and Harrington, 2008)
compared to those in the interior. At the stand level, unharvested

control plots have greater total biomass or volume growth
compared to VRH treatments regardless of the level or pattern of
retention (Maguire et al., 2006; Palik et al., 2014). Given the initial
emphasis on VRH effects on tree regeneration and biodiversity,
it remains unclear which level and pattern of tree retention best
balances timber production with climate change adaptation and
mitigation objectives for different forest types and site conditions
in natural stands and plantations (Xing et al., 2018; Franklin and
Donato, 2020).

Red pine (Pinus resinosa Ait.) plantations were established
in many areas in the Great Lakes region of North America
beginning in the early 1900s to control soil erosion on abandoned
agricultural land and to rehabilitate large cutover and burned
forests (Cayford and Bickerstaff, 1968; Johnson, 1995; Buckman
et al., 2006). Red pine was favored for these efforts due to
its commercial value, genetic uniformity, suitability to even-
aged management, and ability to grow well in drought-prone,
nutrient-poor soils (Stiell, 1959; Buckman et al., 2006). Many
of the red pine plantations established on degraded agricultural
land are located south of its natural range in highly fragmented,
urbanized landscapes where the area of forested land has
been dramatically reduced (Borczon, 1982; Elliott, 1998). These
plantations are typically being managed to restore them to
native forest types through traditional row or selection thinning
methods coupled with regeneration of desired species by planting
or release of advance reproduction (Parker et al., 2008; Abella,
2010).

In this study, we examined the impact of VRH on residual
tree- and stand-level growth and C increment in an 88-year-
old red plantation established beyond its natural range limit
in southern Ontario, Canada. We used dendrochronological
methods to examine VRH effects because tree rings provide fine
spatial and temporal resolution in radial stem growth (Davis et al.,
2009; Dye et al., 2016; Pompa-García et al., 2018) and are reliable
proxy measures of tree- and stand-level C sequestration rates
(Babst et al., 2014). The specific objectives of this study were
to determine the effect of: (1) the level and spatial pattern of
retention on post-harvest tree- and stand-level stem growth and
C increment during the 5-year post-harvest period; and (2) tree
location within aggregate patches of residual trees on tree stem
growth and C increment.

MATERIALS AND METHODS

Site Description
The study site is located within the Turkey Point tract of
the St. Williams Conservation Reserve (SWCR) located in
Norfolk County, in southern Ontario, Canada (42◦42′16′′ N,
80◦21′29′′W) (Figure 1A). The SWCR consists of approximately
1034 ha of Crown Land managed in collaboration with the
Ontario Ministry of Northern Development, Mines, Natural
Resources and Forestry (NDMNRF). The primary management
objective of SWCR is to increase biodiversity, protect species-
at-risk, and restore these lands to their native ecological
communities (SWCRMP (St. Williams Conservation Reserve
Management Plan), 2007). This study was conducted in a 20.2 ha
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FIGURE 1 | (A) Location of the field site in relation to the Great Lakes in southern Ontario, Canada. The blue dashed line represents the approximate southern limit
of red pine trees in Ontario as defined by Rudolf (1990). (B) Aerial view and location of the 20 treatment plots with five treatments: unharvested control (CN), 33%
dispersed retention (33D), 55% dispersed retention (55D), 33% aggregate retention (33A), and 55% aggregate retention (55A).

red pine plantation established in 1931. The area was most likely
occupied by mixed oak and pine forests prior to settlement of the
region. This plantation is part of the Turkey Point Flux Station
and is associated with the Global Fluxnet and Global Water
Futures research network (Peichl et al., 2010). The plantation was
thinned around 1959–1960 when every fourth row of trees was
removed. The plantation was thinned a second time in February
2014 to demonstrate and test the VRH approach with the long-
term objective of restoring the area to a native forest type while
enhancing biodiversity through the creation of a structurally
complex residual tree canopy. A typical operational approach
to the management of this plantation would be to reduce stand
density according to guidelines for uniform shelterwood with the
objective of initiating regeneration (Ontario Ministry of Natural
Resources and Forestry (OMNRF), 2015).

A pre-harvest survey of the area conducted in 2011 using a
series (n = 60) of 12.62 m radius plots indicated the canopy
was almost entirely composed of dominant and codominant red
pine, with a few scattered white pine (Pinus strobus L.) and black
oak (Quercus velutina Lam.). The plantation was overstocked
with an average total basal area (BA) of 38.4 ± 5.5 m2/ha
and a density of 641.3 ± 103.2 trees/ha. Red pine averaged
28.6 ± 4.3 cm in diameter at 1.3 m (DBH) and ranged from
17.2 to 47.2 cm. Height of red pine averaged 23.8 ± 2.8 m. The
subcanopy consisted of naturally established Prunus, Acer, and

Quercus spp. of intermediate crown class and averaged about 70
trees/ha and 13.2 cm in DBH across the study area. The VRH
study uses a completely randomized experimental design, with
four replicates of five treatments (Figure 1B). Treatments were
applied to 20 plots, each averaging 0.89 ha in area and separated
by fire access roads (Figure 1B). The treatments include: 33%
dispersed retention (33D), 55% dispersed retention (55D), 33%
aggregate retention (33A), 55% aggregate retention (55A), and an
unharvested control (CN). The dispersed treatments were created
according to provincial guidelines for using the shelterwood
silvicultural system for regeneration of red and white pine forests
(Ontario Ministry of Natural Resources and Forestry (OMNRF),
2015). Tree marking of the dispersed treatments was aimed at
uniform spacing of residual trees with overstory crown closure
of 33 or 55%. The aggregate treatments were harvested to retain
four (two large and two small) uncut, roughly circular patches
over 33 or 55% of the plot area. Over the entire study area, 4,737
red pine with DBH of 16–48 cm were harvested, with ca. 74%
trees removed having DBH of 24 to 32 cm. Pre- and post-harvest
structural features and photographs of the VRH treatments are
presented in Table 1 and Figures 2A–F, respectively.

Dendrochronological Methods
Cores were collected from at least 30 red pine trees within each
of the 20 treatment plots at ∼1.3 m above ground (DBH) during
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TABLE 1 | Pre-harvest (2009–2013) and post-harvest (2014–2018) mean and standard deviation (SD) of stand density, basal area (BA), and diameter at 1.3 m (DBH) of
living overstory trees ≥10 cm DBH for each treatment.

Treatment Pre-harvest Post-harvest

All species Red pine Red pine

Density (trees/ha) BA (m2/ha) DBH (cm) Density (trees/ha) BA (m2/ha) DBH (cm) Density (trees/ha) BA (m2/ha) DBH (cm)

33A Mean 616.7 35.3 26.6 480.0 32.9 29.8 195.3 14.4 30.3

SD 145.2 5.4 3.8 137.5 7.3 2.6 39.9 0.1 2.7

33D Mean 645.0 36.6 26.4 583.3 35.9 27.9 166.5 14.0 30.3

SD 102.0 5.6 3.0 99.8 5.7 2.6 41.0 2.1 1.6

55A Mean 633.3 39.7 27.8 591.7 39.1 28.1 326.5 23.8 29.3

SD 69.5 6.7 2.6 88.0 7.4 1.7 127.9 11.3 2.3

55D Mean 626.7 37.1 27.0 558.3 36.1 29.0 277.0 19.0 30.6

SD 78.8 4.6 2.8 135.2 5.7 3.3 82.0 5.8 2.7

CN Mean 588.3 38.9 28.5 545.0 38.2 29.6 545.0 38.2 29.6

SD 46.3 6.6 2.7 75.4 6.9 2.0 75.4 6.9 2.0

All Mean 641.3 38.4 27.2 551.7 36.4 29.0 – – –

SD 103.2 5.5 2.8 113.5 6.8 2.5 – – –

FIGURE 2 | Understory (A–C) and canopy level (D–F) photographs for (A,D) control (B,E) dispersed retention, and (C,F) aggregate retention treatments.

the spring and summer of 2019 using a 5 mm increment borer
(Haglöf, Sweden). For each tree, two cores were collected at
approximately 90◦ from each other to account for variability
within individual trees. In the 33A and 55A treatments, cores
were collected from an equal number of trees from the interior
and exterior of the patch to account for potential spatial variation
in radial growth with location. As well, exterior trees sampled
were evenly distributed around the patch perimeter to account
for possible effects of aspect on radial growth (Roberts and
Harrington, 2008; Powers et al., 2009). The DBH was measured
for each tree sampled for dendrochronological assessment of
annual C increment.

Tree cores were prepared for ring width measurement
according to standardized dendrochronological methods (Stokes
and Smiley, 1968; Speer, 2010). Cores were sanded with

increasingly finer grades of sandpaper until the tree rings were
clearly visible (Stokes and Smiley, 1968) and visually crossdated
using the list method (Yamaguchi, 1991). Ring widths were
measured to the nearest 0.001 mm using CooRecorder and
CDendro (Larsson, 2018). Visual crossdating was verified using
the COFECHA software program (Holmes, 1983, 1994) before
assigning calendar dates to each tree ring (Speer, 2010).

Climate
The climate in southern Ontario is classified as Warm-Summer
Humid Continental Climate (Kottek et al., 2006) and is
characterized by cool winters and hot and humid summers (Crins
et al., 2009). Climate data for the study area for the period of the
tree-ring chronologies were obtained from Environment Canada
climate stations located in Delhi, ON and Tillsonburg, ON
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located within 34 km from TP31 (Supplementary Table 1 and
Supplementary Figure 1)1. From 1937 to 2018, the mean annual
temperature was 8.0◦C, the mean annual maximum temperature
was 13.2◦C, and the mean annual minimum temperature was
2.9◦C. Precipitation was evenly distributed throughout the year
and the total annual precipitation averaged 962 mm.

Percent Growth Change
Percent growth change (%GC) over two discrete 5-year periods
for each sampled tree was calculated using ring widths and the
radial growth average technique (Nowacki and Abrams, 1997) as:

%GC =
[(M2 − M1)]

M1
× 100% (1)

where M1 is the mean pre-harvest radial growth (2009–2013) and
M2 is the mean post-harvest radial growth (2014–2018).

Annual Stem Biomass and C Increment
Tree ring derived DBH values and allometric equations were
used to estimate annual stemwood biomass and C increment
for each sample tree. It is important to note that estimating
aboveground biomass from annual growth rings is a source of
uncertainty (Martin-Benito et al., 2021). The allometric equations
developed by Lambert et al. (2005) were selected for use because
they were constructed from a large number of red pine trees
(n = 371), primarily from Ontario, with an average DBH
and height representative of the study plantation. Allometric
equations using tree height and DBH measurements provide
more accurate estimates of aboveground biomass, but annual
height measurements of our sample trees were not available
(Lambert et al., 2005; Cienciala et al., 2008). The allometric
equation used to estimate the biomass of the individual tree
stemwood is represented by the general form:

ywood = βwood1Dβwood2
+ ewood (2)

where ywood is the dry biomass of the stemwood (kg), βwood1 and
βwood2 are model parameters with coefficient estimates, D is DBH
(cm), and ewood is the error term (Lambert et al., 2005). For a
mean prediction of biomass, ewood was assumed to be 0, as it
is assumed ewood follows a normal distribution with a mean of
0. Based on the βwood1 and βwood2 estimates for red pine, the
allometric equation used for this study is as follows (Lambert
et al., 2005):

ywood = 0.0564
(
D2.4465) (3)

Calculating Tree-Level Stemwood C
Increment
The DBH of each tree in each study year (2009–2018) was
calculated as:

DBHk = DBHj − 2×
j∑

i=k+1

RWi (4)

1https://climate.weather.gc.ca

where DBHk is the value for any k year (2009–2017), j is the final
year of our assessment period (2018) and the upper limit of the
summation, and RWi is the sum of the ring widths from year i
to year j (Dai et al., 2013). The estimated DBH for each year and
the allometric equation were used to estimate the total stemwood
biomass increment for each year as:

Annual biomass year k =
(
total biomass year k

)
−
(
total biomass year k− 1

)
(5)

where k represents the year of interest. Although C concentration
may vary among species and plant parts (Lamlon and Savidge,
2005; King et al., 2007), C increment was estimated by
multiplying, annual stemwood biomass by 0.5, assuming that
approximately 50% of red pine stem dry mass is C (King
et al., 2007; Dai et al., 2013). Using the generic value of
50% may not accurately estimate the absolute amount of C
sequestered, but it is suitable for comparison of VRH treatment
effects on C increment.

Stand-Level C Estimates
Stem density (trees/ha) of living red pine canopy trees for all
treatment plots during the pre-harvest period was estimated
using 2011 pre-harvest inventory data. The total number of red
pine trees removed from each treatment plot was subtracted
from its pre-harvest stand density to obtain initial (2014) post-
harvest density. Annual changes in living red pine stand density
during the post-harvest period were estimated using a subsample
(n = 10–38) of canopy trees in each plot that were monitored
for mortality (Supplementary Table 2). Because of the relatively
small number of trees monitored, stand density for each plot was
estimated using the mean percent mortality for a given treatment
(Supplementary Table 2). Mean annual tree-level C increment
(kg C/tree) for each treatment plot was multiplied by stem density
to calculate pre- and post-harvest stand-level estimates of mean
annual C increment (kg C/ha).

STATISTICAL ANALYSIS

One-way analysis of variance was used to quantify VRH
treatment effects on %GC and tree- and stand-level annual C
increment. Where significant treatment effects were exhibited, a
post hoc Tukey test was performed to quantify differences among
treatment means (computed with https://astatsa.com/OneWay_
Anova_with_TukeyHSD/). Differences among treatments in
annual C increment between pre- and post-harvest periods,
and between interior and exterior trees within and among the
aggregated treatments, were quantified using t-tests.

RESULTS

Treatment Effects on Tree-Ring Growth
Responses
The tree-ring chronologies for all 20 treatment plots spanned the
period from 1936 to 2018 and exhibited comparable descriptive
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statistics (Table 2). The mean series intercorrelation was 0.646
and ranged from 0.551 to 0.736, indicating that ring growth
of all sampled red pine trees was influenced by a common
growth factor. The mean annual ring width growth increment

was 1.64 mm and ranged from 1.47 to 1.89 mm. Autocorrelation
was high (<0.871) for all treatment plots, with a mean value of
0.903 (Table 2), indicating that tree growth in a given year is
influenced by growth in the previous year. The DBH of the 600

TABLE 2 | Summary statistics for tree-ring chronologies and sample trees for the 20 VRH treatment plots.

Treatment
& plot

Chronology
interval

Number
of years

Number of
series (n)

Series
intercorrelation

Mean ring
width (mm)

Ring width
SD (mm)

Autocorrelation Mean DBH
(cm)

DBH SD
(cm)

Range in
DBH (cm)

CN–Plot 01 1937–2018 82 62 0.651 1.55 1.240 0.910 30.4 4.0 23.1–42.5

CN–Plot 03 1936–2018 83 60 0.680 1.58 1.216 0.887 30.0 4.5 22.6–40.5

CN–Plot 10 1936–2018 83 62 0.583 1.79 1.565 0.936 34.1 4.6 28.0–44.1

CN–Plot 21 1937–2018 82 60 0.642 1.47 1.123 0.906 28.1 3.9 21.9–35.1

33A–Plot 02 1936–2018 83 60 0.722 1.58 1.308 0.898 30.2 4.5 21.1–37.7

33A–Plot 07 1936–2018 83 60 0.633 1.61 1.372 0.909 30.8 4.1 22.4–38.3

33A–Plot 13 1936–2018 83 61 0.551 1.75 1.525 0.922 33.3 3.4 27.2–40.6

33A–Plot 17 1937–2018 82 60 0.651 1.50 1.123 0.902 28.1 3.1 23.6–37.7

55A–Plot 04 1936–2018 83 60 0.654 1.62 1.314 0.904 31.5 4.9 25.8–44.5

55A–Plot 06 1936–2018 83 62 0.603 1.62 1.294 0.919 31.5 3.6 26.1–40.3

55A–Plot 11 1936–2018 83 60 0.569 1.65 1.396 0.927 31.8 5,1 23.0–44.1

55A–Plot 19 1936–2018 83 60 0.662 1.60 1.332 0.897 29.4 4.0 22.2–39.2

33D–Plot 08 1936–2018 83 60 0.736 1.67 1.173 0.872 31.4 3.5 25.0–38.6

33D–Plot 12 1936–2018 83 60 0.600 1.82 1.571 0.937 34.6 4.1 28.6–45.8

33D–Plot 15 1937–2018 82 60 0.715 1.54 1.088 0.877 29.2 2.6 24.6–36.4

33D–Plot 20 1936–2018 83 60 0.644 1.64 1.163 0.880 30.7 4.5 23.3–42.0

55D–Plot 05 1936–2018 83 63 0.711 1.52 1.152 0.893 29.6 2.8 24.6–38.2

55D–Plot 09 1936–2018 83 61 0.615 1.67 1.308 0.904 32.1 2.8 26.4–37.5

55D–Plot 14 1936–2018 83 60 0.609 1.89 1.352 0.893 35.8 4.1 30.7–45.6

55D–Plot 18 1937–2018 82 60 0.690 1.64 1.148 0.894 30.2 3.6 22.5–36.0

CN, unharvested control; 33A, 33% aggregate retention; 55A, 55% aggregate retention; 33D, 33% dispersed retention; 55D, 55% dispersed retention; SD, standard
deviation; DBH, diameter at 1.3 m height.

FIGURE 3 | Ring width indices (RWI) for the residual chronology of each treatment during the pre-harvest (2009–2013) and post-harvest (2014–2018) periods. The
vertical dashed line marks the year the variable retention harvest occurred.
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trees sampled averaged 31.1 ± 4.4 cm and ranged from 21.1 to
45.8 cm (Table 2).

Prior to harvest, ring-width index (RWI) was similar
among treatments (Figure 3). Following harvest, RWI of all

VRH treatments exhibited similar year-to-year high-frequency
variability as the CN treatment. Beginning in 2016, the third
growing season after harvest, the 33D and 55D treatments
exhibited a trend toward higher RWI as compared with the

FIGURE 4 | Mean (± 1 standard deviation) percent growth change (%GC) for each treatment (A) between the pre-harvest (2009–2013) to post-harvest (2014–2018)
periods, and (B) the exterior and interior trees in the 33A and 55A treatments. Means sharing the same letters are not significantly different. The asterisks indicate
significant mean differences (p < 0.05). The X in the middle of each box represents the treatment mean.
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33A, 55A, and CN treatments (Figure 3). Treatment type had a
significant (p < 0.05) effect on mean annual %GC over the post-
harvest period, with values being significantly higher in the 33D
than the 55A treatment (Figure 4A). In the aggregate treatments,
mean annual %GC of the post-harvest period of exterior trees
was significantly (p < 0.05) higher than interior trees in the 33A
treatment but did not differ (p = 0.139) with tree position in
the 55A treatment (Figure 4B). For both aggregate treatments
combined, mean annual %GC was significantly (p ≤ 0.001)
higher in the exterior trees.

Treatment Effects on C Increment
Treatment effects on pre- and post-harvest rates of mean annual
C increment depended on the spatial scale at which this variable
was expressed (Figure 5). At the individual tree level, mean
annual C increment in the post-harvest period was significantly
lower in the CN (p≤ 0.001), 33A (p = 0.026), and 55A (p≤ 0.001)
treatments compared to the pre-harvest period (Figure 5A). Pre-
and post-harvest mean annual C increment per tree did not
differ in the 33D (p = 0.724) and 55D (p = 0.528) treatments.
Mean annual C increment in the exterior trees in the post-
harvest period was significantly higher than the interior trees
in the 33A [t(38) = 4.623, p < 0.001], 55A [t(38) = 4.793,
p ≤ 0.001] and both treatments combined [t(38) = 6.677,
p < 0.001]. At the stand scale, mean annual C increment was
significantly (p ≤ 0.001) lower in the post-harvest period for all
five treatments (Figure 5B).

Treatments also differed in tree- and stand-level mean annual
C increment within the post-harvest period (Figure 6). At the
individual tree scale, the two dispersed retention treatments had

significantly (p < 0.05) higher mean annual C increment than
the CN and the two aggregate treatments (Figure 6A). For the
aggregate treatments, tree location had a significant effect on
growth, with exterior trees having significantly (p < 0.001) higher
mean annual C increment than the interior trees (Figure 6B). By
comparison, at the stand scale, mean annual C increment was
significantly (p < 0.01) higher in the CN treatment than all VRH
treatments except the 55D treatment (Figure 6C). Mean annual
C increment did not differ between dispersed and aggregate
treatments of the same retention level, but mean annual C
increment was significantly (p < 0.05) higher in the 55D than the
33D and 33A treatments (p < 0.01).

Patterns of inter-annual variability in mean annual C
increment rates at the individual tree- and stand-level during
the 10-year pre- and post-harvest period suggest that the two
dispersed retention treatments began to exhibit greater C uptake
compared to the three other treatments beginning in 2016, the
third growing season after harvest (Figure 7).

DISCUSSION

Impact of Retention Level and Pattern on
Stem Growth
Stand density reduction through thinning or partial harvest
systems is employed in part to release residual canopy trees
from neighborhood competition and increase tree growth rates
(Gilmore and Palik, 2006). The pattern and intensity of tree
removal determine the degree of release from competition.
Annual variation in RWI from residual chronologies indicates

FIGURE 5 | Box and whisker plots comparing pre-harvest (2009–2013) and post-harvest (2014–2018) treatment effects on (A) mean annual tree C uptake (kg
C/tree) and (B) mean annual stand C uptake (kg C/ha). The ∗ indicates a significance level of p < 0.05 and the ∗∗ indicates a significance level of p < 0.001. The X in
the middle of each box represents the treatment mean.
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FIGURE 6 | Box and whisker plots comparing treatments during the
post-harvest (2014–2018) for (A) mean annual tree C increment (kg C/tree),
(B) mean annual tree C increment (kg C/tree) between interior and exterior
trees in combined aggregate plots, and (C) mean annual stand C increment
(kg C/ha). Means sharing the same letters are not significantly different. For
(B), the ∗∗ indicates a significance level of p < 0.001. The X in the middle of
each box represents the treatment mean.

that red pine radial growth exhibited a strong response to both
interannual climatic variability and stand density changes over
our 10-year study period. The shared annual variability in RWI

is associated with climate-growth relationships established for
red pine. Cooler, wetter growing season conditions favor higher
growth in red pine growing in natural stands (Graumlich, 1993;
Girardin et al., 2006) and plantations (Magruder et al., 2013;
Ashiq and Anand, 2016). The gradual decline in RWI exhibited
prior to harvest for all treatments is likely due to high inter-tree
competition and growth suppression when stand density and BA
were comparatively high. Post-harvest tree RWI varied with VRH
treatments and indicated that stem radial growth rate of residual
canopy trees depended primarily on the pattern of retention as it
influenced the degree of reduction in neighborhood competition.
The trend toward higher RWI in the dispersed treatments is
most likely due to near-complete release from competition by
adjacent trees in the uniformly spaced trees. In contrast, only the
perimeter trees in the aggregate treatments experience a partial
release from competition and more limited increase in resources
(Chen et al., 1992; Sherich et al., 2007; Powers et al., 2009).
The positive mean %GC values for the dispersed treatments and
negative mean %GC for the aggregate treatments are consistent
with trends in RWI. Further, although exterior trees had higher
mean %GC than interior trees, mean values of %GC for exterior
trees were negative and largely similar to that of the CN
treatment. Interestingly, %GC of exterior trees was higher than
interior trees in the 33A treatment and both aggregate treatments
combined, but not the 55A treatment, suggesting that exterior
trees in smaller patches with higher perimeter to area ratios may
experience greater resource availability than in larger patches.

Impact of Retention Level and Pattern on
Tree- and Stand-Level C Increment
Not surprisingly, the pattern of annual changes in C increment
over our 10-year study period was consistent with that for
RWI, with only trees in dispersed treatments exhibiting a
gradual increase in C increment after harvest. The significantly
lower post-harvest C increment for the control and aggregate
treatments indicate that trees in residual patches respond
similarly to the unharvested treatment plots, despite the
comparatively higher radial growth observed for exterior trees
that experienced a partial reduction in competition. These results
are consistent with the findings for natural red pine stands
(Powers et al., 2009, 2010) and other tree species (Deal and
Tappeiner, 2002; McDonald and Urban, 2004; Sherich et al.,
2007; Roberts and Harrington, 2008). In contrast to our findings,
reduced growth of Douglas-fir in aggregate patches was attributed
to poor growth response of exterior trees (Maguire et al., 2006).

The similarity in post-harvest mean C increment for trees
in the dispersed treatments is likely a reflection of the delayed,
gradual increase in radial growth following harvest that was
not expressed until the third growing season after treatment.
This response is probably due to so-called “thinning shock” that
results from the abrupt exposure of trees to higher radiation, air
temperature, wind speed, and a more evaporative atmospheric
environment in thinned stands (Youngblood, 1991; Latham and
Tappeiner, 2002; Bebber et al., 2004). This gradual, growth
response is thought to be related to a brief period of physiological
and morphological acclimation of trees to the new post-harvest
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FIGURE 7 | (A) Individual tree- and (B) stand-level annual C increment for the pre-harvest (2009–2013) and post-harvest (2014–2018) periods. The dashed vertical
line marks the year the variable retention harvest occurred.

microclimate when carbohydrate allocation to root growth may
be favored over aboveground growth (Bladon et al., 2006; Powers
et al., 2010). The comparatively greater variation observed in
mean C increment in the dispersed treatments is probably

associated with both heterogeneity in growth resources and
differences in acclimation capacity among residual trees of
different size and crown class (Roberts and Harrington, 2008).
Trees of dominant and co-dominant crown classes with higher
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live crown ratio and leaf area show more immediate, positive
growth response to thinning than subordinate, smaller diameter,
less vigorous canopy trees of intermediate crown class (Horton
and Bedell, 1960; Gilmore and Palik, 2006).

The two dispersed treatments exhibited significantly higher
mean C increment in the post-harvest period than the control
and aggregate treatments, while the C increment of the aggregate
treatments did not differ from the unharvested control treatment,
consistent with the findings of Roberts and Harrington (2008).
This indicates that in our study, mean C increment is dependent
on the pattern of retention, and not the level of retention. Maguire
et al. (2006) also found higher stem growth in the dispersed
compared to aggregate treatments due to increased access to
resources and minimal crown overlap.

Expressed at the stand level, mean C increment was higher
during the pre-harvest than the post-harvest period for all five
treatments. Decreasing mean annual C increment in the control
treatment reflects increasing stand basal area and tree growth
suppression in unharvested plots, which is the rationale behind
the use of frequent, periodic thinning to maximize growth and
reduce mortality in managed red pine stands (Gilmore and Palik,
2006). Despite increased growth rates due to complete or partial
release of residual canopy trees from competition, the greatly
reduced stem density due to the thinning process reduced the
total stand-level C increment in most VRH treatments (Maguire
et al., 2006). This is not surprising given that thinning increases
individual tree growth rates but rarely increases stand-level rates
(Gilmore and Palik, 2006; Davis et al., 2009), since it takes time for
these faster individual rates to compensate for lower densities.

Mean stand-level C increment in the post-harvest period
was significantly higher in the unharvested control treatment
than all other treatments, regardless of level or pattern of
retention. Again, this is an expression of the much higher
stand density in the control treatment despite lower tree C
increment. In contrast to findings with tree-level C increment,
stand-level C increment is driven by retention level. Stand-
level C increment was significantly lower in the 33% compared
with the 55% retention level regardless of pattern. In natural
red pine stands, stand-level growth was higher in unharvested
versus VRH treatments but was only marginally higher in
dispersed treatments compared to aggregate treatments of the
same retention level (Palik et al., 2014).

CONCLUSION

In this study of VRH effects on tree- and stand-level growth and C
increment of red pine, we used tree rings and allometric equations
to estimate stem radial growth and C increment, respectively.
While using dendrochronological methods to estimate annual
productivity has potential limitations (Martin-Benito et al.,
2021), our comparatively large sample of randomly selected
residual trees and our focus on a short, 10-year growth period,
coupled with pre- and post-harvest tree and stand measurements,
eliminated or reduced these sources of error (Babst et al., 2014;
Dye et al., 2016). The results of this study indicate that VRH
has a significant effect on tree- and stand-level stem growth

and C increment of an 88-year-old red pine plantation that
was significantly related to the level and spatial pattern of
retention. Dispersed VRH treatments at both levels of retention
were more effective in promoting post-harvest tree-level growth
and C increment than aggregate treatments. In contrast, stand-
level growth and C increment were highest for greater levels
of retention, regardless of pattern. We recognize that stand
C sequestration depends on above and below ground growth
response of all forms of vegetation as well as treatment effects
on C contained in dead biomass and mineral soil. Our focus on
living red pine canopy trees clearly does not quantify the potential
effects of VRH on total C accumulation.

The results of this study are applicable to management of
red pine plantations in southern Ontario and other parts of
the Great Lakes region where balancing timber production with
climate change adaptation and/or mitigation is an objective
(D’Amato et al., 2011). Where improved tree growth rates are
desired, dispersed retention was the superior treatment. Where
mitigation through enhanced stand-level C sequestration is a
primary objective, a higher level of retention is desirable. In
stands where adaptation and mitigation are of high priority,
a mixture of dispersed and aggregate treatments of different
retention levels may best meet both objectives.
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