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The vertical distribution of absorbing roots is one of the most influential plant traits
determining plant strategy to access below ground resources. Yet little is known
of natural variability in root distribution since collecting field data is challenging and
labor-intensive. Studying stable water isotope compositions in plants could offer a cost-
effective and practical solution to estimate the absorbing root surfaces distribution.
However, such an approach requires developing realistic inverse modeling techniques
that enable robust estimation of rooting distributions and associated uncertainty from
xylem water isotopic composition observations. This study introduces an inverse
modeling method that supports the assessment of the root allocation parameter (β) that
defines the exponential vertical decay of a plants’ absorbing root surfaces distribution
with soil depth. The method requires measurements obtained from xylem and soil water
isotope composition, soil water potentials, and sap flow velocities when plants’ xylem
water is sampled at a certain height above the rooting point. In a simulation study,
we show that the approach can provide unbiased estimates of β and its associated
uncertainty due to measuring errors and unmeasured environmental factors that can
impact the xylem water isotopic data. We also recommend improving the accuracy
and power of β estimation, highlighting the need for considering accurate soil water
potential and sap flow monitoring. Finally, we apply the inverse modeling method to
xylem water isotope data of lianas and trees collected in French Guiana. Our work
shows that the inverse modeling procedure provides a robust analytical and statistical
framework to estimate β. The method accounts for potential bias due to extraction
errors and unmeasured environmental factors, which improves the viability of using
stable water isotope compositions to estimate the distribution of absorbing root surfaces
complementary to the assessment of relative root water uptake profiles.

Keywords: absorbing root surfaces distribution, ecohydrology, lianas, stable water isotopes, tropical trees, water
competition
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INTRODUCTION

The absorbing root surfaces distribution (AR), i.e., those surfaces
of a plants’ root system that support water uptake, is a pivotal
plant characteristic that determines the plant species’ nutrient
and water acquisition strategy. Investments in competitive
advantage usually imply maximizing the upper soil layer’s
exploitation, where the concentration of nutrients is generally
highest (Jobbagy and Jackson, 2001). However, this comes at
the cost of drought tolerance since upper layers are generally
more drought-prone than deeper soil layers with more stable
water reserves (Fogel, 1985). Accurate measures of AR are thus
needed to characterize specific plant competitive strength and
drought response.

Unfortunately, data on root distributions in general—and on
AR in specific—is scarce, and little is known about the intra-
and interspecific variability in AR across different environments
(Böhm, 2012). This paucity is caused in part by the available
techniques to study root distributions of individual plants, which
are often destructive, expensive, and labor intensive (Cabal
et al., 2021). Root excavation, for example, holds the highest
promise of most accurately characterizing a plant’s natural root
distribution (Böhm, 2012). However, the associated workload
limits its practical application to small sample sizes and small
habitus plants, e.g., annual plants, crops, and young trees. As an
illustration, Preston (1942) estimated that one laborer requires
approximately 5 weeks to fully excavate and examine the root
system of single 15-year-old lodgepole pine. These time and
labor disadvantages have led to the development of many other
direct and indirect in situ techniques, such as rhizotron systems,
acoustic and electromagnetic tomography, the auger method,
or the use of non-radioactive tracers (reviewed in Cabal et al.,
2021). However, while these techniques provide a less invasive
alternative to root excavation, they generally fall short in the level
of details they can provide on the distribution of the individual
absorbing root surfaces.

A relatively straightforward technique to relate relative root
water uptake (RWU, which is inextricably linked to AR) with
soil depth is using stable water isotope composition as non-
radioactive tracers. Ehleringer and Dawson (1992) described the
simplicity of the technique, which lies in a direct relationship
between the isotopic composition of the xylem sap (δxyl)
and the isotopic composition observed in soil water (δsoil)
along with a soil depth profile. Common approaches assume
that xylem water is a proportional mixture of δsoil from the
various depths at which roots absorb water (Phillips and
Gregg, 2003). The approach requires: (i) the occurrence of
a natural isotopic gradient in the soil generated by topsoil
water evaporation (Beyer et al., 2018); and (ii) the absence
of processes that alter the xylem water isotope composition
while entering the plant or during transport along the plant
hydraulic system (Wershaw et al., 1966; Zimmermann et al.,
1967; White et al., 1985; Dawson and Ehleringer, 1991; Walker
and Richardson, 1991; Dawson et al., 2002; Zhao et al., 2016).
Requirements (i) and (ii) generally limit the technique to
lignified plants and implementation during rain-free periods
after sufficient soil evaporation has occurred. However, these

conditions still allow strong flexibility and usability across
multiple temporal and spatial scales (Dawson et al., 2002).
Its moderate labor and time investment allows sampling of
more and larger plant species far beyond what is possible with
root excavation.

However, the robustness of stable water isotope techniques
has been recently questioned (Penna et al., 2018; von Freyberg
et al., 2020). An increasing number of studies discuss a
potential mismatch between available water sources and
isotopically depleted compositions in xylem water. Hypothetical
discrepancies have resulted from: isotopic discrimination
at root-level (Allison et al., 1983; Vargas et al., 2017) or by
associated mycorrhizae (Poca et al., 2019), and by internal
mixing of xylem water with isotopically depleted water reserves
stored in stem tissue (Barbeta et al., 2020; Knighton et al., 2020).
The link between source water and the isotopic composition
of xylem water (δxyl) can be further obscured by pronounced
water-transport lags (Meinzer et al., 2006; Gaines et al., 2016;
Magh et al., 2020; Marshall et al., 2020; Mennekes et al., 2021)
or possible excessive intra-individual variance in δxyl due to
variable RWU dynamics caused by fluctuating biophysical
factors, frequently overlooked in isotopic studies (e.g., soil
water potentials, vapor pressure deficits and sap flow dynamics)
(De Deurwaerder et al., 2020). This growing body of literature
suggests that standard sampling methods may deliver biased
estimates of RWU profiles while simultaneously underestimating
uncertainty among species, biomes, or seasonality. Therefore, a
real need exists to develop methods that accurately estimate AR
and associated uncertainty in the face of unmeasured biophysical
factors that affect δxyl.

Coupling stable isotope measurements to biophysical models
(e.g., RAPID algorithm) could support the inverse reconstruction
of absorbing root surfaces distribution, AR, and the assessment
of their active contribution to RWU (Ogle et al., 2004).
Such a coupled technique has enormous potential to build a
fundamental understanding of spatial and temporal variability in
water competition strategy amongst and within plant species. To
the best of our knowledge, only one previous study endeavored to
develop such a tool (Ogle et al., 2004). However, it did not account
for unmeasured biophysical factors that affect δxyl potentially
leading to biased estimates. Here we adopt a mechanistic model
for uptake and transport of stable water composition through
plants (De Deurwaerder et al., 2020) and use simulations to
show that this inverse modeling method offers estimates of β,
the allocation parameter which defines the exponential vertical
decay of a plants’ AR while (1) accounting for the xylem water
isotopic variance within plants, as well as (2) uncertainties
in isotopic measurements and (3) biophysical parameters, e.g.,
sap flow dynamics. We further provide guidelines to improve
sampling design in future studies. Finally, we show how the
model can validate previous results by re-analyzing a case
study in French Guiana for tree and liana growth forms.
This study suggests that previous methods underestimated the
uncertainty in mean xylem water δ2H and δ18O provided by
De Deurwaerder et al. (2018). The applied inverse method
is provided as an open-source code (see GitHub repository
HannesDeDeurwaerder/iSWIFT).
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MATERIALS AND METHODS

The SWIFT model links xylem water isotope compositions (δxyl)
to an allocation parameter β, that defines the exponential vertical
decay of AR with soil depth. We give a brief overview of the model
in box 1, restricted to key equations expressed for the hydrogen
isotope composition in xylem and soil water (δ2HX and δ2HS).
Subsequently, we describe the numerical inversion needed to
generate estimates of β from δxyl and δsoil. Here, we evaluate how
increased levels of variable range restrictions improve estimates
of β, followed by a power analysis to inform to which extent β

should differ between groups of plants subject to similar edaphic
conditions to observe statistical differences in δxyl. Both analyses
can help guide future study design optimization. Finally, we
introduce a practical case study in French Guiana. We maintain
the following notation in the subscripts of presented variables: the
medium through which water travels is indicated by uppercase
fonts, while lowercase fonts highlight the units of time and

distance: X for xylem, R for root, S for soil, h for stem height, t for
time, and i for the corresponding soil layer. A complete overview
of variables, definitions and units is given in Supplementary
Table 1, and details on the SWIFT model can be found in
Supplementary Appendix A and De Deurwaerder et al. (2020).

Inverse SWIFT: Numerical Model
Inversion and Likelihood Estimation
The goal is to estimate the relative shape of absorbing root
surfaces distribution by numerical inversion of the allocation
parameter β, given a set of measured δxyl collected from plants in
the field (Figure 1). We start with a vector C consisting of paired
δ2Hx and δ18Ox observations, and assume C to be a bi-variate
random variable with a conditional probability density function
P(C| βtrue,χtrue) determined by the “true” allocation parameter,
βtrue, and natural occurring variance in the local set of biophysical
variables, χtrue (Figure 1A).

BOX 1 | SWIFT in a nutshell.
SWIFT (Stable Water Isotope Fluctuation within Trees) generates paired predictions of xylem water isotope composition (δxyl ) and the respective sampling error (ξ ):

δxyl =

[
δ2H

δ18O

]
=

[
f(β, χ δ2H)

f(β, χ δ18O)

]
+ ξ (S1)

In SWIFT δxyl is a function of the relative absorptive root surfaces distribution with soil depth (AR), determined by allocation parameter β, and a set of biophysical
variables (χ) that influence δxyl other than β (see Table 1). We distinguish three distinct groups of biophysical variables in χ:

• Physical: soil properties, spatial variability in the gradients of soil water isotope composition (δSoil ), and in the soil water potential (9S) with soil depth,
hereafter indicated as soil heterogeneity.
• Biological: plant trait, i.e., the sapwood area (ASAPWOOD), the lumen fraction (LF ), the effective root radial conductivity (kR) and the sap flow dynamics (SF ).
• Sampling: sampling strategy related variables, i.e., the height (hos) and time (t) of the day during sampling.

The biophysical variables are the same for both water isotopes (χδ18O and χδ2H ) except for the isotopic soil profiles (δSoil; δ
2HS & δ18OS). The error term ξ includes

cryogenic water extraction errors, since these errors unavoidably occur during the extraction procedure (Orlowski et al., 2013). The magnitude of these errors are
within the conservative range of 3 and 0.3h for δ2H and δ18O, respectively (Araguás-Araguás et al., 1995). In the Monte Carlo method these errors are simulated as
independent Gaussian random variables to generate δxyl values.

Relation between AR and β. The discrete representation of AR is a function of the total absorbing root area available to the focal plant (ARtot ) allocated via
parameter β over all soil depths, zi (cm), discretized in layers of thickness 4z as follows (Jackson et al., 1996):

AR = ARtot·β
zi · (1− β4z) (S2)

Key mechanics. SWIFT couples (i) a standard multi-source mixing model approach (Phillips and Gregg, 2003) which composes the weighted isotope composition
entering the stem base of a plant of the relative quantities of water taken up and the respective δsoil at each soil layer (i = 1,2,..,n), with (ii) a mechanistic plant
hydraulic module to simulate the impact of root water uptake (RWU) and xylem transport dynamics on δxyl .
The deuterium isotope composition of water entering the stem base of a plant (δ2HX,0,t ) at time t is a weighted sum of the product of the relative water taken up (Fi,t )
from each layer and the corresponding δ2HS,i . Assuming soil conductivity is much bigger than kR, a simplified model for the δ2HX,0,t can be given as (for a complete
formulation that includes soil and root conductivity, see Supplementary Appendix A):

δ2HX,0,t =

n∑
i = 1

Fi,t · δ
2HS,i =

n∑
i = 1

βzi ·1ψi,t∑n
i = 1 β

zi ·1ψi,t
·δ2Hs,i (S3)

Fi,t depends on (i) the relative amount of absorbing root surface per soil layer available to the plant (βzi ), and (ii) the ability of these root surfaces to uptake water
based on the water potential gradient between root xylem and soil (49i,t ). In the present model, root water potentials show diurnal variability driven by plant
responses to fluctuating abiotic conditions (i.e., vapor pressure deficit). The latter leads to a variable δ2HX,0,t which then propagates along the stem of the plant,
causing a lag between the isotope compositions entering the plant and that of extracted δxyl samples taken at different heights. SWIFT takes this into account by
computing the time, τ, a molecule of 2H takes to travel from where it was extracted, δ2HX,0,t, to the height h where samples were taken, δ2HX,h, t, using modeled or
observed sap flow velocities.

Merits of using SWIFT. The SWIFT implementation considers that variance in the χ variables can indeed (i) transmit in differences in a plant’s root water uptake
ability and rates at different soil layers (i.e., 9S, δ2HS,i , kR and SF ) which causes variance independent of β, and (ii) account for transportation lag and optimized
sampling (i.e., ASAPWOOD, LF, SF, hos, and t). Both (i) and (ii) are generally disregarded in stable water isotope studies, leading to potential biases in derived insights
from δxyl samples, hence in RWU and β.
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TABLE 1 | Overview of the variable restrictions (X: restricted; o: non-restricted) considered within the inverse SWIFT procedure to simulate synthetic field data and
corresponding conditional density probability distributions P(δxyl |β,χ).

Abbr. Description Field data Sc.A Sc.B Sc.C Sc.D

ASAPWOOD Sapwood area X o o o X

δ2HS Soil water isotopic signature defined
per soil depth

X o X X X

hos Height of sampling X o o X X

kR Effective root radial conductivity X o o o X

LF Lumen fraction per unit sapwood area X o o o X

SF Instantaneous sap flow at time t
corrected based on DBH of each
individual

X o o o X

t Time of sampling during the day X o o X X

9S Water potential at a specific soil layer
depth i and time

X o X X X

β The allocation parameter which defines
the shape of exponential vertical decay
of the distribution of absorbing root
surface distribution with soil depth.

0.966 β[i] β[i] β[i] β[i]

Rest. Group Variable restriction group considered
per scenario

Physical
Sampling
Biological

o Physical Physical
Sampling

Physical
Sampling
Biological

The distinct scenarios (Sc.) represent different levels of prior knowledge of the parameter setχ. Sc. A: No restrictions are considered. Sc. B: Restriction imposed on
the physical variables, i.e., the soil heterogeneity. Sc. C: Restriction of both the physical variables and the sampling strategy. Sc. D: Full restriction, thus considering an
additional restriction on the biological plant-specific variables. More details in the main text, and the precise applied parameter restriction ranges for each scenario are
provided in Supplementary Table 2 and Table 1.

Subsequently, we consider Equations 1–3 (Box 1) to generate
distributions of synthetic δxyl values that correspond to a wide
range of biophysical parameters (χ) which prior distributions
are user-specified or measured (Supplementary Table 2) and
given a specific value of β (Figure 1B). These distributions
are defined as conditional probability density distributions
where P(δxyl|β,χ) represents the range of possible δxyl values
generated by the SWIFT model (hereafter “Synthetic δxyl”),
given a specific β and uncertainty in χ. We then vary the
parameter β, generating new distributions associated with each
considered β-value, P(δxyl|β,χ), until we find the distribution
that maximizes the likelihood of observing the field samples C
(Figure 1C). This maximum likelihood estimate of β (hereafter
indicated as β̂) is then assumed to be the best approximation
of βtrue. The distribution of each biophysical variable in χ can
be based on prior measurements of the studied system or set as
uninformative uniform distributions when no prior knowledge is
available. A schematic workflow of this Inverse SWIFT approach
is provided in Figure 1.

Likelihood and Model Optimization
The inversion procedure starts by numerically generating a vector

of paired
[

δ2H
δ18O

]
values (see Equation S1) for a given value of β,

with other parameters drawn by q Monte-Carlo simulations from
the user assigned or measured distributions of each biophysical
variable χ. Here, we set q to 250, and the distributions of χ

are given in Supplementary Table 2. The conditional density
probability distributions P(δxyl|β,χ) are computed using a bi-
variate kernel density estimator (i.e., the kde function of the “ks”

R-package, Duong, 2007). The likelihood of observing C, the
paired δxyl values from field data of k samples (j = 1, 2, . . ., k),
is then defined as:

L (β | C,χ) =
k∏

j=1

P
(
Cj
∣∣ β, χ) (1)

The β of the P(δxyl|β,χ) which minimizes the sum of the
negative log-likelihood function, given the observed C, is then
considered as the best estimate of βtrue, i.e., β̂.

β̂ ∈ argmin
{
− logL(β

∣∣C, χ)} (2)

The search of β values is restricted to the range 0.905–0.995,
according to the global analysis in Jackson et al. (1996). A one-
dimensional general-purpose optimization method was used to
find minima for Equation 2 (“brent” method in the “stats” package
optim function, R Core Team, 2017).

Bias Evaluation in the Inversion Procedure
To quantify how the three distinct parameter sets defined
earlier–physical, biological, and sampling (Box 1)–influence the
likelihood, bias, and power, we generated sets of synthetic δxyl
data (CSYN) with known values of β (βtrue and χtrue; βtrue
set at 0.966. The selected value is representative for temperate
deciduous forest rooting profiles after Jackson et al. (1996;
see Table 1 and Supplementary Table 2) and then inversely
estimated β̂ and associated likelihood profiles. During this
procedure, the following four scenarios of increasing variable
restriction of χ are considered and represent different levels of
prior knowledge on the parameter set χ.
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FIGURE 1 | Schematic overview of the Inverse SWIFT procedure which supports estimation of the plant groups’ mean allocation parameter β (which defines the
exponential vertical decay of the distribution of absorbing root surface with soil depth) from the respective xylem water isotopic compositions [(δxyl ; being δ2H and/or
δ18O, subplot (A)]. Specifically, a model that couples a standard multi-source mixing model with a mechanistic plant hydraulic model, e.g., the SWIFT model, allows
for the generation of theoretical xylem water isotopic field data for a given β and a set of biophysical model variables (χ) (B). In this way, conditional density
probability distributions (P(δxyl |β,χ)) are established for a range of β-values to which field data C can be matched (C). The β-value which correspond to the
(P(δxyl |β,χ)) which minimizes the log-likelihood function provides the best β-estimate (̂β) of the studied plant group.

Scenario A: No variable range restrictions. This scenario
assumes no prior knowledge of the system, except for δSoil
and soil water potential (9S) profiles with soil depth. This
corresponds to the most common study conditions (Rothfuss
and Javaux, 2017). Ideally, well-characterized δSoil-profiles from
homogeneous soils yield the best results but in natural settings,
soil heterogeneity can lead to high spatial variability which causes
large random sampling errors. Therefore, we start from clearly
defined empirical δ18OS and 9S profiles, hereafter the “true
profiles” (illustrated by those obtained by Meißner et al. (2012))
and sample more uncertain “observed” soils profiles (using ± 3
standard deviation from the true δ18OS and 9S, profiles see
functions Supplementary Table 2)—hereafter “heterogeneous
profiles.” As we assume equilibrium conditions δ2HS profiles are
deduced from δ18OS using the local meteoric water line (LMWL)
(for details see Supplementary Appendix B).

Scenario B: Variable range restriction of the soil
heterogeneity. Here the 9S and δSoil-profiles are assumed to be
characterized with higher precision. The input parameterization
now considers narrow variance ranges, i.e., mean ± 1 standard

deviation of the 9S and δ18OS true profiles. Yet again, δ2HS
profiles are calculated from δ18OS using the LMWL.

Scenario C: Variable range restriction by sampling strategy.
Restricting sampling of δxyl–values to periods that correspond to
maximum RWU activity may decrease bias (see De Deurwaerder
et al., 2020). In this scenario, we assumed that the sampling
strategy was optimized in timing (t) and the height of sampling
(hos) targeting representative δxyl values representative for peak
RWU. Specifically, the height of sampling is set at 1.3 m, which
corresponds to the general practice of sampling trees at breast
height. Subsequently, we define the sampling time by the moment
the δxyl–values that correspond to the plant’s peak water uptake of
the plant passes the 1.3 m sampling height, which depends on the
plant’s sap flow velocity.

Scenario D: Variable range restriction of biophysical plant
traits. Knowledge of natural variance in plant-specific input
variables can be used to restrict the model. In practice this can
be done via direct in situ measurement or through literature
information. In this scenario, we consider the sapwood area
(ASAPWOOD), the lumen fraction (LF), the effective root radial
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conductivity (kR) and the instantaneous sap flow (SF) known
to a much better degree allowing restriction of their range and
distribution (provided in Table 1 and Supplementary Table 2).

Bias in the β̂ was calculated as βtrue− β̂
βtrue

. We calculated the
bias for different sample sizes (CSYN with 5, 25 and 50 samples)
and all scenarios. Per scenario and sample size, we randomly
assign a βtrue, inversely estimate β̂ and calculate bias for 500
independent simulations per scenario (with q = 250). The latter
reveals which combination of sample size and set of variable
restrictions (physical, biological, or sampling) yields the largest
considerable estimation accuracy improvement.

Power Analysis
A power analysis quantifies the ability to distinguish between
plant groups with different relative AR−profiles (as determined
by β). Here we generate two sets of synthetic δxyl values
which correspond to distinct plant groups which have similar
χ, but differ in β. By inverse modeling, we computed the
corresponding β̂1 and β̂2 via the inverse model approach as it
would be done in actual study conditions. The power analysis
consists of two parts. First, we quantified the minimal detectable
difference (d), being the smallest statistical detectable difference
between groups for each scenario. Here, d is the difference in
β̂1 and β̂2where the mean of one conditional density probability
distributions P(δxyl|β,χ) is outside the 95% quantile of the other.
Hence, we generated P(δxyl |̂β1,χ) and P(δxyl |̂β2,χ) for each
scenario as described above (see section “Likelihood and Model
Optimization”). Secondly, we calculated how often a significant
difference would be detected for a different combination of β

values under each scenario. We maintained the standard power
level of 0.80 as a validation level for different sample sizes
(i.e., 5, 25, and 50).

Case Study: Estimation of the Generic
Rooting Depths for Trees and Lianas in
French Guiana
In the case study, we examine two growth forms, lianas and
trees, that strongly differ in traits that could bias RWU depth
estimation, i.e., hydraulic properties and sap flow dynamics
(Chen et al., 2015). We also evaluate differences in sampling
strategy where a standard approach is compared to a setup
where 9S profiles were measured in Laussat, French Guiana, in
2017 (Supplementary Figures 3, 4). The two setups allow us to
quantify the impact of different degrees of parameter restriction
in the inverse model procedure.

Sampling Strategy Field Data
Setup A applies a standard setup that ignores soil properties,
e.g., 9S profile, and plant physiological processes that increase
variance in δxyl. The latter is similar to the sampling strategy
applied in De Deurwaerder et al. (2018). This standard method
ignores uncertainty in the biophysical variables and uncertainty
introduced by sampling. For instance, stem cores were taken at
breast height for trees, while for lianas, sampling was done at
various heights, which depended on branch accessibility for the
climber. Sampling at different heights requires correction for the

expected lag in transport (see Box 1), and not correcting for
sampling height can lead to underestimation of uncertainty (De
Deurwaerder et al., 2020). Here, insights in sap flow velocities
and related biophysical variables (i.e., lumen area and root
radial conductivity) would govern insights in daily variance
in plant water potentials. The latter drives RWU dynamics,
hence the incoming mixture of isotope compositions of tapped
soil water sources. Such sap flow measurements would also
support the characterization of the transportation lag essential
for correctly matching δxyl with the driving abiotic conditions at
the time of uptake. Hence, we expect that ignoring unmeasured
biophysical variables and the sampling design can lead to an
underestimation of the error in mean δxyl compared to using the
inverse SWIFT method.

Setup B differs from A in that representative 9S profiles were
obtained from soil water potential sensors installed at the Paracou
field station (French Guiana, period 15/09-15/10 2017, 3 setups of
MPS-6 dielectric water potential sensors, Decagon Devices, Inc.
Washington, United States). Given its similarities in edaphic and
environmental conditions, the in situ 9S monitored in Paracou
is considered representative for the Laussat study site. Pooling all
the data per monitoring depth (i.e., 15, 30, 45, 60, and 90 cm)
provided 9S averages and variance, allowing the construction of
a representative9S profile for inverse SWIFT.

For both setups A and B, we estimated the uncertainty in
mean δxyl values, tested whether significant differences were
observed between lianas and trees which informs RWU depth
and evaluated the influence of improved monitoring to restrict
the unknown parameter space of our inverse model. In line with
De Deurwaerder et al. (2018), we assume more inter- than intra
growth form differences in rooting distributions. All samples
were therefore clustered according to their growth form, and
model parameterization was guided by growth form specific
empirical data from literature. Further details on the study
site, sampling strategy and extraction protocols are provided in
Supplementary Appendix C.

Applying the Inverse Model
In both case study setups, we consider a moderately constrained
version where various biophysical SWIFT input variables
are obtained by reasoned assumptions from literature
and measurements collected under similar conditions
(Supplementary Table 3). In Supplementary Appendices B–D,
we supply descriptions of the dual-isotope plots (Supplementary
Figures 3, 4), applied data collection and processing which
account for the observed δ2H offset (after Barbeta et al., 2019),
as well as detailed information concerning datasets used for
inverse SWIFT parameterization of both setups (Supplementary
Table 3). This case study is restricted to clay plots as no
representative9S data is available for sand plots needed to enable
qualitative assessment of β. The lack of a 9S profile obscures
the link between absorbing root surfaces distribution and the
water uptake activity and rates per soil layer, hence imposing a
bias in β̂ which we are unable to quantify. Finally, the inverse
SWIFT approach was performed for 10 independent iterations
to quantify bias, where the average of all iterations represents the
generic β̂ of the studied liana and tree communities.
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RESULTS

Model Simulation With Synthetic Field
Data
The minima of log-likelihood profiles for each simulation showed
a β̂ close to βtrue. Robust and unbiased β̂ will require some
restrictions in the variable ranges and measurement uncertainty.
In most cases, simulations show that log-likelihood curves tend
to be flatter when little restrictions were applied (Figures 2, 3
and Supplementary Figure 2), implying significant uncertainty.
The log-likelihood curves were generally steeper when soil
heterogeneity (Sc. B) and an optimized sampling strategy (Sc.
C) were considered. Interestingly, an increase in sample size
had only a moderate effect on decreasing uncertainty (Figure 3)
compared to applying other restrictions (Figures 2, 3 and
Supplementary Figure 2), indicating that effort in reducing
uncertainty in biophysical variables should be a priority. Bias
was greatest with no variable range restrictions (scenario A),
resulting in underestimation compared to βtrue (Figure 3),
since the generated P(δxyl|β,χ) were skewed to more negative
signatures (Figure 4B). The peak of P(δxyl|β,χ) narrows with
increased scenario restrictions resulting in an improved ability
to distinguish different datasets (Figure 4). Restriction of the
soil heterogeneity reduced the width of P(δxyl|β,χ), albeit
a distinct tail toward more depleted isotope compositions
remained (Figure 4B). An optimized sampling strategy overcame
this skewness (Figure 4C) and hence provided an improved β̂

which was no longer biased toward overestimation. As expected,
the greatest restriction of the biophysical plant variables (Sc. D)

yielded the lowest bias, although improvements from scenario C
were modest (Figures 2–4).

The power analysis showed that the minimal detectable
difference in β-values increased as plants became shallower
rooted (Figure 5, see example in panel C), allocating most of
their absorbing root surface in the upper soil layers (i.e., when
β of the focal plant is lower). A larger difference in β, or more
variable range restrictions, will be needed when studying shallow-
rooted plants. A significant difference in the average δxyl can be
detected earlier when plants are more deeply rooted (larger β).
In all cases, increased sample size resulted in additional power,
but the greatest improvement was obtained by restricting the
parameter space with prior knowledge, measurements, or study
design (Figure 5).

Practical Case Study
We observed a shallower shape of the absorbing root surfaces
distribution, i.e., smaller β̂, for lianas (0.657, i.e., half of AR
in the upper 2 cm soil layer) than for their co-occurring trees
(0.954, i.e., half of AR in the upper 15 cm soil layer) (Figure 6;
parameterization Supplementary Table 3). However, as setup A
ignored all biophysical parameters, uncertainty in the estimates is
much larger and showed a non-robust difference between lianas
and trees (Figure 6A and Table 2). This considerable uncertainty
resulted from the poor characterization of 9S profile. Applying
inverse SWIFT for scenario B, with field measurements of the9S,
resulted in a much more conspicuously difference in mean δ2H
for trees and lianas and a substantial reduction in uncertainty,
i.e., an uncertainty range improvement of ∼ 4.0 (Figure 6 and

FIGURE 2 | Example of a Log-likelihood curve (–log L(β
∣∣C,χ)) as a function of the allocation parameter β which defines the exponential vertical decay of the

distribution of absorbing root surface with soil depth, under four different scenarios (Sc. A–D). The best β estimate (̂β), has the minimal log-likelihood values shown
for each scenario in a magnified panel (the true β is indicated by the dashed line, βtrue = 0.966). This figure represents a sample size (N) of 50 individuals.
Supplementary Figures 2A,B shows similar likelihood profiles for smaller sample sizes. Sc. A: No restrictions are considered. Sc. B: Restriction imposed on the
physical variables, i.e., the soil heterogeneity. Sc. C: Restriction of both the physical variables and the sampling strategy. Sc. D: Full restriction, thus considering an
additional restriction on the biological plant-specific variables. More details in the main text and the applied parameter restriction for each scenario are given in
Supplementary Table 2 and Table 1.
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FIGURE 3 | Boxplots showing the expected bias in β estimation (̂β) for four theoretical scenarios, bias decreases when key biophysical parameters (χ) are known or
when the sample size increases. Sc. A: No variable range restrictions are considered. Sc. B: Restriction imposed on the physical variables, i.e., the soil heterogeneity.
Sc. C: Restriction of both the physical variables and the sampling strategy. Sc. D: Full restriction, thus considering an additional restriction on the biological
plant-specific variables. Different boxplots’ colors show the considered sample size (5: yellow, 25: blue, 50: red). Boxplots show Q25 - 1.5 IQR, Q25, Q50, Q75 and
Q75 + 1.5 IQR values, with IQR the interquartile range. Outliers are provided as gray dots.

Table 2). The latter highlights the uncertainty underestimation
by De Deurwaerder et al. (2018), which used a standard approach
due to unmeasured biophysical parameters.

DISCUSSION

This study introduces a parametric method to estimate AR with
stable isotope data. The main benefit of the inverse SWIFT
approach is that it provides a more realistic quantification of
uncertainty, as well as improved accuracy (Figure 3). Simulations
suggest that β̂ will likely be systematically overestimated
and uncertainty considerably underestimated when ignoring
field conditions. Both uncertainty and estimation bias can be
significantly reduced by (1) improved characterization of soil
heterogeneity (i.e., by accurate characterization of9S and δSoil) in
combination with (2) optimized sampling that accounts for RWU
and sap flow dynamics (De Deurwaerder et al., 2020). The former
implies a study setup that monitors δSoil and 9S in different soil
layers and locations, and our simulation suggest that this should
be prioritized above increasing the number of δxyl samples. The
latter involves the application of a study design where sampling
targets the δxyl corresponding to peak RWU, which results in a
more pronounced V-shaped log-likelihood curve (Figure 2), i.e.,
less skewness in P(δxyl|β,χ) and hence far less uncertainty.

Case Study Findings
De Deurwaerder et al. (2018) reported significantly enriched
δxyl for lianas compared to co-occurring trees during the dry
season in Paracou (French Guiana) which suggests shallower root
systems for lianas (as also shown elsewhere: Johnson et al., 2013;
Carvalho et al., 2016; Smith-Martin et al., 2019, 2020). However,
De Deurwaerder et al. (2018) approach ignored soil properties
and many plant physiological processes that increase variance in
δxyl. As our case study for Laussat shows, the lack of relevant
biophysical information results in underestimating uncertainty
in the mean δxyl. The latter implies that the findings of De
Deurwaerder et al. (2018) can be explained by factors other than
rooting depth, and should in hindsight have been interpreted
with more caution than initially reported. Next, we applied an
improved sampling setup in Laussat with a better representation
of 9S, which resulted in a strong drop in uncertainty and
while still suggesting that a shallower absorbing root surface
distribution for lianas is required to explain the differences in δxyl
at least when only considering the confounders included in the
current model (see “Recommendations and Future Directions”
below). The results of these case study are also in line with our
power analysis (Figure 5), which show that better quantification
of9S should yield an improved ability to detect robust differences
between these two growth forms. This highlights the importance
of optimizing data collection and sampling strategy.
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FIGURE 4 | Representation of the simulated conditional probability distribution [i.e., P(δxyl |β,χ)] of xylem water isotope composition (δxyl ) with two distinct profiles in
absorbing root surface distribution, i.e., β = 0.94 (•) and β = 0.96 (•). Each point represents an individual δxyl sample generated by the SWIFT model. Different panels
(A–D) show the results for P(δxyl |β,χ) under different theoretical scenarios - Sc. A: No variable range restrictions are considered. Sc. B: Restriction imposed on the
physical variables, i.e., the soil heterogeneity. Sc. C: Restriction of both the physical variables and the sampling strategy. Sc. D: Full restriction, thus considering an
additional restriction on the biological plant-specific variables. Shaded colored probability distributions in panel (B–D) enable comparison with the P(δxyl |β,χ) results
of the preceding scenario output. P(δxyl |β,χ) per isotope composition, i.e., δ2H and δ18O, are displayed on the panel sides in the respective color of their β.

Recommendations and Future Directions
De Deurwaerder et al. (2020) showed that many biophysical
variables could contribute to the intra-individual variance
in δxyl. In the present study, we discussed how a power-
analysis using mechanistic plant hydrological models could help
optimize study designs and help restrict confounding parameters
by identifying the most important biophysical variables to
monitor. The latter could be invaluable to optimize sample
sizes to maximize the efficient use of labor, resources, and

time. Our simulations and analysis suggest that monitoring
of soil heterogeneity (i.e., 9S, δ18OS, and δ2HS profiles) and
sap flow dynamics contribute to increased power in the
detection of differences between plants in their distribution of
absorbing root surfaces (AR), especially when targeted sample
sizes are small.

The use of stable water isotopes offers a scalable, time
and labor efficient alternative for root excavation. When
this is combined with models such as inverse SWIFT,
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FIGURE 5 | The power analysis shows the combinations of two allocation parameters that define the exponential vertical decay of the distribution of absorbing root
surface with soil depth (β) of two independent datasets for a given sample size N, required to detect significant differences. Regions bounded by lines are
non-significant (at the 95% level). The different colors correspond to four scenarios, as described in the main text and Figure 2. Panel (A–C), respectively show
power analysis for sample sizes of 5, 25, and 50 samples. The level of confidence of finding significant differences, i.e., the power, is set at 0.8. An example is
provided in (C) for a study case with β1 = 0.96, N = 50 and no restrictions (Sc A.). Significant differences can be expected with a power of 0.8 when the compared
species has β-values outside the delineated range of both obtained β2-values.

we show that the AR (as defined by β) can be assessed
indirectly with high accuracy and power. This technique
is not only unique in its ability to simultaneously assess
AR and RWU; but its less intrusive nature also supports
repetitive sampling to study temporal dynamics. However,
intra-individual variance in δxyl may be impacted by
physiological plant processes or soil properties currently
not considered. The robustness of the inverse approaches
such as the one used here might therefore benefit from
further improvements. The latter will require applying both
(i) a more realistic modeling and improved theory; and
(ii) more experimental and empirical work that monitors
the impact of relevant physiological plant processes or soil
properties on variance in δxyl. Essential considerations include
temporal and spatial soil dynamics, fractionation at the root
level, and storage tissue and phloem enrichment (see also
De Deurwaerder et al., 2020).

Inverse SWIFT provides a robust tool to estimate β for plants
which AR approximates a power-law distribution. The latter is
a basic representation of root systems in the current SWIFT
model. A promising starting point for improvement would be the
representation of roots to include more details as in models such
as R-SWMS (Javaux et al., 2008) or SPACSYS (Wu et al., 2007).
Such detail may be required to account for temporal and spatial
soil and root dynamics properly, and in extension their impact
on δxyl. Moreover, such approaches would support an improved
representation of the flow path length within the rooting system
allowing a more realistic propagation of isotopic composition
from soil to the stem base (Seeger and Weiler, 2021).

The implementation of mycorrhizal colonization as an
integral component of the water uptake process may present
an additional perspective for future model improvement. While
their direct contribution to RWU remains unclear (Ruth
et al., 2011), various studies have highlighted an increased
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FIGURE 6 | Dual isotope plot representation of the xylem water isotope compositions (δxyl ) of trees (Ctree,•) and lianas (Cliana,•) obtained in Laussat, French Guiana,
in 2017. Setup (A) Study setup which ignored restriction in soil water potential measurements, i.e., 9S and Setup (B) Study setup with a more superior
characterization of 9S. Mean ± 2x standard error of simulated δxyl provided for the mean β̂ of 10 independent optimization assessments (i.e., P(δxyl |̂β,χ)), provided

for trees (CSyn.t ree, ) and lianas (CSyn.l iana, ). Corresponding convex hulls shows the pooled simulated δxyl range for all 10 independent optimizations. Applied
parameterization is provided in Supplementary Table 3. Mean optimized β̂ values are provided in respective colors. Related standard error confidence intervals are
provided in Table 2.

root hydraulic conductivity because of mycorrhizal colonization
(Gianinazzi-Pearson and Gianinazzi, 1983; Augé, 2001; Aroca
et al., 2007). Hence, as long as mycorrhizal colonization is

TABLE 2 | The standard error confidence intervals (i.e., 2.5 and 97.5 percentiles)
and corresponding mean β̂ (±1SD) of inverse SWIFT simulated conditional density
probability distributions, i.e., P(δxyl |̂β,χ), of xylem water isotope composition of
lianas and trees for Laussat, French Guiana.

Growth Setup A Setup B

form Non-restricted Restricted

δ2H Liana [−20.61; −0.42]
∣∣∣∣ ns [−7.78; −1.84]

∣∣∣∣ ∗Tree [−21.25; −4.15] [−15.64; −9.22]

δ18O Liana [−3.25; −0.65]
∣∣∣∣ ns [−1.64; −0.86]

∣∣∣∣ ∗Tree [−3.38; −1.17] [−2.63; −1.86]

β̂
Liana 0.792 ± 0.07

∣∣∣∣ ns 0.657 ± 0.03
∣∣∣∣ ∗Tree 0.901 ± 0.03 0.954 ± 0.04

Setups differ in considered restriction in soil water potential gradients (9S).
Setup A: ignores restriction in 9S. Setup B: improved characterization of 9S.
Parameterization of the inverse SWIFT procedure is provided in Supplementary
Table 3. Significant (*) and non-significant (ns) differences are indicated.

relatively uniformly distributed over the rooting system, the
impact of mycorrhizae on the inverse SWIFT assessment can
be resolved indirectly by altering kR. However, inverse SWIFT
may become prone to biased assessment when colonization
is not uniform and the proportional contribution of water
influx via mycorrhizae is substantial. Indeed, future endeavors
to implement a more dynamic AR and which can account for
mycorrhizal colonization are encouraged.

Besides, many unknowns hamper model development. For
instance, the extent to which fractionation during root water
uptake or within the plant arises needs to be quantified before
implementation. Here, root membrane (Lin and Sternberg,
1993; Zhao et al., 2016; Vargas et al., 2017) and mycorrhizal
fractionation (Poca et al., 2019) present pathways that may
introduce additional uncertainty. Also, stable water isotopes
studies generally assume no alteration in δxyl once contained
within the plant’s conduit system. We encourage evaluation of
this assumption, as δxyl enrichment via storage tissue or phloem
is not unreasonable (Barbeta et al., 2020; Knighton et al., 2020),
which would pose additional model interpretation complexities.
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CONCLUSION

Root excavation can only provide a snapshot, a one-time-only
measure due to its destructive nature. A stable water isotopes
approach is advantageous for upscaling root attributes in space
and time. Stable water isotope approaches can be applied over
a wide range of edaphic and environmental conditions (Zhao
et al., 2016). New developments in high temporal resolution
monitoring of xylem water isotope composition would enable
quantification of absorbing root surfaces distributions over
time. This all can provide invaluable insights for understanding
drought strategy and water competition among different plant
species. However, this exciting prospect is only possible when
techniques are unbiased under different edaphic or physiological
conditions between plant species and sites. Our work here
highlights a key role for mechanistic inverse plant model to
help guide the research agenda for the critical zone and water
stable isotope work.
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