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Microbial decomposers face large stoichiometric imbalances when feeding on nutrient-
poor plant residues. To meet the challenges of nutrient limitation, microorganisms
might: (i) allocate less carbon (C) to growth vs. respiration or excretion (i.e., flexible
C-use efficiency, CUE), (ii) produce extracellular enzymes to target compounds that
supply the most limiting element, (iii) modify their cellular composition according to
the external nutrient availability, and (iv) preferentially retain nutrients at senescence.
These four resource use modes can have different consequences on the litter C
and nitrogen (N) dynamics–modes that selectively remove C from the system can
reduce C storage in soil, whereas modes that delay C mineralization and increase
internal N recycling could promote storage of C and N. Since we do not know which
modes are dominant in litter decomposers, we cannot predict the fate of C and
N released from plant residues, in particular under conditions of microbial nutrient
limitation. To address this question, we developed a process-based model of litter
decomposition in which these four resource use modes were implemented. We then
parameterized the model using ∼80 litter decomposition datasets spanning a broad
range of litter qualities. The calibrated model variants were able to capture most of
the variability in litter C, N, and lignin fractions during decomposition regardless of
which modes were included. This suggests that different modes can lead to similar
litter decomposition trajectories (thanks to the multiple alternative resource acquisition
pathways), and that identification of dominant modes is not possible using “standard”
litter decomposition data (an equifinality problem). Our results thus point to the need of
exploring microbial adaptations to nutrient limitation with empirical estimates of microbial
traits and to develop models flexible enough to consider a range of hypothesized
microbial responses.

Keywords: nitrogen limitation, litter decomposition, microbial model, carbon use efficiency, C:N ratio, microbial
stoichiometry, extracellular enzymes

INTRODUCTION

The products of litter decomposition represent the first step toward long-term soil organic carbon
(C) stabilization (Berg and McClaugherty, 2003; Cotrufo et al., 2013), but decomposing nutrient
poor and/or chemically recalcitrant litter poses challenges for microorganisms. First, microbial
decomposers may not be able to easily obtain C and nutrients in optimal ratios for biomass and
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metabolism (Mooshammer et al., 2014). Second, access to
energetically or nutritionally useful compounds can be hindered
when these compounds are protected by recalcitrant ones (Talbot
and Treseder, 2012). The adaptations of decomposers to face
these challenges affect rates of litter decomposition and ultimately
organic matter stabilization.

The first challenge is imposed by stoichiometric imbalances
between litter and decomposers, which decomposers can
confront by four different modes of resource use: (i) flexible
C-use efficiency (CUE), (ii) synthesis of extra-cellular enzymes
to target the most limiting element (selective enzymes), (iii)
adjustment of microbial cellular composition (plastic microbial
C:N), and (iv) by retaining limiting resources during senescence
(nutrient retention). There is empirical support for the first
mode–decomposers might become less efficient in converting
C taken up to biomass when nutrients are scarce (i.e., lower
CUE) (Mooshammer et al., 2014; Manzoni et al., 2017). If
microbial CUE is lower when nutrients are limiting, it is possible
that decomposition continues, but more C is mineralized or
excreted in soluble and labile forms (Hessen and Anderson,
2008; Spohn, 2015). Preferential synthesis of specific extracellular
enzymes can occur, especially when addition of one element
triggers production of enzymes to mine another element from
organic matter (Carreiro et al., 2000; Mooshammer et al.,
2014). The potential consequence of decoupling of C and
nutrient acquisition is that some compounds rich in the
least limiting element (C in litter) can be left behind during
decomposition and the overall rate of decomposition decreases
under nutrient limitation (Boberg et al., 2008). Microbial
cellular composition can be changed when facing nutrient
limitation (Camenzind et al., 2021), but empirical evidence
points to relatively homeostatic behavior (i.e., stable element
ratios) at the microbial community level when considering
nitrogen (N) as a limiting factor (Manzoni et al., 2010;
Fanin et al., 2013). Finally, microorganisms can retain the
most limiting resource more efficiently, and reduce losses of
limiting resources in necromass or extracellular products (Spohn,
2016; Spohn and Widdig, 2017; Camenzind et al., 2021).
Therefore, depending on the net effect of these adaptations,
litter with low nutrient contents may promote or reduce
C stabilization.

The second challenge is imposed by the presence of
recalcitrant compounds that impede access to more useful
and metabolically valuable ones. Energy-rich hydrolysable
compounds, such as cellulose, or nutrient containing
compounds, such as proteins, are partly chemically cross-
linked to, or physically protected by, recalcitrant compounds,
such as tannins, lignins or melanins, which need to be
degraded by oxidative mechanisms for microorganisms to
access the more labile, hydrolysable compounds (Talbot and
Treseder, 2012; Baskaran et al., 2019). High lignin content
is known to decrease decomposition rates both across litter
types (Aerts, 1997) and among litters from genotypes of
the same species with variable lignin content (Talbot and
Treseder, 2012). Notably, there are also major “hidden”
metabolic costs associated with oxidation of recalcitrant
compounds (Shimizu et al., 2005), potentially associated

with hydrogen peroxide production and amelioration of
oxidative stress. Thus, decomposing recalcitrant compounds
requires expending energy that could otherwise be
invested in growth.

Quantifying the combined influence of these different
adaptations on C stocks and dynamics is complicated
because they affect C and nutrient dynamics throughout
the decomposition process–during enzymatic depolymerization,
when compounds are metabolized, when resources are converted
into biomass, and during recycling at senescence. Process-
based models are useful tools to track C and nutrients as
they are cycled during decomposition, and to assess the
complex consequences of these microbial resource use modes.
Indeed, several models have been proposed to describe these
processes, but they have not been integrated into a fully
coherent framework.

In models, the first challenge (stoichiometric imbalances) is
typically dealt with by imposing stoichiometric constraints in
the equations linking C and nutrient flows. Flexible CUE has
been implemented in some models, generally as a C-overflow
mechanism in which “redundant” C is disposed of via respiration
(Schimel and Weintraub, 2003; Wutzler et al., 2017), but also as
an empirically-based function of nutrient availability (Campbell
et al., 2016; Manzoni, 2017; Zhang et al., 2018). In models that
include extracellular enzymes, selective production of different
enzymes is generally constrained so that the total enzyme
synthesis is constant, while the proportion of enzymes for
degrading C-rich or nutrient-rich compounds can be varied
(Moorhead et al., 2012; Averill, 2014; Wutzler et al., 2017).
More complex models allow dynamic synthesis of different
enzymes to create a balanced resource supply to the decomposers
(Sistla et al., 2014). Some models also allow for phenotypic
plasticity in microbial C:N ratio, assuming that microbial C:N
increases with decreasing N availability (McGill et al., 1981;
Parton et al., 1993; Sistla et al., 2014; Fatichi et al., 2019). However,
most models impose strict homeostasis (constant C:N), which
constrains microbial proliferation and decomposition under
nutrient limitation (Moorhead and Sinsabaugh, 2006; Manzoni
and Porporato, 2009; Zhang et al., 2018). We are not aware of
modeling approaches in which nutrient retention at senescence
can be adjusted.

Historically, decomposition models have focused on the
second challenge, characterizing litter chemical properties in
terms of different turnover times for each C compartment (Liski
et al., 2005; Manzoni and Porporato, 2009). While most models
assume independent decomposition in each compartment, some
describe interactions between recalcitrant and labile compounds,
including inhibition of hydrolizable C decomposition when
the content of recalcitrant compounds is high (Moorhead and
Sinsabaugh, 2006; Moorhead et al., 2013; Campbell et al.,
2016; Fatichi et al., 2019). In contrast, a recent continuous
quality model describes in a mechanistic way the release of
cellulose from the lignin matrix (Sainte-Marie et al., 2021). These
models, however, are generally complex and require estimation
of numerous parameters (except for the simple parameterization
in Moorhead et al., 2013). Moreover, as far as we know, no
attempt has been made to describe “hidden” metabolic costs

Frontiers in Forests and Global Change | www.frontiersin.org 2 June 2021 | Volume 4 | Article 686945

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-686945 June 8, 2021 Time: 16:13 # 3

Manzoni et al. Microbial Responses to N Limitation

of organic matter decomposition. Therefore, there is a need
for an intermediate complexity model that harmonizes the
current theories on both stoichiometric and chemical controls on
decomposition and requires readily available data for calibration.

Our first goal in this contribution is to fill this gap, specifically
aiming at a formulation where stoichiometric constraints
dictate how the kinetics of decomposition and CUE vary
with substrate quality when microorganisms employ different
adaptation mechanisms, as summarized by the four resource use
modes described above–flexible CUE, selective enzymes, plastic
microbial C:N, and nutrient retention. Second, we ask if we can
exclude putative modes using litter decomposition data. To this
aim, we calibrated four variants of our model (one for each
mode) and assessed their performance in capturing changes in C,
N, and lignin amounts during decomposition of 81 litter types
at four sites (data were obtained from published studies). If a
model variant based on a certain mode cannot capture trends in
the data, that mode could be excluded as a putative microbial
response during litter decomposition. In contrast, adaptations
that, when represented, lead to more accurate modeling of
litter decomposition trajectories would be useful targets for
empirical studies aiming to specifically investigate the underlying
microbial traits.

THEORY AND DATA ANALYSIS

The modeled litter system is composed of three substrate
compartments and one microbial decomposer compartment.
Substrates include a carbohydrate pool (containing only C) and a
protein pool (containing C and N), both degraded by hydrolytic
enzymes, as well as a recalcitrant organic matter pool (containing
C and N), which is only degraded by oxidative mechanisms
and therefore denoted as “oxidizable organic matter” in the
following. Microorganisms are pooled into a single compartment
containing C and N in fixed proportion in all model variants
except mode (iii) implementing a plastic microbial C:N.
Decomposition rates depend on microbial biomass content in the
litter and cellular mortality feeds back into the substrate pools.
This general model structure is based on previous theoretical
work (e.g., Moorhead et al., 2013; Sistla et al., 2014), and the
novelty here is in the way resource use is described and analyzed.
The model schematic is shown in Figure 1A, and a detailed
description of the model equations is provided in the following;
C balance equations and fluxes are presented first (sections
“Carbon Balance Equations,” “Carbon Flow Rates,” and “Effects of
Oxidizable Carbon on Decomposition and Microbial Growth”),
followed by the N balances and related fluxes (sections “Nitrogen
Balance Equations,” “Net Nitrogen Mineralization Under Carbon
Limitation,” and “Partitioning of Necromass Among Organic
Matter Compartments”). Next, the implementation of the
four resource use modes is presented (section “Nitrogen
Limitation: Occurrence and Microbial Responses”; symbols
are defined in Table 1). Finally, model parameterization,
datasets, and numerical solution are described (sections “Model
Parameterization,” “Litter Decomposition Data,” and “Mass
Balance Solution and Parameter Optimization”).

Carbon Balance Equations
All the substrate pools (CH : carbohydrate C, CP: protein C, CO:
oxidizable C) receive inputs from litterfall and root turnover (Ii,
with i = H, P, O) and from microbial necromass. The partitioning
of necromass to each substrate pool is defined by the fraction mi
of the total microbial mortality rate M that reaches that pool; i.e.,
miM (with i = H, P, O and with the constraint mH+mP+mO = 1).
Outputs from the substrate pools are due to decomposition (Di,
with i = H, P, O), although only C from CH and CP can be utilized
by the microorganisms, whereas products of CO decomposition
are expected to be of little utility for microorganisms and lost by
leaching or oxidized extracellularly all the way to CO2. The mass
balances of the organic C pools are written as:

dCH

dt
= IH +mHM-DH, (1)

dCP

dt
= IP +mPM-DP, (2)

dCO

dt
= IO +mOM-DO. (3)

Microorganisms (CB) convert CH and CP to biomass with a
growth efficiency e and die at a rate M,

dCB

dt
= e (DH + DP)−M. (4)

Carbon Flow Rates
The decomposition rates are defined as linear functions of
the substrate being degraded, but they also include non-linear
saturation functions of microbial biomass (similar to reverse
Monod kinetics),

DH = νVHCHgH
(
l
) r

Kr + r
, (5)

DP = VPCPgP
(
l
) r

Kr + r
, (6)

DO = VOCOgO
(
l
) r

Kr + r
, (7)

where Vi (i = H, P, O) are the potential decomposition rates
when biomass and oxidizable C are not limiting factors, gi(l) (with
i = H, P) is the function reducing hydrolytic enzyme activity when
recalcitrant C accumulates (l is the fraction of recalcitrant C in the
organic matter, l = CO/(CH+CP+CO+CB)), gO(l) is the function
describing the up-regulation of oxidative enzyme activity at high
l values, r is the fraction of microbial biomass C in the organic
matter pool (i.e., r = CB/(CH+CP+CO+CB)), and Kr is the half
saturation constant for biomass fraction. As explained in section
“Mode (ii): Selective Enzymes,” the coefficient ν in Eq. 5 decreases
in response to N limitation (i.e., carbohydrate degradation is
decreased if there is not enough N to convert DH into biomass),
but is set to ν = 1 under C limitation.

We do not model extracellular enzyme dynamics explicitly, as
the focus is on relatively long-time scales (monthly to decadal) at
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FIGURE 1 | (A) Model schematic. White and gray boxes represent the modeled carbon (C) and nitrogen (N) compartments; solid and dashed arrows represent C
and N flow rates, respectively (straight arrows refer to input, decomposition, and mineralization rates; curved arrows refer to recycling of microbial residues in the
substrate compartments). (B) Simplified representations of the four resource use modes implemented in the model shown in panel (A) (color-coded as in
Figures 2–6, 9). The text in italic explains the response to N limitation in each mode; the label “Total N” indicates N supply to microbes from both organic substrates
and the inorganic N compartment.

which we can assume that enzyme content is in quasi-equilibrium
and thus adjusts rapidly. This equilibrium assumption implies
that enzyme contents are proportional to synthesis rates and
inversely proportional to the enzyme decay constant; in turn,
if synthesis rates are assumed to scale linearly with microbial
biomass, the actual enzyme content will be also proportional
to biomass (a result of mathematically setting the mass balance
equation for the enzyme pool to zero), allowing us to account
for enzyme activity via CB in the decomposition equations.
Moreover, microbial biomass fraction (i.e., r) rather than biomass
content per se is used in Eqs 5–7. This choice is motivated by
the observation that the colonization of the substrate can lead to
competition among microorganisms for the substrate. When the
biomass fraction increases, both the room for new biomass and
the likelihood that an enzyme hits a substrate molecule decrease.

With this model structure, the microbial growth rate is found
by summing up the contributions of the carbohydrate and
protein compartments,

G = e (DH + DP) . (8)

Similarly, the microbial respiration rate is calculated as,

R = (1− e) (DH + DP) . (9)

Microbial mortality is assumed to follow first-order kinetics;
i.e., M = mCB.

Effects of Oxidizable Carbon on
Decomposition and Microbial Growth
The negative effect of recalcitrant C on the decomposition rates
of the hydrolysable C pools is modeled by reducing the potential
decay constants VH and VP as the content of CO increases. This
effect is implemented through the function gi,

gi
(
l
)
= 1−

(
l

lmax

)α

, (10)

where i = H or P, l is the fraction of recalcitrant C in the
organic matter, lmax is the fraction at which the rate constants of
hydrolysable C degradation become zero and α is an exponent
controlling the curvature of the relation (here assumed equal
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TABLE 1 | Symbol definitions and units.

Symbol Definition Units

CB Microbial biomass C (Eq. 4) gC (initial gC)−1

CH Carbohydrate C (Eq. 1) gC (initial gC)−1

CO Oxidizable C (lignin; Eq. 3) gC (initial gC)−1

CP Protein C (Eq. 2) gC (initial gC)−1

(C:N)B,O C:N ratio of microbial residues entering the oxidizable organic matter compartment, assumed = (C:N)B gC gN−1

(C:N)i C:N ratio of compartment i (with i = H, P, O, B) gC gN−1

(C:N)I,i C:N ratio of inputs to compartment i (with i = P, O) gC gN−1

Di Decomposition rate of Ci (with i = H, P, O; Eqs 5–7) gC (initial gC)−1 y−1

e Microbial growth efficiency (Eq. 12) –

e* Microbial growth efficiency in the absence of costs for oxidation capacity (Eq. 22) –

emax Maximum microbial growth efficiency –

gi (l) Inhibition function for hydrolysable C decay constant (with i = H, P; Eq. 10) –

gO(l) Upregulation function for oxidizable C decay constant (Eq. 11) –

G Microbial growth rate (Eq. 8) gC (initial gC)−1 y−1

Ii C input rate to Ci (with i = H, P, O) gC (initial gC)−1 y−1

Imax Maximum rate of N immobilization gN (initial gC)−1 y−1

Kr Half saturation constant for microbial biomass effect on decomposition rates (Eqs 5–7) –

l Fraction of oxidizable C, l = CO/(CH+CP+CO+CB) –

lmax Maximum fraction of oxidizable C –

m First-order kinetic constant for microbial mortality d−1

mi Fraction of the microbial mortality rate routed to Ci (with i = H, P, O; Eqs 19, 20) –

M Microbial mortality rate gC (initial gC)−1 y−1

Mnet Net N mineralization rate (Eq. 16) gN (initial gC)−1 y−1

NB Microbial biomass N (Eq. 15) gN (initial gC)−1

NO Oxidizable N (Eq. 14) gN (initial gC)−1

NP Protein N (Eq. 13) gN (initial gC)−1

r Fraction of microbial biomass C, r = CB/(CH+CP+CO+CB) –

rO C cost of a unit increase in oxidation capacity y

R Microbial respiration rate (Eq. 9) gC (initial gC)−1 y−1

Vi Potential decomposition rate constants of Ci (with i = H, P, O) y−1

α Exponent in the gi (l) functions (with i = H, P, O) –

η N retention efficiency (Eq. 25) –

ν Coefficient adjusting CH decomposition rate (Eqs 23, 26) –

Note that variables and parameters are normalized by the mass of C or N at the beginning of decomposition (Figure 3).

to two). A similar approach was also proposed by Moorhead
et al. (2013) and Margida et al. (2020). While degradation of
hydrolysable C is inhibited by high values of l, oxidative capacity
is increased according to the function gO,

gO
(
l
)
=

(
l

lmax

)α

. (11)

From a dynamic system perspective, Eqs 10, 11 constrain the
fraction of oxidizable C to be lower or equal to lmax, which
characterizes the final composition of organic matter.

The microbial growth efficiency e is assumed to decrease
with increasing oxidative enzyme capacity VO. This decrease is
primarily ascribed to the C cost of producing hydrogen peroxide,
which is necessary for the functioning of oxidative enzymes and
consumed during oxidative decomposition (Kirk et al., 1976;
Shimizu et al., 2005). Thus, if microorganisms invest more in
oxidation of CO, the cost of such an investment is accounted for

in the reduction of e,

e = e∗ − rOVOgO
(
l
)
, (12)

where the cost of oxidative capacity is denoted by rO, and e∗
is the growth efficiency in the absence of this cost. Note that
oxidative capacity changes with increasing oxidizable C fraction,
so that during decomposition, the associated cost also increases
and e decreases.

Under C limitation, we assumed that e∗ attains a maximum
value set by substrate energy content and the intrinsic catabolic
requirements of the decomposers, e∗ = emax, whereas it can be
decreased under N limitation (section “Mode (i): Flexible C-Use
Efficiency”). Maintenance respiration is not explicitly modeled,
so e is interpreted as an apparent growth efficiency that accounts
for maintenance costs (sensu van Bodegom, 2007), and is thus
mathematically equivalent to the definition of CUE (ratio of
growth over substrate uptake).
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Nitrogen Balance Equations
The N balance equations corresponding to Eqs 2–4 (recall that
the carbohydrate pool contains only C) can be written as,

dNP

dt
=

IP

(C : N)I,P
+

mPM
(C : N)P

−
DP

(C : N)P
, (13)

dNO

dt
=

IO

(C : N)I,O
+ (1− η)

mOM
(C : N)B,O

−
DO

(C : N)O
, (14)

dNB

dt
=

DO

(C : N)O
+

DP

(C : N)P
−(1− η)

M
(C : N)B

−Mnet, (15)

where (C:N)I,P and (C:N)I,O are the C:N ratios of the inputs
to protein and oxidizable organic matter pools, respectively,
(C:N)B,O is the C:N ratio of microbial residues routed to the
oxidizable organic matter compartment, (C:N)i (i = P, O, B)
are the C:N ratios of the organic matter compartments. The
coefficient η in Eqs 14, 15 is the efficiency of N retention at
senescence. It is set to η = 0 under C limitation, when necromass
is produced with the same C:N ratio as the active microbial
biomass (no N retention). However, under N limitation, η

becomes larger than zero, indicating that N is preferentially
retained in the active biomass and that the C:N in necromass
increases (section “Mode (iv): Nutrient Retention”). In Eq. 15, the
net N mineralization rate is denoted by Mnet , and it is assumed
that N associated with oxidizable organic matter can be taken
up by microorganisms (in contrast to CO). This assumption
is equivalent to letting microorganisms “mine” N from the
oxidizable organic matter (Craine et al., 2007).

If (C:N)B is assumed to be time-invariant, microbial N can
be calculated at any time as NB = CB/(C:N)B, making Eq. 15
redundant. Moreover, if we assume that the C:N of inputs to the
protein compartment is equal to (C:N)P, also Eq. 13 becomes
redundant and at any time NP = CP/(C:N)P. This reduces the
total number of ordinary differential equations to solve to five
(C balance Eqs 1–4 and a single N balance Eq. 14). However, if
(C:N)B is allowed to vary under N limitation (section “Mode (iii):
Plastic Microbial Biomass C:N”), six independent equations–
including Eq. 15–are to be solved.

Net Nitrogen Mineralization Under
Carbon Limitation
The net N mineralization rate is calculated to keep the microbial
C:N ratio constant (homeostatic assumption). Imposing a time-
invariant C:N ratio implies setting dCB/dt = (C : N)B dNB/dt,
which yields,

Mnet =
DO

(C : N)O
+

DP

(C : N)P
−

G
(C : N)B

, (16)

where the first two terms on the right-hand side represent the
available N from organic N sources (protein and oxidizable
organic matter compartments), and the third term represents the
microbial demand for N (driven by the microbial growth rate;
Eq. 8). When the supply of organic N is higher than the demand,

net N mineralization ensues and Mnet > 0; in contrast, when
the supply is lower than the demand, Mnet < 0, requiring N to
be immobilized from the inorganic N pool (as long as inorganic
N is available, see section “Nitrogen Limitation: Occurrence and
Microbial Responses”). It is also important to notice that η does
not appear in Eq. 16 because under C limited conditions η = 0
(see section “Mode (iv): Nutrient Retention”).

Partitioning of Necromass Among
Organic Matter Compartments
We calculate how microbial necromass is partitioned among the
substrate compartments (coefficients mi, i = H, P, O) based on
C and N conservation–the microbial C and N loss rates via
microbial mortality must equal the rates of C and N transfer to the
substrate compartments. These mass conservation constraints
can be formulated as,

1 = mH +mP +mO, (17)

1− η

(C : N)B
=

mP

(C : N)P
+

(1− η) mO

(C : N)B,O
. (18)

Note that in Eq. 18, no N from microbial mortality is
transferred to the carbohydrate compartment, which contains
only C. However, N is transferred to the protein compartment
according to the protein C:N ratio, (C:N)P, and to the oxidizable
organic matter compartment based on a specific C:N ratio,
(C:N)B,O, which reflects the chemical composition of the
oxidizable fraction of microbial biomass. These two equations
contain three unspecified coefficients (the mi coefficients) besides
the C:N ratios of the substrate compartments, allowing us to
express two coefficients as a function of the third one. Using
the fraction of oxidizable C in the microbial biomass mO as a
coefficient to be calibrated, the other two coefficients are found
from Eqs 17, 18 as,

mP = (1− η) (C : N)P

[
1

(C : N)B
−

mO

(C : N)B,O

]
, (19)

mH = 1−mO − (1− η) (C : N)P

[
1

(C : N)B
−

mO

(C : N)B,O

]
.

(20)
The effect of nutrient retention can be seen in both equations,

which depend on η. If all N in mortality is retained, no N will
be lost in mortality (η = 1). As a result, no C or N will reach the
protein compartment (mP = 0 if η = 1), and only C will reach
the oxidizable and hydrolysable organic matter compartments
according to the coefficients mH and mO.

Nitrogen Limitation: Occurrence and
Microbial Responses
Four alternative resource use modes are considered when N
becomes limiting (Figure 1B and Table 2): (i) flexible CUE
(section “Mode (i): Flexible C-Use Efficiency”), (ii) selective
enzymes (section “Mode (ii): Selective Enzymes”), (iii) plastic
microbial C:N (section “Mode (iii): Plastic Microbial Biomass
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TABLE 2 | Summary of model implementation of the four resource use modes, and changes of model parameters when microorganisms are N limited (see also
Figure 1B).

Parameter affected Flexible CUE (i) Selective enzymes (ii) Plastic microbial C:N (iii) Nutrient retention (iv)

e* e* < emax (Eq. 22) emax emax emax

ν 1 ν < 1 (Eq. 23) 1 ν < 1 (Eq. 26)

(C:N)B Constant Constant (C:N)B increases Constant

η 0 0 0 η > 0 (Eq. 25)

C:N”), or (iv) nutrient retention (section “Mode (iv): Nutrient
Retention”). These four modes are implemented by constraining
the microbial C:N ratio to a constant value despite inorganic
N sources being insufficient to meet the microbial N demand
in modes (i), (ii), and (iv), or by allowing the microbial C:N
ratio to vary depending on the relative availability of C and N
in mode (iii). In modes (i) and (iii), the coefficient ν is set to
one, whereas under N limitation in modes (ii) and in some cases
also in mode (iv), ν < 1. In modes (i) to (iii), the N retention
efficiency η = 0, indicating that microbial C and N loss rates via
mortality are coupled according to the microbial C:N ratio; when
under N limitation microbial N is retained more efficiently than
C, η can increase.

To proceed, the conditions under which N limitation occurs
must be defined. When the organic N supply to microorganisms
is lower than their N demand, Eq. 16 provides the rate of net N
immobilization that would compensate this imbalance and allow
microorganisms to maintain a constant C:N ratio. This potential
net N immobilization rate, however, may not be met if inorganic
N supply is limited to a lower rate Imax. Thus, when the condition

G
(C : N)B

−
DO

(C : N)O
−

DP

(C : N)P
> Imax, (21)

is verified, microbial growth switches from being C limited to
being N limited.

Mode (i): Flexible C-Use Efficiency
Under N limitation, microbial growth has to be adjusted to
the amounts of N that organic matter decomposition and
inorganic N immobilization (i.e., Imax) supply to the microbial
biomass. Slowing microbial growth by reducing e∗ is one possible
mechanism (recall that G depends on e, Eq. 8). Mathematically,
the value of growth efficiency under N limitation is found by
matching N demand and inorganic N immobilization in Eq. 21
and solving for e∗,

e = (C : N)B
Imax +

DO
(C:N)O

+
DP

(C:N)P

DH + DP
→

e∗ = (C : N)B
Imax +

DO
(C:N)O

+
DP

(C:N)P

DH + DP
+ rOVO. (22)

The value of e∗ defined by Eq. 22 maintains microorganisms
under conditions of C and N co-limitation, thus maximizing
their growth rate for given N availability from organic and
inorganic sources.

Mode (ii): Selective Enzymes
To balance resource uptake when confronted with low N
availability, microorganisms can decrease the synthesis of
hydrolytic enzymes that degrade C-rich carbohydrates, resulting
in lower activity of these enzymes and lower C uptake rate from
the CH pool. In turn, lowering carbohydrate uptake decreases
microbial growth and thus N demand, while maintaining N
supply from NP and NO. The activity of hydrolytic enzymes for
C acquisition is modeled by adjusting the coefficient ν in the
decomposition rate DH (Eq. 5) when N is limiting (otherwise,
ν = 1). Specifically, the value of ν that reduces DH to the point of
balancing N demand and N supply is found as before by equating
N demand and N immobilization in Eq. 21, recalling Eq. 5, and
solving for ν,

DH = (C : N)B
Imax +

DO
(C:N)O

+
DP

(C:N)P

e
− DP →

ν =
(C : N)B

Imax+
DO

(C:N)O
+

DP
(C:N)P

e − DP

VHCHg
(
l
) r

Kr+r
. (23)

While lowering growth efficiency increases respiration at
the expense of C stocks, lowering carbohydrate decomposition
at constant growth efficiency maintains C in the organic
matter substrates; therefore, modes (i) and (ii) have different
consequences at the decomposition system level.

Mode (iii): Plastic Microbial Biomass C:N
As a third alternative to cope with N limitation, we consider the
possibility that microorganisms adjust their cellular composition,
by increasing their C:N ratio to lower N demand. This process
is implemented by allowing the C:N ratio of microbial biomass
to vary as a function of the external N supply (i.e., Imax)
under N limitation. In practice, plasticity is achieved by setting
Mnet = −Imax (N limitation condition) and solving Eqs 4, 15
independently through time. When a higher amount of C is taken
up relative to N early during decomposition, the microbial C:N
increases, while at the end of the N limitation phase, higher N
inputs than required reduce microbial C:N. For simplicity, and
in contrast to other models (e.g., Sistla et al., 2014), we did not
set any upper limit to microbial C:N, as that would have required
switching to another resource use mode.

A plastic microbial biomass C:N ratio has implications for the
definition of net N mineralization and microbial N recycling to
the substrate compartments. In fact, the partition coefficients mP
and mH (Eqs 19, 20) depend on (C:N)B to ensure that all the C
and N flows remain balanced, and (C:N)B under this scenario
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varies through time. Moreover, the effect of higher microbial
C:N ratio under N limitation leads to long-term consequences.
In fact, when N limitation ends, microbial C:N slowly transitions
back to the C:N ratio under C limitation, which will be attained
only at equilibrium.

Mode (iv): Nutrient Retention
Microorganisms can also adapt to low N availability by selectively
retaining N at senescence. This is equivalent to the release of
extracellular polysaccharides upon cell death combined with
reallocation of N to living cells. Selective N retention under N
limitation is modeled by letting the N retention efficiency η

increase from zero under C limitation to a maximum of one.
Assuming conditions of N limitation (i.e., Mnet =−Imax), we can
express the constraint that microbial C:N ratio is time-invariant
(i.e., dCB/dt = (C : N)B dNB/dt) as,

G−M = (C : N)B

[
DO

(C : N)O
+

DP

(C : N)P

− (1− η)
M

(C : N)B
+ Imax

]
(24)

.
Solving for η we find,

η =
G− (C : N)B

[
DO

(C:N)O
+

DP
(C:N)P

+ Imax

]
M

. (25)

With decreasing organic N availability (second term in the
numerator of Eq. 25), η increases. However, at most, an amount
of N per unit time equal to M/(C:N)B can be recycled internally,
corresponding to η = 1. Thus, under strong N limitation, the
N retention mechanism may not suffice to compensate for
stoichiometric imbalances, requiring another mechanism to keep
microbial C:N stable. We assumed that under such conditions the
rate of uptake of carbohydrates is decreased by reducing ν, similar
to mode (ii). To calculate how much ν is reduced in Eq. 5, we set
η = 1 in Eq. 25 and solve for DH first and then for ν,

DH = (C : N)B
Imax +

DO
(C:N)O

+
DP

(C:N)P

e
− DP −

M
e
→

ν =
(C : N)B

Imax+
DO

(C:N)O
+

DP
(C:N)P

e − DP −
M
e

VHCHg
(
l
) r

Kr+r
. (26)

Interestingly, this solution is equivalent to that in Eq. 23 except
for the term M/e that accounts for the fact that no N is allowed
to be lost in mortality. The limit η = 1 (complete N recycling) is
probably not realistic, but relaxing this assumption would only
lead to switching to mode (ii) at lower substrate C:N, thus not
significantly affecting the model outputs.

Model Parameterization
The model was parameterized to describe decomposition of
single leaf litter cohorts, as measured in litterbag studies
(Table 3). In these studies, inputs of organic matter are assumed

negligible (i.e., IH = IP = IO = 0), but the system is open
to CO2 release and exchanges of inorganic N, even though
N immobilization is constrained by external availability. Initial
conditions for all the variables in our model were calculated
based on the measured initial litter chemical composition, which
included total C, total N, and Klason lignin contents (the latter
corresponding to our CO pool), and assuming initial protein and
decomposer biomass C fractions of 0.02 and 0.001, respectively.
We also assumed that (C:N)P = 4 and (C:N)B = 11 (Manzoni et al.,
2017). With this information, we could determine the initial CH
by difference (total C - CO - CB - CP). Next, the initial NP and NB
were calculated as CP and CB divided by their respective C:N, and
finally, the initial NO was found as total N - NP - NB.

It can be argued that decomposer communities are adapted
to grow between substrate limitation and self-regulation. If
this is the case, the half-saturation constant Kr regulating the
microbial fraction effect on decomposition can be estimated as
the long-term mean biomass fraction during decomposition. In
the forest floor or at intermediate stages of decomposition, the
microbial (fungal) fraction is in the order of 0.01 (Berg and
Soderstrom, 1979; Baldrian et al., 2013), whereas in decomposing
litter under laboratory conditions it can range between 0.01
and 0.1 (from nutrient poor to nutrient rich litter) (Voriskova
et al., 2011). Based on the field estimates, we thus selected
Kr = 0.01.

The microbial mortality rate constant is set to m = 0.5 y−1

(based on Figure 3 in Wardle, 1998). This values is lower than
more recent turnover rate estimates for forest soils (Spohn et al.,
2016a), but it captures the long residence time of microbial
C in inactive biomass. The partitioning coefficient mO is the
recalcitrant fraction of microbial biomass, estimated as 20% (5–
15% melanin; see Fernandez and Koide, 2014). The C:N ratio of
these residues is in turn estimated by first assuming that about
25% of microbial necromass N is recalcitrant (Baskaran et al.,

2019); it follows that mO
(C:N)B,O

[
1

(C:N)B

]−1
≈

1
4 → (C : N)B,O ≈ 9.

This estimate is also consistent with reported C:N ratios for
melanins between 6 and 11, though allomelanins, which are
common in fungi, contain no N (Huang et al., 2018). Therefore,
considering the large uncertainties, it seems appropriate to
approximate (C : N)B,O ≈ (C : N)B. As a result, using Eqs 19, 20
with mO ≈ 0.2 yields mP ≈ 0.3 and mH ≈ 0.5. These fractions,
however, may change according to Eqs 19, 20 when (C:N)B is
plastic, as in mode (iii).

The cost of maintaining oxidative enzymes rO is estimated
assuming that microbial growth efficiency is zero when the
oxidizable C fraction reaches the maximum level lmax, leading
to rO = e∗/VO. With this parameterization, microbial growth
rate can be also expressed as e = e∗

[
1− gO

(
l
)]

. This assumption
is conceptually equivalent to considering a “negative” efficiency
(i.e., a C cost) associated with decomposition of oxidizable C,
as in Moorhead et al. (2013).

The value of Imax incorporates any inorganic N input to the
litter system, including atmospheric N deposition, N throughfall
from the canopy, and import of external N through fungal
hyphae. To account for all these inputs, we adopted a data-driven
approach–Imax was estimated for a given site as the mean value
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TABLE 3 | Values of model parameters and their sources.

Parameter Value Source or explanation

(C:N)B,O =(C:N)B Approximation based on Baskaran et al. (2019)

(C:N)P 4 Assumed

(C:N)B 11 Average value for litter decomposers (Manzoni et al., 2017)

emax Calibrated Datasets described in Table 4

Ii 0 Litterbags are assumed to be closed to external inputs of organic compounds

Imax Estimated Estimated for each site as the maximum rate of organic N accumulation in the litterbags incubated at that site

Kr 0.01 Estimated based on measured microbial biomass fractions (Berg and Soderstrom, 1979; Baldrian et al., 2013)

lmax 0.7 Moorhead et al. (2013)

m 0.5 y−1 Wardle (1998)

mO 0.2 Fernandez and Koide (2014)

rO =e*/VO Constraint in order to have zero growth efficiency at l = lmax

VP =VH Assumed

VH Calibrated Datasets described in Table 4

VO Calibrated Datasets described in Table 4

α 2 Assumed

of the maximum measured rate of N accumulation in each litter
type incubated at that site.

Litter Decomposition Data
Litter decomposition data were obtained from four studies
in which mass loss, as well as N and oxidizable C (acid-
insoluble residue, hereafter referred to as lignin) contents were
reported; climatic conditions and litter chemical characteristics
for these studies are summarized in Table 4 (more details
are provided in the original sources). Raw data from the
Malaysian and Japanese sites were provided by Prof. T. Osono;
data from Berg and McClaugherty (1989) are available in the
Depository of Unpublished Data associated with that paper
(CISTI, National Research Council of Canada, Ottawa, Ont.,
Canada KIA OS2). Unless reported in the original sources,
a 50% C content (on a dry mass basis) was assumed.
Moreover, the C fractions and dry weight fractions of oxidizable
material were assumed to be equal (i.e., we assumed similar
C contents in all litter compounds). To calibrate the four
model variants, we normalized total C, total N, and oxidizable
C by the respective values at the beginning of the litterbag
incubations. As a result, all variables (as well as model
predictions and errors) are non-dimensional and presented as
fractions of initial values. Oxidizable C and total N fractions
can be larger than one when net accumulation of these
compounds occurs.

Litter data were screened to detect faster N release compared
to C loss, indicating N leaching, which was not modeled
(following the approach by Manzoni et al., 2010). If the first
value of fraction of remaining N mass was lower than that of C;
i.e., N1/N0 < C1/C0, we assumed that N leaching was occurring.
Additionally, the data was also screened for rapid loss of initial C,
again as a result of leaching (setting a threshold C1/C0 < 0.7). If
either of these two conditions were satisfied, we removed the first
measurement point and renormalized the data starting from the
second point prior to model parameter estimation.

Mass Balance Solution and Parameter
Optimization
To solve the mass balance Eqs 1–4 and 13–15 (for each of
the resource use modes), we used both the solver NDSolve in
Wolfram Mathematica 12.0.0.0, and an in-house developed
script written in MATLAB R2020a based on a finite
difference scheme and Picard iteration. Results from the
two approaches were cross-validated to ensure consistent results.
The Mathematica script was used to produce Figures 2–4
and the MATLAB script for calibration and to produce the
remaining figures. For parameter optimization, we used the
lsqcurvefit function, which finds the best fitted parameter using a
least-square error approach.

After estimating most model parameters from independent
sources (Table 3), the parameters VH , VO, and emax were left
for calibration. These parameters should capture three key and
independent features of the decomposition process: the kinetics
of degradation in the early and late phases of decomposition
(respectively VH and VO) and microbial metabolism (emax).
Therefore, with this choice of calibration parameters, we did
not expect equifinality issues. Moreover, VH was constrained to
be higher than VO, and all parameters were constrained within
meaningful ranges (0–11 y−1 for the rate constants and 0.05–0.8
for emax).

Two calibration approaches were used: a “local calibration”
in which the three parameters were calibrated independently for
each litter type, and a “global calibration” in which they were
calibrated once for all litter types at each of the four sites. Model
variants were calibrated using all available data in each litter
dataset; i.e., the time series of fractions of initial C, N, and lignin.
Our goal was to compare the performance of model variants
based on different assumptions on resource use by decomposers.
Thus, we did not attempt to explain inter-site variability, but
rather analyzed the four sites separately, acknowledging that they
are intrinsically different due to contrasting ecological, edaphic,
and climatic factors.
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Model performance was evaluated with root mean square
error (RMSE) and coefficient of determination (R2), calculated
from all data used for parameter estimation, or only for a
subsection of the data–only the fraction of remaining C, N
or lignin. Comparisons were performed for all litter types and
for only those litter types that exhibited N limitation (where
the resource use modes were activated). Performances can be
compared without accounting for different degrees of freedom
across model variants because they all have three calibration
parameters. When using the local optimization approach, a
Kruskal–Wallis test was performed to assess if the median R2

values for any given site differed among models with different
modes at play (R2 values are not normally distributed), and a
two-way ANOVA was used to compare the mean RMSE among
modes and sites. The Kruskal–Wallis test was also used to
compare the median values of VH , VO, and emax (also in general
not normally distributed) across modes for a given site. Statistical
tests were performed in MATLAB environment.

RESULTS

We start by showing how increasing litter C:N ratio altered
microbial traits (growth efficiency, enzymatic activity for
carbohydrate C degradation, microbial biomass C:N ratio, and
N loss in mortality) when different resource use modes were
implemented (section “Effect of Substrate C:N Ratio on C and
N Fluxes, and Microbial Traits”). Next, the model was applied
to the litter decomposition datasets, and the performance of the
four model variants was compared (section “Model Application
to Litter Decomposition Data”).

Effect of Substrate C:N Ratio on C and N
Fluxes, and Microbial Traits
Figure 2 shows the modeled responses of heterotrophic
respiration, net N mineralization, and microbial traits to changes
in substrate C:N ratio, under different resource use modes. To
facilitate the interpretation of this figure, oxidizable compounds
were not considered (i.e., CO = 0 and g(l) = 1), microbial biomass
was assumed not to be limiting decomposition (Kr = 0), microbial
biomass C was set to a constant value, and the C:N ratio of the
substrate was changed by varying the proportion of hydrolysable
compounds (which do not contain N) and proteins (N-rich).
With this setup, Figure 2 essentially shows how instantaneous C
and N flow rates and kinetic or stoichiometric parameters change
when only substrate C:N is altered.

The four modes caused contrasting patterns in respiration
as the substrate C:N increased, in particular at C:N above 50,
when N limitation occurs (Figure 2A). At higher C:N, respiration
increased when CUE was decreased (mode (i), gray line),
decreased if carbohydrate acquisition was downregulated (modes
(ii) and (iv), black dashed and orange solid lines, respectively),
and did not change with plastic microbial C:N (modes (iii), red
dotted). The decrease in mode (iv) occurs at a slightly higher C:N
than in mode (ii) because carbohydrate acquisition is reduced
only when all N in mortality is internally recycled.
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FIGURE 2 | Effect of four resource use modes (different line styles) for varying substrate C:N ratio on: (A) total microbial respiration rate (normalized by the C-limited
respiration rate), (B) net N mineralization rate, Mnet (normalized by the maximum immobilization rate, Imax ), (C) growth efficiency (Eq. 22), (D) coefficient adjusting CH

decomposition rate, ν (Eq. 23), (E) microbial biomass C:N ratio at equilibrium (obtained by combining Eqs 4, 15), and (F) N retention efficiency, η (Eq. 25). Variations
in substrate C:N are imposed by increasing the fraction of carbohydrates from 2 to 98% (lowest and highest C:N on the abscissa, respectively), assuming no
oxidizable compounds are present; microbial biomass C is fixed to 1% of the total organic C. In panel (B), the dot-dashed blue curve shows the net N mineralization
rate under C limitation. Parameter values are reported in Table 3, except for emax = 0.3, Imax = 0.004 gN (g initial C)−1 y−1, VH = 4 y−1, and M = 0.2 g C (g initial
C)−1 y−1. Note that in most panels several lines overlap, especially under C limitation.

All the modes except (iii) are based on the assumption
that microbial C:N is constant under C limitation, which
implies decreasing net N mineralization as the substrate
C:N increases (Figure 2B). The decrease continues until net
N mineralization turns negative and eventually reaches the
maximum N immobilization rate (Imax) when N becomes
limiting. Further increase in substrate C:N at this point does not
change the realized net N mineralization rate, which remains
constrained by Imax. However, the N demand kept increasing
with substrate C:N, as indicated by the blue dot-dashed line in

Figure 2B. Therefore–by model construction–the response of the
net N mineralization rate to changes in substrate C:N was the
same regardless of which mode was implemented.

Figures 2C–F show how specific traits were affected
by the four modes under N limitation–each mode affects
primarily one trait, while the others remain fixed at their
values under C limitation. Flexible CUE (Eq. 22) caused
a progressively decreasing proportion of acquired C to
be assimilated into biomass as substrate C:N increased
(gray line in Figure 2C), whereas selective enzymes and
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FIGURE 3 | Effect of four resource use modes (different line styles) during decomposition of plant residues: (A) fraction of remaining C (thick lines: total, thin lines:
microbial biomass fraction), (B) fraction of remaining N (thick lines: total, thin lines: microbial biomass fraction), (C) growth efficiency (Eq. 22), (D) coefficient adjusting
CH decomposition rate, ν (Eq. 23), (E) microbial biomass C:N ratio, and (F) N retention efficiency, η (Eq. 25). Initial conditions (normalized by the total initial C):
CH (0) = 0.78, CP (0) = 0.02, CO(0) = 0.20, CS(0) = 10−3; initial N contents are obtained by imposing (C:N)P = 4, (C:N)B = 11, and determining (C:N)O = 41 from a
total litter C:N = 100. Parameter values are as in Figure 2. Note that in most panels several lines overlap, especially under C limitation.

nutrient retention modes caused the rate constant for CH
decomposition to decrease (Eq. 23; black dashed and orange
solid lines in Figure 2D). In mode (iii), the microbial C:N
ratio increased (red dotted line in Figure 2E), and with
the nutrient retention mode, the fraction of N internally
recycled increased under N limitation compared to C
limited conditions (orange solid curve in Figure 2F).
The N retention efficiency increased to a value of one,
indicating that above C:N∼50 all N is retained in the active
biomass. However, this N saving is not enough at C:N > 50,

implying that also decreased carbohydrate acquisition is
required (Figure 2D).

Next, we considered the decomposition trajectories for the
full model (including the oxidizable pool), for each of the four
modes in the case of plant residues with initial C:N = 100
and an initial carbohydrate fraction of nearly 80%. All modes
caused a loss of about 90% of initial C in 5 years (comparable to
conditions in boreal conifer forests) (Figure 3A), and a net N gain
ranging between 25 and 70% over the first 1–2 years, depending
on the mode (Figure 3B). When carbohydrate decomposition
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FIGURE 4 | Partitioning of C among litter components and CO2 (including microbial respiration and the products of CO decomposition) when the initial litter C:N ratio
is varied, for the four resource use modes, 1 year after the start of the incubation: (A) flexible CUE, (B) selective enzymes, (C) plastic microbial C:N ratio, and (D)
nutrient retention (color scheme as in Figures 2, 3). The total litter C:N is varied, but protein and microbial C:N are fixed, so that moving left to right on the abscissa
is equivalent to increasing the initial carbohydrate fraction from 0.3 to 0.7, and decreasing the protein fraction from 0.4 to nearly zero. For clarity, carbohydrate and
protein C are combined into a single C fraction, CH+CP; parameter values and initial conditions are as in Figure 3, except total litter C:N, which is varied along the
abscissa.

was decreased in modes (ii) and (iv), C loss was slower and
N immobilization more prolonged than with the other modes
(black dashed and solid lines in Figures 3A,B). This delayed
N accumulation implies that large microbial biomass fractions
(especially in terms of biomass N) can be achieved with modes
(ii) and (iv) at later stages of decomposition than in mode (i)
and (iii) (thin lines in Figures 3A,B). In turn, high biomass
promotes decomposition, as shown in Figure 3A by the steep
decline in litter C around day 500 (solid orange and dashed black
lines). It is also worth noticing that the fraction of microbial
biomass in the litter peaks at around 10% of initial litter, since the
mortality rate we selected is relatively low (m = 0.5 y−1), causing
accumulation of biomass before necromass is transferred to the
substrate compartments. With biomass C fractions much higher
than 1% (i.e., the value of half saturation constant Kr , Eqs 5–7),
the decomposition rate becomes essentially a linear function of
substrate C content in the intermediate phases of decomposition.

Figures 3C–F illustrate how the traits affected by the four
modes change through time, as the initial N-limited conditions
shift to C limitation after 1–2 years of decomposition. The initial
period of low growth efficiency lasted about 1 year (Figure 3C),
whereas lowered carbohydrate decomposition lasted for about

2 years for mode (ii) and 1.5 years for mode (iv) (Figure 3D).
The microbial C:N increased during the N-limited phase in
mode (iii), but did not recover its initial value even by the end
of the simulation (Figure 3E). Microbial recycling of N was
highest until day 500, and then decreased to zero as conditions
transitioned to C limitation (Figure 3F). Because N retention was
not sufficient to compensate the initial N shortage, mode (iv)
resulted also in lower carbohydrate acquisition, as in mode (ii)
(orange line in Figure 3D).

The four resource use modes caused not only different
temporal changes of the litter C compartments (Figure 3), but
also–at a given time–contrasting C distributions among the
compartments when the initial litter C:N was varied (Figure 4,
showing “snapshots” of C partitioning at year 1 for a range of
initial C:N). At low initial C:N, N was not a limiting factor and
all modes were equivalent (initial C:N < 30), but as the initial
C:N was increased, they began to diverge. When microbial C:N
increased, decomposers acclimated to varying litter C:N and were
not affected by N limitation, leading to a fixed partitioning of
C along the litter C:N gradient (Figure 4C). In contrast, the
other modes resulted in decreasing decomposer biomass and
increasing pools of non-decomposed labile C (carbohydrates and
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proteins) as litter C:N was increased (Figures 4A,B,D). The
reduced loss of labile C is particularly strong when carbohydrate
acquisition was lowered, and was accompanied by a decrease
in respiration (Figures 4B,D; note that CO2 here includes both
microbial respiration and the products of CO decomposition).
In contrast, flexible CUE led to higher respiration at high initial
litter C:N (Figure 4A). In all modes, the fraction of oxidizable
C was relatively stable, because at the time of the “snapshots”
(1 year after the start of the incubation), this pool had not been
significantly degraded yet.

Model Application to Litter
Decomposition Data
Examples of model fitting obtained with the local and global
parameter optimization approaches are shown in Figure 5. As
expected, local optimization allowed a more accurate fitting
of the time series of C, N, and lignin fractions, with similar
model fit for all four resource use modes and for both
litter types selected as examples (top two rows in Figure 5).
When optimizing parameters for all datasets from a given site
together (global optimization), performance overall decreased,
with errors depending on the specific litter type (bottom two
rows in Figure 5). Nevertheless, the general pattern of higher N
immobilization in high C:N litter was correctly predicted.

Across all datasets, local optimization resulted in a range
of parameter values for each site, with increasing VH and
VO from boreal to tropical climates, and highest emax under
temperate conditions (compare groups of bars in Figure 6).
When comparing different modes at a given site, parameter
values were strongly correlated and their median values did not
differ significantly (p > 0.05, compare colors within a group of
bars in Figure 6). The strong correlation of parameter values
between modes is expected because most datasets did not exhibit
N limitation, and all modes are equivalent under C limitation.
Next, we compared parameter values from fitting of litter types
where decomposers were initially N limited, which reduced the
number of litter types-mode combinations to 73 (out of 324 in
total). The temperate and tropical sites exhibited mostly C limited
conditions and were thus excluded from this analysis. As for the
whole dataset, also when selecting the N limited litters, median
parameter values did not differ between modes.

The global optimization resulted in site-averaged parameters
that followed the same patterns as those found with the
local optimization (i.e., higher rate constants at warmer sites),
but locally and globally optimized parameters differed in the
subtropical and tropical sites (compare dots and median values
in Figure 6). At the subtropical site, VH and emax from the
global optimization were lower and higher, respectively, than
most values found with the local optimization. At the tropical
site, VH , VO, and emax from the global optimization were higher,
lower, and lower, respectively, than most values found with the
local optimization.

Similar to the examples in Figure 5, also in general the
model performance was higher when fitting parameters locally
than globally, as indicated by the lower scatter of predicted
vs. observed data points in Figure 7 compared to Figure 8.

With modes (ii) to (iv), the models tended to underestimate
both the initial N immobilization (predicted N fraction lower
than observed) and the later N mineralization (predicted N
fraction higher than observed). None of the model variants
was able to predict the initial accumulation of lignin in some
boreal litter types.

To gain insights into the role of the resource use modes,
we focus now on N limited conditions, as none of the modes
was activated when decomposers were C limited. The overall
model performance for datasets that exhibited N limitation
is summarized in Figure 9A. The median coefficients of
determination for the locally fitted models were above 0.9,
whereas for the globally fitted models they were around 0.7.
Notably, the overall performance was not significantly affected by
which mode was implemented in the local calibration approaches
(compare colors within a group of bars in Figure 9), but mode (iv)
had slightly higher R2 values at both sites. Also when comparing
performances with the global calibration, mode (iv) appeared
marginally superior, followed by model (iii). Performances were
also similar across modes when comparing the RMSE from the
fitting of only one of the three variables we considered (fractions
of remaining C, N, or lignin), as shown in Figures 9B–D.
Predictions of the fraction of remaining C were slightly, but not
significantly better (lower RMSE) when microorganisms were
assumed to have flexible CUE (Figure 9B).

DISCUSSION

Putative Resource Use Modes Emerging
From Earlier Models
In previous works, structurally different models of litter
decomposition were compared, but only rarely have different
approaches of modeling N limitation been contrasted using a
common model platform. In this section, we discuss which
resource use mode (or their combinations) might be occurring
based on these earlier model results.

Nicolardot et al. (2001) treated growth efficiency (mode (i)),
litter decay constant (mode (ii)), and microbial C:N (mode
(iii)) as time-invariant parameters, and estimated them by
fitting their model to data from mixtures of soil and residues
with contrasting chemical properties. They found that growth
efficiency was nearly constant, whereas the litter decay constant
decreased and microbial C:N increased with increasing litter C:N.
However, growth efficiency and microbial biomass C:N ratio are
not independent parameters, as noted by Ågren et al. (2013),
so that fitting both simultaneously might lead to equifinality
issues. Moreover, these parameters were kept constant through
time, thus not allowing the identification of specific microbial
responses during the N limited phase of decomposition. Other
approaches considered dynamic changes in microbial traits
during decomposition, as discussed next.

Manzoni (2017) tested a range of stoichiometric models
predicting the fraction of remaining N as a function of the
fraction of remaining C during decomposition. These models
assumed that microbial growth efficiency was time-invariant
(calibrated to each dataset as in our local optimization approach),
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FIGURE 5 | Examples of model fitting using the local (top two rows) and global (bottom two rows) parameter optimization approaches, applied to each of the four
resource use modes (same line styles as in Figures 2, 3). The fractions of remaining total C, total N, and lignin (CO) are shown in the left, center, and right columns,
respectively. Two litter types with contrasting initial C:N ratio were chosen as examples–one with high initial C:N [Pinus sylvestris, C:N = 132, from Berg and
McClaugherty (1989)], and one with low initial C:N [Pterostyrax hispida, C:N = 14, from Osono and Takeda (2004, 2005)].

that it varied during decomposition (mode (i)), or that both
growth efficiency and microbial C:N ratio varied (a combination
of modes (i) and (iii)). In nutrient poor litter, growth efficiency
was lower and increased more during decomposition compared
to nutrient rich litter, consistent with the hypothesis of flexible

CUE. Including plastic microbial biomass C:N did not alter
the results–growth efficiency still decreased in N poor litter
despite plastic microbial C:N. Notably, among these models, the
simplest version based on time invariant, but locally calibrated
growth efficiency was selected for nearly 60% of the datasets
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FIGURE 6 | Calibrated model parameters, including results from the local (box plots) and global (points) parameter optimization approaches: (A) maximum rate of
hydrolysable C uptake (VH ), (B) maximum rate of oxidizable C uptake (VO), and (C) maximum growth efficiency (emax ). Datasets are grouped by climate (Table 4) and
resource use mode (color coded according to the legend). Each box indicates median and quartiles, and whiskers cover the data range excluding outliers.

according to the Akaike Information Criterion, suggesting
that N limitation (or other associated litter traits, including
chemical recalcitrance and substrate accessibility) might affect
the long-term average CUE, and not only CUE during the initial
phases of decomposition.

Moorhead et al. (2012) derived an equation for the relative
synthesis of enzymes involved in C and N acquisition from an
organic matter compartment that included both elements, and of
enzymes acquiring C from a second, C-only compartment. Their
equation was based on the constraint that microbial resource
acquisition is always stoichiometrically balanced, analogous
to our approach. When allocation of all efforts to enzymes
acquiring both C and N resulted in too low N release, overflow
respiration would ensue (as in Schimel and Weintraub, 2003).

This model thus implements modes (i) and (ii) simultaneously.
Interestingly, however, these two mechanisms were not expressed
simultaneously, because enzyme selection occurred only at low
substrate C:N ratios, while overflow respiration occurred at high
C:N. Building on the model by Moorhead et al. (2012), it was later
proposed that enzyme synthesis could be optimized to maximize
the microbial C uptake rate (Averill, 2014). This assumption led
to different rates of synthesis of C- and N-acquiring enzymes
at low substrate C:N ratios. The assumption of optimal enzyme
synthesis eliminated N losses via mineralization, whereas the
stoichiometric homeostasis allowed N release. Another approach
to modeling enzyme synthesis was recently added in the same
framework by Wutzler et al. (2017). In this approach, enzyme
allocation was proportional to the return on investment in
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FIGURE 7 | Comparison of modeled and observed fractions of remaining total C [left column: (A,D,G,J)], total N [center column: (B,E,H,K)], and lignin (CO) [right
column: (C,F,I,L)] for the four resource use modes (as indicated on the right) when the model parameters were locally fitted. Data points are color coded according
to their source: red from Berg and McClaugherty (1989), green from Osono and Takeda (2004, 2005), gray from Osono (2017), and blue from Hirobe et al. (2004);
the 1:1 line is depicted as a solid gray line.

that enzyme. As a result, the activity of N acquiring enzymes
was elevated and growth efficiency decreased as substrate C:N
increased. Therefore, results from these contributions in general
suggest that selective enzyme synthesis could partly alleviate N
shortage, but that flexible CUE would be necessary under severe
N limitation. Although the concept of “overflow respiration” as
implemented in these models suggests disposal of excessive C, it
seems likely that microbial mechanisms have evolved to ensure
that the additional energy released by respiration is instead used
to intensify N foraging (Craine et al., 2007).

Zhang et al. (2018) compared different variants of the
CENTURY model to assess whether N limitation decreased
CUE (mode (i)), the rate of labile litter decomposition (modes
(ii)), or both. Implementing both modes improved the model
fit, but required more parameters compared to models without

N limitation effects or only flexible CUE. This suggests that
different resource use modes may be at play simultaneously.
This possibility was not tested here because our model structure
requires evaluation of a single mechanism at a time (except for
mode (iv)) to mathematically “close” the problem and determine
how a selected trait varies with N availability. Alternatively,
one could allow for independent variations of several traits as
a function of nutrient availability (Sistla et al., 2014, where
modes (i), (ii), and (iii) are implemented), but at the cost
of additional parameters to estimate via data fitting. Since
even the simplest microbial models can be overparameterized
and exhibit equifinality issues (Marschmann et al., 2019), we
preferred to implement one mechanism at a time and compare
model fitting across our four variants. In fact, even with our
minimal calibration approach–and in contrast with our intuitive
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FIGURE 8 | Comparison of modeled and observed fractions of remaining total C [left column: A,D,G,J], total N [center column: (B,E,H,K)], and lignin (CO) [right
column: C,F,I,L] for the four resource use modes (as indicated on the right) when the model parameters were globally fitted. Data points are color coded according
to their source: red from Berg and McClaugherty (1989), green from Osono and Takeda (2004, 2005), gray from Osono (2017), and blue from Hirobe et al. (2004);
the 1:1 line is depicted as a solid gray line.

expectation–the comparison between local and global parameter
optimization shows that growth efficiency and decomposition
rate constants tend to change in concert and variations in the
former can be compensated by variations in the latter when
minimizing model errors (Figure 6).

Individual-based models have also been used to study
nutrient limitation and its consequences on the overall microbial
community response (e.g., Allison, 2012; Kaiser et al., 2014).
These models consider the interactions of cells belonging to
different microbial groups in small domains, and therefore
study decomposition as an emerging process driven by micro-
scale interactions. Both models mentioned above assume that
microbial cells release C in excess via mineralization, similar to
our flexible CUE mode. The model by Allison (2012) allows some
flexibility in microbial C:N, contrary to the strict homeostasis in

the model by Kaiser et al. (2014). None of these models considers
preferential resorption of N upon senescence. However, both
allow different microbial groups to produce enzymes targeting
different compounds, which leads to selection of microbial
groups with enzymes able to support their growth for given
substrate type and availability. This sorting mechanism in turn
causes changes in community-averaged C:N and CUE that
depend on substrate and time. For example, according to Kaiser
et al. (2014), the community-averaged CUE increases at the
beginning of decomposition (as in our flexible CUE mode
in high C:N litter) and then decreases in the later phases,
but thanks to interactions among microbial groups, after the
initial increase, CUE is insensitive to the initial litter C:N.
This is different from our result that even the long-term CUE
values depend on litter type (as discussed in section “Can
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FIGURE 9 | Summary of model performance for litter datasets in which microorganisms were N limited (only litter from boreal and subtropical sites). Performance is
evaluated by (A) the overall coefficient of determination (R2), and the root mean square errors (RMSE) of model fitting to the fractions of remaining: (B) total C, (C)
total N, and (D) lignin. RMSE values are non-dimensional because errors refer to the fractions of remaining C, N, and lignin. In panel (A), results from both the local
(box plots) and the global (points) parameter optimization approaches are shown for comparison. Performance metrices are grouped by dataset (ordered based on
their climate; Table 4) and resource use modes (color coded according to the legend). Each box indicates median and quartiles, and whiskers cover the data range
excluding outliers.

Any Microbial Resource Use Mode Be Excluded Using Litter
Decomposition Data?”).

Overall, these findings suggest that, depending on the model
structure, different modes may be predicted to co-occur, or that
certain modes might be dominant at low litter C:N (e.g., enzyme
selection) vs. high litter C:N (e.g., flexible CUE). A particular
mode could also emerge from interactions within the microbial
community, as opposed to being imposed during model design.
None of the modes considered in these models, however, could be
excluded as putative microbial mechanisms, which is consistent
with our main result that all are plausible.

Can Any Microbial Resource Use Mode
Be Excluded Using Litter Decomposition
Data?
Based on the consistently high and comparable performance
of the four model variants, all hypothesized mechanisms of
adaptation to N limitation appear to be plausible. This finding
indicates that either all resource use modes are possible (as

alternative modes or occurring simultaneously) or that our
approach does not allow any of them to be ruled out (section “Can
We Use Bulk Chemistry Data to Identify Resource Use Modes?”).

Besides the theoretical evidence discussed in section “Putative
Resource Use Modes Emerging From Earlier Models,” there
is empirical evidence that different modes can be expressed
under nutrient limitation (Mooshammer et al., 2014; Spohn,
2016). Microbial CUE (which is mathematically equivalent to
the apparent growth efficiency in our model) has been shown
to decrease as the bulk substrate C:N ratio increases in soil (Lee
and Schmidt, 2014) and litter (Boberg et al., 2008; Manzoni
et al., 2010; Voriskova et al., 2011; Lashermes et al., 2016;
but see contrasting results in Camenzind et al., 2020). This
trend in CUE is expected if we assume that microbial growth
rate (Manzoni et al., 2017) or C uptake rate (Wutzler et al.,
2017) is maximized along a gradient in nutrient availability.
However, stoichiometric imbalances are not the only drivers of
CUE changes along nutrient availability gradients. For example,
CUE might increase in fertilized soils because of lower energy
costs of N acquisition associated with inhibition of oxidative

Frontiers in Forests and Global Change | www.frontiersin.org 19 June 2021 | Volume 4 | Article 686945

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-686945 June 8, 2021 Time: 16:13 # 20

Manzoni et al. Microbial Responses to N Limitation

enzyme activity (Craine et al., 2007; Spohn et al., 2016b). When
comparing soil with contrasting organic matter C:N ratios,
CUE patterns could also be driven by variation in microbial
community composition rather than by phenotypic responses
to nutrient availability (Soares and Rousk, 2019), suggesting
again that stoichiometric constraints alone do not always explain
CUE variations. Here we showed that flexible CUE allows for
marginally better model fitting to the fraction of remaining C
compared to other adaptations, indicating that this mode is
indeed important.

There is also evidence of selective resource acquisition via
extracellular enzymes. In our implementation of mode (ii), we
assumed that less carbohydrate-degrading enzymes are produced
and thus less C is acquired in N limited conditions. Therefore,
the occurrence of this mode could be verified by evidence of
lower activity of hydrolytic enzymes for C acquisition (e.g., β-
glucosidases) compared to hydrolytic enzymes for N acquisition
(e.g., leucine aminopeptidase). This has been reported, for
example, for grassland soils in North America, where N inputs
decreased leucine aminopeptidase activity by ∼70% (Ramirez
et al., 2012). Similarly, in a 65-year grassland experiment with
multiple levels of N addition in South Africa, N addition
decreased leucine aminopeptidase activity and increased β-
glucosidase activity (Schleuss et al., 2019). The strong increase
in the activities of these two groups of enzymes with increasing
C:N ratio of the dissolved organic matter occurred at a low
(<6) C:N ratio (Schleuss et al., 2019). In contrast to these
studies, there is also evidence of coordinated decreases of
both C and N acquiring enzymes at high C:N (Camenzind
et al., 2020). Overall, this evidence indicates that mode (ii)
can be expected at relatively low C:N ratios, as also predicted
by previous models (section “Putative Resource Use Modes
Emerging From Earlier Models”). Our results do not show
a consistent improvement of any model performance metric
when implementing mode (ii) compared to other modes,
but performances were relatively high, so mode (ii) could
not be excluded.

Similarly, we could not exclude mode (iii), consistent with
evidence of increased microbial C:N ratio of fungal isolates
under nutrient limitation (Camenzind et al., 2021), or at the
community level in the earlier phases of litter decomposition
(Van Meeteren et al., 2007). Other reports, however, indicate
stoichiometric homeostasis at the microbial community level,
despite large variations in substrate C:N ratios (Fanin et al., 2013;
Schleuss et al., 2019). Indeed, the C:N ratio of pure mycelium of
fungi degrading pine needles was not affected by N additions but
varied between fungal species (Boberg et al., 2014), suggesting
that community level C:N could be stabilized by species selection.
It remains to be determined whether the observed homeostasis
in litter and soil communities might be partly an artifact of the
fumigation extraction, which could miss high molecular weight
or non-polar storage compounds that would skew microbial C:N
ratio in ways consistent with mode (iii). We thus expect that
plasticity in microbial biomass C:N ratio could be an important
mechanism to face N limitation, though its role at the community
level, relevant for most biogeochemical models, remains to be
demonstrated empirically.

The proposed mode (iv) has perhaps the least empirical
support, mostly because technical developments have only
recently allowed us to estimate microbial mortality. We describe
nutrient retention relative to C by allowing N to be internally
recycled at senescence. Consistent with this mode, N was
preferentially recycled in growing fungal hyphae, leaving behind
a C enriched less active biomass (Camenzind et al., 2021). The
turnover rate of microbial phosphorus (P) was shown to be
faster in fertilized soils, indicating a relatively higher P retention
when this element was less available (Spohn and Widdig, 2017).
In a cropland soil, C in the microbial biomass had a mean
residence time of∼3 months, while P had a mean residence time
less than half that of C, indicating that C was more efficiently
retained in the microbial biomass than the nutrient (Kouno
et al., 2002). Nutrients can also be recycled via consumption
of the decaying part of the microbial community by the active
part (Capek et al., 2021). When fresh pine litter (high C:N)
was linked to pre-decomposed (low C:N) litter by a common
fungal mycelium, N was transferred from the older N-rich
needles toward the fresh N-poor needles, where fungal biomass
production and decomposition were stimulated (Boberg et al.,
2014). Addition of new litter also decreased fungal biomass in
the pre-decomposed litter, indicating that N limitation induced
biomass recycling. In the same experiment, biomass recycling was
linked to increased CUE, showing that a combination of modes
(i) and (iv) was at play. Moreover, high expression of chitinase
encoding genes has been observed in senescing mycelium of a
wood decomposing fungus, indicating internal recycling of cell-
wall bound N (Karlsson et al., 2016). Interestingly, the model
variant that performed best in the global optimization was based
on mode (iv), suggesting that quantifying microbial mortality
and associated nutrient and C flows as nutrient availability
varies holds promise to improve the predictive capacity of
biogeochemical models.

Can We Use Bulk Chemistry Data to
Identify Resource Use Modes?
As suggested above, it is possible that our approach does not have
the resolution required to dismiss any adaptation mechanism.
Ideally, one could test if a specific mode is at play by directly
measuring the four microbial properties that are affected by
the modes (i.e., CUE, enzyme activity, microbial C:N, and
turnover rate of C vs. other nutrients in microbial biomass)–
model predictions could then be tested against these data. Here
we instead use coarse-resolution, bulk litter chemistry data that
are readily available for litter types ranging from N-rich to
N-poor. These datasets are useful for our purposes only if a
given adaptation leaves a specific signature at a macroscopic (i.e.,
bulk chemistry) level–an indirect test, as often done when model
parameters map onto traits that are not readily measured. Except
for slightly higher performance achieved by mode (iv) (followed
by (iii)) when using a global optimization approach), the four
modes did not result in distinctive features in the predicted
litter chemistry.

It could also be argued that fitting of the three parameters
VH , VO, and emax for each model variant reduces the effect of
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different modes on macroscopic litter chemistry. In fact, a given
mode could have a strong effect on model performance, but
the least square fitting could converge to the same trajectory
as the other modes by adjusting the three free parameters.
The parameter values, however, were not significantly different
across modes even when restricting the comparison to litter
types with N limited decomposers. This suggests that, overall,
the model calibration did not mask effects of the modes on
model performance.

However, it is important to emphasize that in most litter
types, the local optimization yielded low values of emax, which
alone prevent N limitation in the early phases of decomposition.
We thus performed an additional local optimization by not
allowing emax values lower than 0.2 (not shown). As a
result, as expected, N limitation emerged and the resource
use modes were accordingly activated more often, in 131
combinations of litter type, mode and site, out of a total of
324 combinations. However, the model performance declined,
suggesting that low emax values are necessary to obtain a
good fitting (results not shown). This result implies that
long-term adaptations (recall that emax is a time-invariant
parameter) might be as important as short-term responses
to N limitation.

As the mechanisms of microbial adaptation to N limitation
are difficult to deduce indirectly, direct measurements of
microbial traits and how they change between substrates and
throughout different stages of decomposition are needed. Litter
bag experiments combined with metatranscriptomic analyses
of the collective gene expression of communities of litter
decomposers may provide simultaneous information about
relative investments in extracellular enzymes, growth, respiratory
energy production (Barbi et al., 2020) and even autolytic
biomass turnover (Karlsson et al., 2016). Such assays could be
combined with more direct, incubation-based measurements of
growth, turnover, and CUE by isotope labeling (Spohn et al.,
2016b; Spohn and Widdig, 2017; Soares and Rousk, 2019)
and monitoring of the temporal dynamics of enzyme activities
(Sinsabaugh et al., 2002) and chemical pools (Baskaran et al.,
2019). Importantly, for these combined approaches to be useful
to select the dominant adaptations to N limitation, they would
need to be applied both across litter types with varying C:N
and through time.

CONCLUSION

Four modes of microbial adaptation to N limitation were
defined based on existing theories and empirical evidence:
(i) flexible C-use efficiency, (ii) selective enzymes, (iii) plastic
microbial biomass C:N ratio, and (iv) nutrient retention in
the microbial biomass. We set out to assess if some of
these modes are less likely than others to play a role during
early litter decomposition. Based on the performance metrics
of four model variants, each implementing a single mode
and calibrated on litter decomposition data, we could not

decisively dismiss any of the four hypothesized modes–they
all enabled comparably good model fit. Therefore, we suggest
that all strategies are plausible and that direct measurement
of the microbial traits indicative of each mode are necessary
to identify in which conditions a specific adaptation is
particularly relevant or whether different modes of adaptation
occur in concert.
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