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A fraction of rainfall drains to the soil surface down tree stems (as “stemflow”), and
the resulting stemflow waters can be highly enriched with dissolved nutrients due
to prolonged bark contact. To date, stemflow chemistry has been examined mostly
in regards to the external morphology of the bark, while its relationship with bark
anatomy has received little attention. Arguably, this represents a major knowledge
gap, because bark anatomical traits are linked to the storage and transport of
soluble (and insoluble) organic materials, and control the proximity of these materials
to passing stemflow waters. To initiate this line of investigation, here, we examine
bark-water leaching rates for common leachable macronutrient ions (Mg2+, Ca2+,
and K+) across six different tree species with varying bark anatomical traits (four
deciduous broadleaved and two evergreen coniferous species). These different bark
types were subjected to laboratory experiments, including observations of bark anatomy
and soaking experiments. Laboratory-derived estimates of leaching rates for Mg2+,
Ca2+, and K+ were then analyzed alongside bark anatomical traits. Leaching rates
of Mg2+ and Ca2+ appear to be controlled by the thickness of the rhytidome
and periderm; while K+ leaching rates appeared to be driven by the presence of
cellular structures associated with resource storage (parenchyma) and transfer (sieve
cells). Other species-specific results are also identified and discussed. These results
suggest that the anatomical features of bark and the concentration of leachable
macronutrient ions in stemflow are related, and that these relationships may be
important to understand nutrient cycle through the bark. We also conclude that future
work on the mechanisms underlying stemflow solute enrichment should consider
bark anatomy.
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INTRODUCTION

“L’écorce est une fiere travailleuse”
1“The bark is a proud worker” (Fabre, 1867).

The bark, or the outermost part of the tree stem, is the
boundary between the stem and its surrounding environment.
This bark boundary protects the internal stem tissues from
invasion dryness, fire, and severe external temperatures (Rosell
et al., 2014; Pausas, 2015). Bark also plays important roles in
forests as an intermediary between the outside environment
and the inside of the tree, e.g.: hosting lichens and other
corticolous epiphytic life, acting as an exchange site for aerosols
and substances within precipitation, and being a pathway for
rainfall that drains to the surface as stemflow (Van Stan et al.,
2021). Stemflow may also be highly enriched in solutes, resulting
in significant, locally concentrated nutrient inputs (Dovey et al.,
2011; Germer et al., 2012). Past studies suggested that the
amount of stemflow and its solute concentration are strongly
coupled to the traits of the bark over which stemflow must drain
(Levia and Germer, 2015).

Stemflow chemistry can be influenced by bark contact in
several ways. Externally, stemflow can wash off aerosols that were
deposited on the bark surface between storms (Levia et al., 2011).
The amount of materials captured on the bark varies with the
external bark structure–where rough bark on stems, for instance,
has been observed to capture nearly 10 times more particles
(by mass) than the same area of smoother branch bark surfaces
(Xu et al., 2019). There are several studies that have examined
the interactions between stemflow chemistry and bark surface
structure (Levia and Germer, 2015), and this was the topic for
the first part of our research (Oka et al., 2021). Within the bark,
however, there are concentrated intracellular solutions that the
draining stemflow waters may be able to leach (Klemm et al.,
1989). Past work suggests that bark contact may preferentially
increase leaching of NH4

+, K+, NO3
−, SO4

2−, and H+, with
the degree of leaching being dependent on bark structure (André
et al., 2008). As the bark is capable of taking up external waters,
it can also take up solutes (André et al., 2008). The ability for
draining stemflow to leach solutes from the bark may depend
on bark anatomy, but this has not been investigated to our
knowledge. Thus, this manuscript details research that continues
from Oka et al. (2021), examining relationships between bark
external anatomical traits and stemflow chemistry. Oka et al.
(2019, 2021) suggested that Cl− and Na+, which are thought to
be derived from dry deposition on the tree surface, are easily
washed away in the stemflow of smooth bark, while species with
coarsely split bark are more likely to leach cations and organic
matter, especially Mg2+, Ca2+, and K+. The external morphology
of bark makes a significant contribution to the solute composition
and concentration of stemflow, while the thickness and internal
morphology of bark are also expected to affect the mechanisms
of this bark-water solute exchange. Thus, the anatomical point
of view is important for exploring the mechanism of stemflow
chemistry (Levia and Herwitz, 2005; Van Stan et al., 2021).

The purpose of this study is to examine how solute
leaching [focusing on Mg2+, Ca2+, and K+ per the results of

Oka et al. (2021)] relates to bark anatomical differences among
six study tree species in Japan to evaluate bark functions in the
exchange of macronutrient cations with stemflow. To accomplish
this aim, laboratory experiments were designed to observe the
amount, timing, and rates of different solutes leached from the
surface of various types of bark. Anatomical observations of the
bark were also made to gain insight into the possible connections
between bark physiological structures and interspecies solute
leaching differences.

MATERIALS AND METHODS

Target Species
The target species were selected according to their bark
morphology by moderate, roughness, coarse, and with or
without longitudinal tear as following a previous study by Oka
et al. (2021). The smooth and mottled bark surface types was
represented by Clethra barbinervis Sieb. et Zucc.; whereas, the
smooth, lateral bark surface types was represented by Padus
grayana (Maxim.) C. K. Schneid. A moderate bark roughness type
was represented by Magnolia obovata Thunb. Coarse and deep
longitudinal tears distinguished Castanea crenata Sieb. et Zucc.,
as a very rough bark structure. These species were deciduous
broad-leaved trees. Evergreen conifers were also selected, where
moderate bark roughness was represented by Abies firma Sieb.
et Zucc., and coarse bark morphology was represented by Tsuga
sieboldii Carr (Figure 1).

Sample Collection and Anatomical
Observations
Sample collections were carried out in Tashiro, Shizuoka, central
Japan (35.307672N, 138.199925E). The site elevation is 966 m
a.s.l., the annual rainfall is 3110.1 mm, and the annual mean
temperature is 11.4◦C (statistical period according to AMeDAS:
1981–2010, Ministry of Land, Infrastructure, Transport, and
Tourism Meteorological Agency HP, https://www.data.jma.go.
jp/obd/stats/etrn/index.php, last viewed on December 6, 2019).
Forest vegetation of the site is mixed forest of deciduous broad-
leaved trees and evergreen conifers (Seino and Endoh, 2019). The
site is approx. 48 km far from the nearest coast, and the site is
surrounded by natural forests, and there are almost no factories
or residential area in the area. Therefore, the mineral supply
from the ocean (especially Cl−) and the influence of pollutants
(some nitrogen oxides) from human activities are expected to
low (Figure 2).

Bark samples for anatomical analysis approximately 4 cm2

were collected at the site in September 2019. This sampling
time was selected to minimize the effects of mineral leaching
from the bark due to heavy rainfall caused by the Japanese
rainy season and typhoons. The samples were obtained from
sound individuals with minimal observable surface damage, not
covered with lichen or epiphytes, and collected at a height of
approx. 1 m above the ground using a chisel. The thickness of
each bark sample was measured at three points using a manual
caliper. Anatomical analysis was carried out in the laboratory
of the Yatsugatake Forest Station, Mountain Science Center,
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FIGURE 1 | Schematic diagram of bark surface and photographs of the bark of target tree species. The upper row is a schematic drawing of the bark surface, (A)
smooth and mottled surface type, (B) smooth lateral skin type, (C) moderate roughness type, (D) coarse and deep longitudinal tear type, (E) moderate type of
conifer, and (F) coarse type of conifer. The middle row shows bark photographs of the trees in which soaking experiments of the bark were conducted, (G) Clethra
barbinervis, (H) Padus grayana, (I) Magnolia obovata, (J) Castanea crenata, (K) Abies firma, and (L) Tsuga sieboldii.

FIGURE 2 | Map of the sample collection area. (A) Map of Japan, and (B) Map of around the sample collection site.

University of Tsukuba, Japan. The bark samples were fixed and
softened in 99.5% ethanol, and lateral sections were prepared
using a sliding microtome (TU-213, Yamato Kohki Industrial,
Saitama, Japan). Cross sections (30 µm thick) were obtained
from the bark samples. Cross sections were dehydrated in an
ethanol series and sequentially stained with safranin and methyl
blue. Permanent preparations were made for observations of
the morphology and arrangement of the cells with an optical
microscope (BX53, Olympus, Tokyo, Japan), and anatomical
photographs were taken with a digital camera (EOS Kiss X7i,
Canon, Tokyo, Japan).

The general structures of bark were defined as follows (Shimaji
et al., 1976; Trockenbrodt, 1990; Angyalossy et al., 2016). The
bark encompasses all of the tissues outside the cambium of a
tree. It is broadly divided from the outside into the epidermis,
periderm, cortex, and secondary phloem. The epidermis, the
outermost cell with a thick cell wall, is responsible for preventing
water loss from inside the tree and protecting the tree body from
external stimuli. The periderm, which serves as secondary lateral
meristem to the disrupted epidermal layer, consists of phellem,
phellogen, and phelloderm. The cortex is the foundation of the
periderm. The secondary phloem includes radiation tissue–which
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is responsible for the transport of materials and for their storage–
as well as bast fiber and sclereids–which provide mechanical
strength. According to the above definitions, the anatomical
findings of the bark structures of each species are described.

Bark-Soaking Experiment
Bark samples for soaking experiments were collected at the site
in September 2019, with three bark samples of approximately
9 cm2 from each, for a total of 18 samples at the laboratory
of University of Tsukuba, Japan. The reason for the sample
size was that there was a limit to the number of individuals
suitable for bark collection and due to the time constraint
in the process of immersion experiments. The inner surfaces
and sections of the bark samples were coated with paraffin
wax and soaked for the first time in 200 ml of distilled
water after 12 h. The samples were placed in a petri dish
so that the outer bark was immersed in water. The water
samples were collected continuously throughout the soaking
experiment by removing 4 ml samples from the petri dish every
24 h. The soaking time was set to maximum at 96 h due to
the expectation that the extracted minerals would reach at a
saturation concentration by that time. The concentrations of
target inorganic ions (Mg2+, Ca2+, and K+) were measured in a
total of 90 water samples using ion chromatography (Prominence
series, Shimadzu, Kyoto). Calibration curves were tested using
five mixed standard solution for the peak area of each ion
and organic carbon, and quantification was performed after
confirming their correlation coefficients. The reproducibility of
the peak area, was regularly confirmed that the CV is 2% or less.

Data Analysis
To evaluate patterns leaching cations from the bark, we applied
a Principal Components Analysis using the online ClustVis
application1 by Metsalu and Vilo (2015). A PCA analysis was
performed to explore possible interrelations of K+, Mg2+, and
Ca2+ leaching rates with bark anatomical traits.

RESULTS

Anatomical Findings of Species
According to the above-mentioned definitions by Shimaji et al.
(1976); Trockenbrodt (1990), and Angyalossy et al. (2016), the
anatomical findings of the bark structures of each bark type by
species are described and summarized in Table 3. Anatomical
pictures are included in the Supplementary Figures. The bark
surface morphology was already described in a previous research
by Oka et al. (2021).

The smooth and mottled bark of Clethra barbinervis has a thin
cortex from the epidermis and well-developed radiating tissue
that is distinct (Table 3). We observed a raised epidermis over the
extension of the radiation tissue. The epidermis of Padus grayana
has a thin cork phelloderm on the periderm that forms a linear
rhytidome. Gaps are also common at the border between the
cortex and the secondary phloem for P. grayana. This species

1https://biit.cs.ut.ee/clustvis/

radiation tissue is developed in three to five rows of cells, and
there are gaps along this radiation tissue as well. Parenchyma
were also observed in a distinct, cross-sectional direction for
P. grayana. For the moderately-rough barked Magnolia obovata,
the epidermis is mostly absent, with uneven, slightly developed
phellem. The M. obovata cortex has a rare supra-grain sclereid,
is spongy with many gaps, and characterized by the expansion
and development of the radiation tissue toward the cortex in the
middle of the secondary phloem. Circumferential parenchyma
and bast fibers are also well developed and distinct in the
M. obovata samples. The coarse, deep, longitudinal tears of
Castanea crenata bark is related to a wave-patterned periderm
that forms its rhytidome. A thin radiation tissue consisting of
one or two rows of cells was found in the secondary phloem
of C. crenata. This species also has thick bast fibers alternating
with parenchyma at equal intervals. Bark of the conifer, Abies
firma, shows several layers of thin, smooth periderm overlap
with a thickly developed mosaic-like layer of skin mixed with
live cells and sclereids. There were also many gaps in A. firma
samples, which was common in the broadleaved moderate bark
(i.e., M. obovata). The secondary phloem of A. firma is thinner
than that of the other broad-leaved trees, and the radiation tissue
is thin and indistinct. The coarse bark conifer, Tsuga sieboldii, has
an outer rhytidome and porous bark layer that appears similar
to A. firma. The old periderm of T. sieboldii has scattered ball-
shaped sclerae, while the inner new phelloderm is wavy and
well-developed. The parenchyma of the secondary phloem of this
species indistinctly intrudes into the cortex and are characterized
by the presence of many clustered sclereids.

Bark-Soaking Experiment
For minerals leaching from a tree body, such as K+, Ca2+, and
Mg2+, their concentrations differed among species and with
soaking time (Figure 3 and Table 1). All studied cations increased
until settling near the maximum (i.e., 96-h) concentration
(Figure 3 and Table 2). Mg2+ concentrations tended to be
low in Padus grayana (7.64–39.61 µmol L−1), T. sieboldii
(5.12–25.42 µmol L−1), A. firma (13.25–30.61 µmol L−1), and
C. barbinervis (8.39–29.05 µmol L−1), but concentrations
of Mg2+ were generally higher in M. obovata (24.56–
88.57 µmol L−1) and C. crenata (24.62–34.03 µmol L−1)
(ANOVA, F [5,58] = 5.19, p < 0.001 by species). For all trees,

TABLE 1 | Leaching rates (µmol L−1 h−1) of K+, Mg2+, and Ca2+ by species,
estimated as the slope of a linear regression relating concentration and time of
saturation during the soaking experiment.

Species K+ Mg2+ Ca2+

Mean Range Mean Range Mean Range

Clethra barbinervis 0.40 0.15–0.53 0.18 0.10–0.28 0.32 0.09–0.74

Padus grayana 0.53 0.29–0.77 0.17 0.08–0.25 0.28 NA

Magnolia obovata 2.11 0.24–3.51 0.27 0.23–0.28 0.75 0.71–0.79

Castanea crenata 0.19 0.15–0.24 0.50 0.20–0.90 1.01 0.35–1.48

Abies firma 1.85 0.26–2.84 0.19 0.07–0.35 0.26 0.09–0.70

Tsuga sieboldii 0.70 0.19–1.64 0.15 0.05–0.23 0.23 0.20–0.26
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FIGURE 3 | Box-plot of concentrations of inorganic ion, (A) Mg2+, (B) Ca2+,
and (C) K+ extracted from the bark by soaking experiment. Colors mean each
species as Clethra barbinervis (white), Padus grayana (gray), Magnolia
obovata (orange), Abies firma (yellow), Castanea crenata (light red), and Tsuga
sieboldii (deep red). Bars in figure are SD.

Mg2+ concentrations increased over time of the soaking
experiment, especially for M. obovata (Figure 4). Concentrations
of Ca2+ in A. firma (7.04–71.07 µmol L−1) and C. crenata
(81.77 µmol L−1) were higher than those for other species
(Figure 4). In M. obovata, Ca2+ concentrations were lower and
often undetectable in some samples. Up to 48 h, C. crenata had
the highest concentrations of Ca2+ (57.34–74.73 µmol L−1),
after which its concentration exceeded those of M. obovata
during the same soaking times [ANOVA, F (5,42) = 4.66,
p < 0.01 by soaking time]. The highest concentrations of K+
were, in order, M. obovata (26.22–325.74 µmol L−1), A. firma
(26.19–232.85 µmol L−1), T. sieboldii (20.38–165.23 µmol L−1),
P. grayana (29.76–77.99 µmol L−1), C. barbinervis (16.79–
54.20 µmol L−1), and C. crenata (15.08–24.47 µmol L−1). For
all tree species, K+ concentrations increased over time, while in
the same order [ANOVA, F (4,53) = 6.16, p < 0.001 by soaking
time] (Figure 4). As for the leaching rate and their linearity along
a time course, there were no remarkable relations. The bark types

such as C. crenata and T. sieboldii tended to leach more easily
than others (Tables 2, 3).

Two principal components were identified that represented
∼60% of the variability within these data: 37% in component 1
(PC1) and 23% in component 2 (PC2). The three bark samples
from each species (indicated by symbol color) clustered together
across the PC space; however, these species-specific clusters are
generally distinct from each other (Figure 5). The loadings (lower
right) suggest that the leaching rates of Mg2+ and Ca2+ across the
studied tree species may be possibly driven by similar anatomical
features of the bark. Specifically, Mg2+ and Ca2+ leaching rates
load alongside the rhytidome thickness (Rhy), periderm thickness
(Per), and the presence of bast fibers (Bst) (Figure 5). K+ leaching
rates, on the other hand, seem to be influenced by the presence
of cavities (Cav), parenchyma (Par), sieve cells (Siv), and cortical
thickness (Ctx) (Figure 3). The spread among species and their
clusters in the PCA plot is larger along the direction of loading by
K+ and its affiliated bark anatomical features (i.e., from quadrants
2 to 4), compared to the influence of Mg2+ and Ca2+ leaching
rates/bark features (Figure 5). The exception to this is A. firma,
for which one of the samples plotted relatively far from the other
two samples in both major loading directions.

DISCUSSION

Comparison of Anatomical Structures by
Bark Type
From the results of this study, the anatomical characteristics
of the inner bark are not simply determined by the thickness
of the outer bark, which is often how comparisons have been
drawn between solute concentrations and their sources in the
rain waters that have drained through tree canopies (Levia and
Frost, 2003; Levia and Germer, 2015; Lu et al., 2017; Oka et al.,
2021). These anatomical descriptions and the assessment of their
interactions with the select macronutrient cations in this study
may provide a roadmap for future work on the biogeochemical
interactions between bark and stemflow or branchflows. Many of
the anatomical structures identified in this study are analogous
to other species’ bark. The structure of the P. grayana periderm,
for example, which contains a thin, smooth, lateral phellem has
also been observed in Betula platyphylla Sukaczev var. japonica
(Miq.) H. Hara (Shibui and Sano, 2018) which bark surface is

TABLE 2 | Coefficients of the relationship between time and percentage of
maximum concentration over the soaking experiment.

Species K+ Mg2+ Ca2+

Clethra barbinervis 0.93* 0.93** 0.93***

Padus grayana 0.97*** 0.97*** 0.79**

Magnolia obovata 0.89* 1.01*** 0.89**

Castanea crenata 0.72* 0.84* 0.92***

Abies firma 0.90** 0.95*** 0.88**

Tsuga sieboldii 0.95** 0.54* 0.90***

Asterisks denote p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 4 | The portions of maximum Mg2+, Ca2+, and K+ concentration (%) by soaking time (hr). Colors mean each species as CB Clethra barbinervis (white
circle), PG as Padus grayana (gray square), MO as Magnolia obovata (orange triangle), AF as Abies firma (yellow diamond), CC as Castanea crenata (light red x), and
TS as Tsuga sieboldii (deep red cross).

similar to that of P. grayana. Some bark anatomical traits were
similar across coniferous and broadleaved study species. For the
moderately rough bark types, such as M. obovata and A. firma,
both had gaps and sclereids at the border between the periderm
and the secondary phloem. The bark of these moderate types was
also similar to that of P. grayana except for the characteristics
of the periderm. The coarse, deep, longitudinal structure of the
thick rhytidome and the structure of the secondary phloem
were similar in both C. crenata and T. sieboldii. Some features
were only observed in one of the species. For example, the
characteristically well-developed radiation tissue was observed
only in M. obovata. Across the studied species, however, the
internal anatomy of smooth, moderate, and coarse bark types
did differ greatly.

These different bark anatomies suggested that the possible
solute exchange between the bark and the drained rainwater is
related to tree growth. For example, Shibata and Sakuma (1996)
and Staelens et al. (2007) have shown that seasonal changes in the
dynamics of the chemistry of deciduous broadleaf tree stemflow
were related to tree growth, especially leaf phenology such as leaf
flush, expansion, and defoliation. Carmo et al. (2016) analyzed
minerals in the bark of Copaifera langsdorffii Desf. (Fabaceae)
by correlating chemical analysis with anatomical characteristics.
Carmo et al. (2016) also analyzed the relationship between bark
anatomies such as its thickness and the mineral source within
each tissue. The results of this study provide a prospect to explore
the mechanisms of solute enrichment by bark-water interactions
from the following soaking experiments.

Bark-Soaking Experiment
A trend of increasing concentration over soaking time was
observed for all species’ bark samples for Mg2+, Ca2+, and

K+, which are solubilizing substances. For Mg2+ and Ca2+, the
concentrations of C. crenata were high up to 24 h later–and at
similar concentrations to those of stemflow samples from the field
(Oka et al., 2021); however, after 48 h, the concentrations were
higher in M. obovata. This suggests that the bark of M. obovata
is particularly prone to the accumulation of substances, and that
there may be a time lag in the leaching of these cations to water
contacting the bark. We note that the residence time of rainwater
on bark may be exaggerated in our soaking experiments; however,
to our knowledge, no residence time estimates for stemflow in
tree canopies currently exist. Thus, there are no observations or
estimates of the appropriate time duration that one could have
used to guide the soaking experiment. We assume that the length
of our soaking experiment represents a maximum residence time,
yet storms may last several days and snow residence time on
bark (before melt) may last 96 h or longer (Klamerus-Iwan et al.,
2020). It may be that the amount of cation accumulation that
is leachable during these soaking experiments was related to the
internal structure of the bark, such as the cortex, rather than the
surface structure.

Much attention has been focused on the water storage
capacity of bark (Levia and Herwitz, 2005; Van Stan et al.,
2016) and its function as a source of minerals (Wetzel and
Greenwood, 1989; Wetzel et al., 1989; Wolterbeek et al., 1996).
In the case of those bark-derived leaching cations examined in
this study (Ca2+, Mg2+, and K+), Ca2+ tended to be more
abundant in tree bodies (Jones et al., 2019), while Mg2+ and
K+ tend to be more concentrated in leaves, which is closely
related to their physiological in individual trees (Shibata and
Sakuma, 1996; Jones et al., 2019). It has been suggested that
the leaching of these cations from tree body is related to
the water-storage function of the bark because, hypothetically,
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TABLE 3 | Summarized of anatomical characteristics of each species.

Anatomical characteristics

Bark
morphology

Species Perderm Cortex Secondary phloem

Thickness
(mm)

Epodermis (apr.
mm)

Rhytidomes (apr.
mm)

Sclereid Radiation
tissue

Sieve cell Parenchyma Bast fiber

Broad-
leaved
trees

Smooth and
mottled
surface

Clethra
barbinervis

0.54 ± 0.05a Very thin Very thin 0.02 × Very thin 0.065 × Well-
developed

Scatter × ×

Smooth with
lateral skin

Padus
grayana

3.69 ± 0.20ac
× Horizontal

straight
0.44 Thin pericarp

layered
Cavity 0.39 × Well-

developed
Well-

developed
Circumferential ×

Moderate
roughness

Magnolia
obovate

6.08 ± 0.36cd
× Slightly

developed
0.26 Mono layered Many

cavities
1.17 © Expanding

outward
Obscure Well-developed Well-

developed

Coarse and
deep
longitudinal
tear

Castanea
crenata

6.57 ± 1.48cd
× Developed 1.96 Wavy

development,
layered

Thin 0.26 × Narrow Well-
developed

Well-developed ©

Conifers Moderate
roughness

Abies firma 6.53 ± 0.40cd
× Thin 0.39 Thin pericarp

overlaps
Mosaic

with
cabity

5.33 © × × Obscure ×

Coarse and
deep
longitudinal
tear

Tsuga
sieboldii

6.29 ± 0.59bcd
× Thick

outside
thick inside

0.39 Wavy
development

Mosaic
with

cabity

0.84 ©

Ball shaped
develop

× × Obscure ×
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FIGURE 5 | Principal component analysis with Mg2+, Ca2+, and K+ concentrations related to anatomical components. The arrows represent variable plotted by the
first two PCA axes. Species abbreviations are Clethra barbinervis (CB) Padus grayana (PG), Magnolia obovata (MO), Castanea crenata (CC), Abies firma (AF), and
Tsuga sieboldii (TS), respectively.

greater water storage equates to longer bark-water contact
times (Levia and Herwitz, 2005; Abbasian et al., 2015). To
date, however, the physiological mechanisms of the bark-water
interactions that underlie the enrichment of stemflow with
the macronutrient ions remain relatively undescribed–especially
compared to leaching mechanisms in leaves (Aubrey, 2020). This
may be a result of common methods for estimating leaching
rates in throughfall and stemflow requiring no knowledge of bark
anatomy and physiology, e.g.: (i) multiple regression modeling
(Lovett and Lindberg, 1984); (ii) parsing washoff and leaching
from intrastorm trends in water chemistry (Kazda and Glatzel,
1986; Kazda, 1990); or (iii) using tracer solutes (Staelens et al.,
2008; Turpault et al., 2021). Our results suggest that bark anatomy
plays an important role in the leaching of macronutrient cations
into waters draining through woody plant canopies.

From the principal components analysis, leaching of Mg2+

and Ca2+ appears to be driven by similar bark anatomical
traits such as a thickness of rhytidome and periderm, as well as
bast fibers. The thickness of the rhytidome and periderm may
influence these leaching rates by influencing the distance between
living cells (beyond the rhytidome) and the stored or draining
rainwaters (as similarly hypothesized by André et al., 2008).
Given that bast fibers primarily provide stabilizing or mechanical
support functions, it’s relationship with the leaching of Mg2+ and
Ca2+ is uncertain. K+ appears to be driven by the presence of
cavities, parenchyma, sieve cells, sclereids and cortex thickness.
The statistical inference of a relationship between K+ leaching
rates and some of these anatomical features seems reasonable,

particularly given that parenchyma are generally specialized
storage tissue (which may hold a variety of materials, like starches,
oils, resins, etc.: Zabel and Morrell, 2020), and that sieve cells
may conduct sugars and can be associated with parenchyma
(Simpson, 2019). Bark anatomical results by Carmo et al. (2016),
observed cavities, sclereids, cortex thickness of C. langsdorfifii
bark, and detected chemical composition in the fractionation
of extractives. K+ plays an important role in photosynthesis,
ion transport, and osmotic adjustment in plants. Therefore, it
would be important to know that K+ compartments present and
related to their ecophysiological activity, and the thickness of the
sclerotium as its storage function. In addition, since sclereids are
formed by changes in old sieve cells, if the relationship between
the process of formation and the concentration of K+ is detected
it can be expected to indicate the process of bark development
and the physiological activity at the crown through the chemistry
of the stemflow.

Although our study focused on K+, Mg2+, and Ca2+, there
are other solutes meritorious of investigation with regard to
their bark-water interactions. Wetzel et al. (1989) reported on
the nitrogen storage function of bark from the perspective of
bark anatomy. Past research on the composition of organic
chemical components in Pinus densiflora Siebold and Zucc.,
bark aimed at the effective use of bark as a residue of timber
production (Hata and Sogo, 1956). Others have examined tannin
extraction from the bark of species useful for wood (Ohara,
2009). For one of the target tree species in this research, past
work has examined essential oil components in the bark of
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M. obovata (Fujita et al., 1973). Research on the bark of Fraxinus
lanuginosa Koidz. f. serrata (Nakai) Murata has also been done
for the isolation of naturally occurring antioxidants (Hayafuji,
2018) which may be useful in assessing the quality of medicinal
components. Thus, this work builds on a long, but sparse, history
of research on bark anatomy and its relationship with water
and solutes by shedding new insights into the possible role of
bark anatomical traits in the dynamics of inorganic components
leached from the bark to stemflow.

CONCLUSION

Current theory on the influence of bark on stemflow chemistry
solely considers the influence of external bark surface
morphology, neglecting the role of bark anatomy. The results
of this study suggest that bark anatomical traits are related to
stemflow chemistry for commonly leached macronutrient ions
(K+, Mg2+, and Ca2+) across a wide range of bark types studied
here (six species from coniferous and broadleaved trees). These
results further suggest that the stemflow-bark interactions can
play an important role in the transfer and intrasystem cycling of
macronutrients between the inside of the tree and the external
environment. Across bark samples of varying anatomy, Mg2+

and Ca2+ leaching rates were driven by the thickness of the
rhytidome and periderm–hypothetically reducing leaching rates
as the distance between living cells (beyond the rhytidome) and
stemflow is increased. K+ leaching rates appeared to be driven
by the presence of anatomical features associated with resource
storage (parenchyma) and transfer (sieve cells). For some bark
types, such as Abies firma and Magnolia obovata, that had a
spongy anatomy, with gaps were found at the boundary between
the epidermis and the secondary phloem that appear to delay
bark-stemflow solute exchange. The concentrations of tree body
derived leachates were higher in the stemflow of study trees
like Castanea crenata and Tsuga sieboldii, suggesting that the
rhytidome thickness and the presence or absence of sieve cells
and associated parenchyma are related. Even in the coarse bark
type, there was a difference in the internal structure between
conifers and hardwoods, which may have resulted in a difference
in the tendency of the stemflow chemistry. We recommend
that future work seeking to mechanistically explain variability
in stemflow solute concentration, composition, and especially
leaching from bark surfaces, examine bark anatomical traits.
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ritidome (rd), cortex (cor), sclereid (sc), origin sclereid (osc), secondary phloem
(sp), parenchyma (p), sieve cell (s), radiating tissue (r), and bast fiber (f). The
photographs were taken at 40×. Picture was combined multiple photos.
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Supplementary Figure 5 | Cross-section pictures of Abies firma. Abbreviations
for anatomical terms are described in the anatomical observations section of the
text; periderm (pd), ritidome (rd), cortex (cor), sclereid (sc), origin sclereid (osc),
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was taken at 40×. Picture was combined multiple photos.

Supplementary Figure 6 | Cross-section pictures of Tsuga sieboldii.
Abbreviations for anatomical terms are described in the anatomical observations
section of the text; periderm (pd), ritidome (rd), cortex (cor), sclereid (sc), and
radiating tissue (r). The photograph was taken at 40×. Picture was combined
multiple photos.
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