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Active restoration of degraded areas with multi-purpose tree species has been proposed
as a measure to counter the losses from deforestation and mitigate consequences for
local human communities. In a restoration project at a former mining site in Ghana,
ecosystem services (ES) proxies in an actively restored forest were compared to a
local agroforestry system and a natural forest. The results provide information about
trade-offs and synergies between proxies of multiple ES(s). ES proxies were assessed
according to the following categories: (a) food-tree ES: biomass of food and fodder
trees, (b) other trees ES: biomass of fuelwood, medicine or mulch trees, (c) ES-providing
arthropods: the number of detritivorous and predaceous arthropods, (d) carbon storage,
and (e) tree diversity. Eight replicated plots with sizes of 20 m × 20 m were established
in each forest type, and the following ES proxies were quantified: tree diversity was
estimated as taxonomic richness of all trees with a diameter at breast height ≥ 10 cm in
each plot. Tree species were then classified into ES categories (food, fodder, fuelwood,
medicine, or mulch). Ground-dwelling arthropods were sampled for 10 weeks with
five pitfall traps in each plot and categorized as decomposers and predators. Tree
above-ground biomass was estimated based on the measured tree diameter, height,
and specific wood density using an improved allometric equation. The above-ground
biomass was later converted into carbon storage by assuming 50% of the above-ground
biomass of each tree. ES proxies based on tree biomass were highest in the natural
forest. Fodder, medicine, fuelwood, and mulch ES proxies were significantly higher in
the restored forest than the agroforestry system. Decomposer arthropods were most
dominant in the natural forest, followed by the restored forest and the agroforestry
system. Predacious arthropods were more dominant in the restored forest than in
the other forest types. Carbon storage was highest in the natural forest, followed by
the agroforestry system and the restored forest. The actively restored forest took an
intermediate position between the agroforestry system and the natural forest regarding
values for all nine ES proxies. Out of the 14 possible relationships between food or
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fodder and other ES proxies, five were significantly positive (synergies) with no observed
trade-offs (significant negative relationships). High fodder production in the restored
and natural forests went along with higher values of other biomass ES proxies and
numbers of beneficial arthropods, while higher food biomass also correlated positively
with numbers of decomposing arthropods. Our results document that active restoration
of degraded sites provides a valuable framework to promote ES provision to local
communities compared to agroforestry system, but at the cost of lower food and
fuelwood biomass and carbon storage compared to natural forests.

Keywords: active restoration, biodiversity, deforestation, ecosystem services, forest, Ghana, mining

INTRODUCTION

Deforestation and forest degradation in the tropics persistently
continues due to unsustainable agriculture practices, mining,
logging, construction of infrastructure, and urban expansion
(Seymour and Harris, 2019). In 2019, about 11.9 million hectares
of tree cover was lost in the tropics (Weisse and Goldman,
2020). Between 2010 and 2015, Ghana lost about 0.6% of
its protected forest reserves because of factors such as illegal
logging, encroachment for farming, and wildfire (Acheampong
et al., 2019). Globally, deforestation is known as a major
driver for the substantial loss of biodiversity and a decline
in the provision of ecosystem services (ES) (Ciccarese et al.,
2012) that affects numerous people worldwide [United Nations
Convention to Combat Desertification [UNCCD], 2014]. The
productivity of food systems that local communities depend on
for their livelihoods is severely affected by ongoing deforestation
(Nunoo et al., 2015).

One approach to revert losses from deforestation and mitigate
consequences for local communities is active restoration, for
example, with multi-purpose tree species that are capable of
providing several ES (Reubens et al., 2011; Gamfeldt et al., 2013;
Zemp et al., 2019). Deforestation often affects climatic variability
leading to either prolonged drought or flooding which both
impact food production (Chirwa and Adeyemi, 2019). Active
restoration involves the direct planting of seeds or seedlings to
aid the recovery of deforested and degraded lands to reach a pre-
defined restoration aim (Morrison and Lindell, 2011; Crouzeilles
et al., 2017). The success of restoration activities often is measured
by improvement of soil fertility, carbon sequestration and the
recovery of biodiversity in general (Chazdon, 2008). The benefits
provided by restored ecosystems to local communities should
be an additional focus of restoration programs (Erbaugh et al.,
2020). Active forest restoration may contribute to the provision
of ES (Bullock et al., 2011; Benayas and Bullock, 2012; Shimamoto
et al., 2018; Damptey et al., 2020), defined as functions and
products that benefit society (Millennium Ecosystem Assessment
[MEA], 2005). The introduction of a new tree species or the loss
of a certain species from a particular area may alter levels of
various ES (Brockerhoff et al., 2017). Active restoration directly
affects the establishment of tree species but further indirectly
alters the composition of biotic communities in restored areas by
its effects on functionally important organisms such as predators
(e.g., spiders) of forest pests (e.g., silk and carpenter moths) or

decomposers (e.g., woodlice) which contribute to nutrient cycles
(Fragoso and Varanda, 2011; Nicholls and Altieri, 2013; Kremen
et al., 2018; Donkersley, 2019; Luong et al., 2019).

Ecosystem services include provisioning (e.g., food, fodder,
energy), regulating (e.g., climate and pest regulation, carbon
sequestration), and other indirect supporting services that
are required for the production of the provisioning and
regulating services (e.g., soil formation, nutrient cycling,
primary production) [Millennium Ecosystem Assessment
[MEA], 2005]. These services are associated to several groups
of so called service-providing organisms performing related
ecosystem functions (Luck et al., 2003). For instance, predators
regulate crop pests as natural enemies, and detritivorous insects
decompose dead organic matter contributing to nutrient cycling
and thereby to improved agriculture production and carbon
sequestration (Birkhofer et al., 2015). In addition to these
services, ecosystems also produce some disservices (hereafter
Ecosystem Disservice- EDS; Lyytimäki and Sipilä, 2009), as for
example pest infestations may lead to trade-offs with ES. Insects,
as very abundant invertebrates in tropical forests, produce a
range of services and disservices with the potential for trade-offs
and synergies (Dangles and Casas, 2019).

Today, restoration and conservation activities often focus
on simultaneously enhancing more than one ES and avoiding
trade-offs, thereby creating synergies to meet the diverse needs
of society (Birkhofer et al., 2018, 2019; Shimamoto et al.,
2018; Zeng et al., 2019). Ecosystem multifunctionality (EM)
describes the ability of an ecosystem to supply multiple ecosystem
functions simultaneously to satisfy different societal needs and
preferences (Mander et al., 2007; Hölting et al., 2019). Manning
et al. (2018) emphasized the importance of high biodiversity
for the provision of ES because different species contribute to
different ecosystem functions. The EM approach hence integrates
measures of the relative supply of multiple ecosystem functions
and services to evaluate multiple restoration targets based on
a high number of individual indicators (Strobl et al., 2019).
The multifunctional nature of ecosystems and the proposed
multifunctionality approach cause the need to consider synergies
and trade-offs between ES and functions (Raudsepp-Hearne et al.,
2010; Gamfeldt et al., 2013; Peña et al., 2018). Berry et al.
(2020), for example, discussed synergistic relationships between
carbon storage and biodiversity, whereby the provision on one
allowed for greater levels of the other. Damptey et al. (2020)
also highlighted that higher tree biodiversity in actively restored
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forests goes along with improved soil conditions, providing
support for the assumption that higher biodiversity enhances
EM. However, trade-offs, on the other hand, occur when the
increase in one ES leads to a decrease in another ES (Bennett
et al., 2009; Birkhofer et al., 2015; Lafond et al., 2017). Trade-
offs has previously been observed between esthetic or cultural
values of forests and timber production (Peña et al., 2018;
Turkelboom et al., 2018) or between food provision and net
primary productivity (Li et al., 2020).

In this study, we analyzed the levels and relationships between
proxies of multiple ES in three different forest types (actively
restored forest, agroforestry system, and natural forest in Ghana).
The restored forest is a previous gravel mine site that was
replanted with both native and exotic trees species after soil
amendments (Damptey et al., 2020). ES proxies were assessed
in the following categories: (a) food-related tree ES (biomass of
food and fodder trees), (b) other trees ES (biomass of fuelwood,
medicine or mulch trees), (c) ES providing arthropods (number
of decomposers and predators), (d) carbon storage, and (e)
tree diversity. The resulting data was then used to analyze the
performance of multiple ES proxies in the three alternative forest
types and to identify trade-offs and synergies between food-
related ES (a) and other ES proxies (b–e). Major objectives of
this study are to assess how active forest restoration 20 years
after the initiation of restoration practices (i) determined levels
of individual ES proxies compared to alternative forest types
and if (ii) synergies or trade-offs between food-related and other
ES proxies are evident across forest types. We hypothesize that
active forest restoration enhances levels of food and fodder ES
compared to the natural forest and to a lesser extent compared
to the agroforestry system. However, high provision of food and
fodder-related ES proxies is hypothesized to come at the cost of
other ES proxies, like carbon storage or tree diversity.

MATERIALS AND METHODS

Study Area
The three forest areas are Terchire restoration area (actively
“restored forest”), Bosomkese forest reserve (“agroforestry
system”) and Asukese forest reserve (“natural forest”). All forests
are located in the Semi-Deciduous Forest Zone (SDFZ) of Ghana
with a mean annual precipitation ranging between 900 and
1,500 mm and mean daily temperature of 25◦C (Figure 1). The
restored forest area was gravel mined on the surface for road
construction until 1998 and in 1999 the area was subjected to
active restoration by planting both indigenous and fast-growing
exotic nitrogen-fixing tree seedlings at a planting distance of
2 m × 2 m and a density of 1,111 seedlings per hectare.
The restored forest covers 15.4 ha (longitude 7◦14.075′ W,
and latitude 2◦10.842′ N). The agroforestry system used to be
a degraded forest reserve which was subjected to enrichment
planting of trees inter-planted with both annual and perennial
food crops (e.g., plantains, maize, cassava) to supply food and
energy to local communities (longitude 2◦14.782′W, and latitude
7◦6.338′ N). The natural forest is a protected forest reserve
with strong restrictions (limited access to people and resource

use) against anthropogenic activity (longitude 2◦31.107′ W, and
latitude 7◦8.469′ N) (Damptey et al., 2020).

Sampling Design
Eight plots (20 m × 20 m) were demarcated (systematically)
and sampled in each of the three forest types. We counted,
recorded, and identified all trees with a diameter ≥ 10 cm at
breast height (dbh) to species level with the assistance of a local
botanist and an experienced forest guard (member of the Ghana
Forest Services Division) and a field manual (Hawthorne and
Gyakari, 2006). The ecological significance of tree species was
calculated based on the Importance Value Index (IVI = Relative
density+ Relative frequency+ Relative abundance) measured as
the sum of the relative density ( No. of individuals of species A

Total no. of individuals of all species ×

100), frequency ( Frequency of species A
Sum of frequency values for all species × 100), and

abundance ( Total no. of individuals found
No. of quadrats of occurrence × 100) of individuals per

species (Curtis and McIntosh, 1950). Tree species were then
classified into providers of tree-related ES (food, fodder,
fuelwood, medicine or mulch trees) based on an existing database
(Useful Tropical Plants Database1; Fern et al., 2014; Table 1).
The biomass of each classified tree species was estimated based
on the measured dbh (D), tree height (H), and specific wood
density (p) based on an improved allometric equation for the
tropical trees [In (AGB) = α + βIn

(
p × D2

×H
)
+ ε;

(Chave et al., 2014)]. The specific wood density for each tree
was obtained from several database or sources (Supplementary
Appendix 2). Tree carbon stock was estimated by assuming 50%
of the above-ground biomass of each tree (Lewis et al., 2013). The
local richness of tree species at each plot was made comparable by
rarefying species richness to the observed minimum of 11 trees
with a diameter ≥ 10 cm at one study plot.

Ground-dwelling arthropods were continuously sampled for
10 weeks (June to August 2019), with five pitfall traps in each
plot being emptied weekly. Pitfall traps were filled with 50:50
propylene glycol mixed with water and a few drops of odor-
free detergent to reduce the surface tension (Schmidt et al.,
2006; Pais and Varanda, 2010). Traps were then sheltered by
small rain covers to minimize dilution by rain (Underwood and
Quinn, 2010). Traps were left unused for 1 week prior to trapping
to reduce any digging-in bias due to attraction of arthropods
by cutting of roots (Greenslade, 1973). Pitfall trap samples
were stored in 70% ethanol and later sorted into taxonomic
groups according to available literature (order, suborder, or
family), followed by classification into major feeding guilds
(decomposers or predators).

Data Analysis
To statistically compare the resemblance between plots within
and between forest types, we created a resemblance matrix
showing all pairwise similarities between plots based on Gower
similarities calculated from all nine ES proxies (Table 1; values of
ES proxies were log (x+1) transformed prior to analyses). Gower
similarities internally standardize all ES proxies individually to
values ranging from 0 to 1 and this approach then allows for

1http://tropical.theferns.info/
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FIGURE 1 | (A) Map of Ghana showing the (B) Natural forest (Asukese forest reserve), (C) Restored forest (Terchire restoration area) and, (D) Agroforestry system
(Bosomkese forest reserve).

TABLE 1 | Ecosystem Service (ES) proxies quantified in this study in major ES categories with rationale for their use in this study, examples and literature references
supporting their classification.

ES category ES proxy Rationale Examples References

Provisioning Food tree
biomass

Production of fruits, nuts, leafy vegetables
which serve as dietary and nutritional
components

Elaeis guineensis, Cola nitida,
Dialium guineense, Terminalia
catappa, Tetrapleura tetraptera,
Artocarpus altilis, Mangifera indica

Powell et al., 2015; Reed et al.,
2017

Fodder tree
biomass

Leguminous tree parts as essential
components of fodder resources for livestock

Moringa oleifera, Leucaena
leucocephala, Albizia ferruginea,
Tetrapleura tetraptera

Jasaw et al., 2017; Vandermeulen
et al., 2018

Medicine tree
biomass

Used as traditional medicine and also raw
materials for the pharmaceutical industry

Tetrapleura tetraptera,
Antidesma laciniatum,
Moringa oleifera,
Nesogordonia papaverifera

Voeks and Rahmatian, 2004;
Caballero-Serrano et al., 2019

Fuelwood tree
biomass

Supply of energy required for food production Cassia siamea,
Celtis zenkeri,
Leucaena leucocephala,
Holarrhena floribunda

Brockerhoff et al., 2017

Mulch-tree
biomass

Leguminous tree species used to improve soil
fertility

Albizia zygia,
Leucaena leucocephala

Kearney et al., 2019; Wagner et al.,
2019

Regulating Predator
numbers

Predaceous arthropods that contribute to pest
control

Spiders (Order: Araneae), Ground
beetles (Order: Coleoptera, Family:
Carabidae)

Brockerhoff et al., 2017

Carbon storage Storage of carbon dioxide in tree tissues All tree species González-Díaz et al., 2019; Hand
et al., 2019

Supporting Decomposer
numbers

Detritivorous arthropods that contribute to
organic matter decomposition

Millipedes (Orders: Glomerida and
Julida)

Brockerhoff et al., 2017

Cultural Tree richness
(rarefied)

Spiritual and symbolic interaction with nature All tree species Brockerhoff et al., 2017; Kearney
et al., 2019
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the construction of resemblance matrices based on variables
that are measured on different scales (e.g., biomass of medicine
tree and abundance of predators). The resulting resemblance
matrix was then analyzed with permutational analysis of variance
(PERMANOVA) as the appropriate statistical method for
distance-based analyses (Anderson et al., 2008). PERMANOVA
is a common method to analyze resemblance matrices that
can be based on uni- or multivariate data. PERMANOVA
has the advantage over alternative parametric methods that it
does not make assumptions about normality of the dependent
data (as p-values are derived from permutations). We used
PERMANOVA with identical model and design settings for
all uni- and multivariate data to provide a standard analytical
framework for all analyses. Multivariate data was further tested
for homogeneity of dispersion using the PERMDISP routine
as described in Anderson (2006). As a visual representation
of the multivariate relationship between sample plots and also
ES proxies, we show a non-metric multidimensional scaling
ordination (NMDS) based on the GOWER resemblance matrix
with vectors for all nine ES proxies superimposed based on
Pearson correlation coefficients with site score in the NMDS.

To then statistically compare levels of individual ES proxies
related to tree biomass (food, fodder, medicine, mulch, and
fuelwood tree biomass), ES providing arthropods (decomposer
and predator numbers), carbon storage and tree diversity
between actively restored forest and other forest type plots,
we constructed resemblance matrices for each log (x+1)

transformed variable using Euclidean distances. All uni- and
multivariate PERMANOVA analyses were performed with a
one-factorial design (forest type: restored forest, agroforestry
system, and natural forest) and 9,999 unrestricted permutation
of the raw data (Anderson et al., 2008). In case of a significant
PERMANOVA result, levels of the factor forest type were
compared with pairwise PERMANOVA for post hoc testing.
Correlations among food-related ES (food and fodder-tree
biomass) and all other ES proxies were tested with Pearson
correlations using the “ggubr” package (Kassambara, 2020). Test
statistics for PERMANOVA models include F-values with degrees
of freedom for the main factor and the residuals, pairwise post hoc
PERMANOVA is given with t-values and correlation results
are presented with Pearson correlation coefficients. Statistical
analyses and visualizations were carried out with the Plymouth
Routines in Multivariate Ecological Research (PRIMER vs. 7, with
the PERMANOVA add-on; Clarke and Gorley, 2015) or Sigma
Plot Version 12.0 (Systat Software, 2010).

RESULTS

Tree Structure
The restored forest had 43 species (Supplementary Appendix 1)
with the most important species according to IVI being Senna
siamea (IVI = 33.9), Leucaena leucocephala (IVI = 33.4),
Terminalia superba (IVI = 24.3), and Morinda lucida

FIGURE 2 | Non-metric multidimensional scaling ordination based on Gower similarities between plots of different forest types and values for all ES proxies (see
Table 1). The 2-d stress value is 0.15. Symbol colors represent forest types: •, agroforestry system (Bosomkese forest reserve); •, natural forest (Asukese forest
reserve) and ◦, actively restored forest (Terchire restoration area: N = 8 per forest type). Vectors are superimposed for all nine ES proxies with vector length scaled
according to Pearson correlation coefficients with site scores along both NMDS axes.
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(IVI = 13.4). The agroforestry system was characterized by
major contributions of Terminalia superba (IVI = 52.8),
Ceiba pentandra (IVI = 46.6), Cedrela odorata (IVI = 34.5),
and Triplochiton scleroxylon (IVI = 22.1). The natural forest
was also characterized by Celtis mildbraedii (IVI = 34.5),
Triplochiton scleroxylon (IVI = 21.1), and Nesogordonia
papaverifera (IVI = 17.5).

Forest Resemblance and Heterogeneity
in ES Proxies
Based on a joint multivariate analysis of all ES proxies (Table 1),
the three forest types differed significantly from each other
(Figure 2; F2,21 = 5.64; p = 0.001). Three clusters of points
confirmed the differences in ES proxies, with the agroforestry
system points separated from the restored forest or the natural
forest. Dissimilarities were most pronounced between the
natural forest and the agroforestry system (average pairwise
Gower dissimilarity = 33.6%; t = 2.7; p = 0.014), followed by
dissimilarities between the natural and the restored forest (30.8%;
t = 2.2; p = 0.004) or the restored forest and the agroforestry
system (30.1%; t = 2.1; p = 0.001) respectively. Predator and
decomposer arthropods, food, and fuelwood biomass, showed a
higher affinity to the restored forest. Tree richness and fodder
biomass were more dominant in the natural forest, and a higher
dominance of mulch biomass was recorded for the agroforestry
system. The multivariate dispersion of ES proxy values was
not significantly different between forest types (F2,21 = 0.34;
p = 0.736).

Food-Related ES Proxies
Forest types differed significantly in food tree biomass
(F2,21 = 4.13; p = 0.031). The food tree biomass in the
natural forest was significantly higher than in the restored forest
(t = 2.6; p = 0.022), with no significant differences between the
agroforestry system compared to the natural or the restored
forest (Figure 3A). Forest types differed significantly in fodder
tree biomass (F2,21 = 5.31; p = 0.013) with significantly lower
biomass in the agroforestry system compared to the natural
forest (t = 2.68; p = 0.020) and the restored forest (t = 2.67;
p = 0.020) (Figure 3B). Characteristic food and fodder tree
species in the restored forest were Mangifera indica, Annona
muricata, Terminalia catappa, Chrysophyllum perpulchrum, and
Elaeis guineensis. Tetrapleura tetraptera, Chrysophyllum albidum,
and Cola gigantean were characteristic for the natural forest
plots, while the agroforestry system plots were characterized by
Cola gigantean and Dialium guineense.

Other ES Proxies
Forest types did not differ significantly in other tree related ES
like fuelwood tree biomass (F2,21 = 0.20; p = 0.820), medicinal
tree biomass (F2,21 = 1.81; p = 0.195), and mulch tree biomass
(F2,21 = 2.85; p = 0.079).

Forest types differed significantly in the number of predatory
arthropods (F2,21 = 12.66; P < 0.001). The agroforestry
system plots had significantly fewer predators compared to
the natural forest (t = 4.04; p = 0.003) and the restored

forest (t = 4.54; p = 0.001) (Figure 4A). The observed
differences in the number of predatory arthropods were mainly
driven by a higher number of individuals in the beetle
families Staphylinidae and Histeridae, spider families Lycosidae,
Corinnidae, Ctenidae, and in the order Opiliones in the restored
forest compared to the agroforestry system. Individuals from
the beetle families Carabidae and Dytiscidae, and the spider
families Cyrtaucheniidae and Barychelidae were more abundant
in agroforestry system compared to the restored forest.

The number of decomposer arthropods differed significantly
between forest types (F2,21 = 10.57; p = 0.001). Decomposer
numbers were significantly higher in the natural forest (t = 5.64;
p = 0.001) and the restored forest (t = 2.07; p = 0.042)
compared to the agroforestry system plots (Figure 4B). The
differences between restored forest and the agroforestry system
were characterized by higher numbers of individuals in the beetle
family Tenebrionidae and the millipede orders Glomerida, Julida,
and Polydesmida in the restored forest plots. The natural forest
plots had higher numbers of individuals in the millipede order
Glomerida and the beetle family Tenebrionidae as well as more
cockroaches (order Blattodea).

FIGURE 3 | Box plots of (A) food tree and (B) fodder tree biomass in the
agroforestry system (Bosomkese forest reserve), actively restored (Terchire
restoration area) and natural forest (Asukese forest reserve; N = 8 per forest
type). The line represents the median value, the box limits are the 25th and
75th percentiles, error bars show 10th and 90th percentiles on a log scale.
Different letters indicate significant differences between the forest types
according to pairwise PERMANOVA.

Frontiers in Forests and Global Change | www.frontiersin.org 6 May 2021 | Volume 4 | Article 630959

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-630959 May 6, 2021 Time: 17:41 # 7

Damptey et al. Active Forest Restoration

FIGURE 4 | Box plots of arthropod (A) predator and (B) decomposer
numbers in the agroforestry system (Bosomkese forest reserve), actively
restored (Terchire restoration area) or natural forest (Asukese forest reserve;
N = 8 per forest type). The line represents the median value, the box limits are
the 25th and 75th percentiles, error bars show 10th and 90th percentiles on a
log scale. Different letters indicate significant differences between the forest
types according to pairwise PERMANOVA.

Carbon storage differed significantly between forest types
(F2,21 = 5.84; p = 0.011) with significantly lower values in the
restored forest compared to the agroforestry system (t = 2.26;
p = 0.004) and the natural forest (t = 3.12; p = 0.011) (Figure 5A).
Forest types differed significantly in rarefied tree species richness
(F2,21 = 6.53; p = 0.007) with the restored forest (t = 3.28;
p = 0.001) and the agroforestry system (t = 3.22; p = 0.007)
having lower taxonomic richness than the natural forest plots
(Figure 5B). The following tree species exclusively occurred
in the natural forest plots: Celtis aldolfi-frider, Celtis zenkeri,
Chrysophyllum albidum, Corynanthe pachyceras, Dichapetalum
madagascariense, Pterygota macrocarpa, Ricinodendron
heudelotii, and Sterculia Oblongata.

Trade-Offs and Synergies in ES Proxies
The natural forest had the highest relative values for all eight out
of nine ES proxies, with carbon storage being the only exception
and no apparent trade-offs between pairs of ES proxies (Figure 6).

Out of 14 possible relationships between food or fodder tree
biomass and the other seven ES proxies, five were significantly
positive (synergies) with no significant negative relationships

(trade-offs). Food tree biomass was significantly correlated to
the number of decomposer arthropods (R = 0.43, p = 0.037;
Figure 7A). Fodder tree biomass was significantly correlated to
medicine (R = 0.78, p = 0.001; Figure 7B) and mulch tree biomass
(R = 0.62, p = 0.001; Figure 7C), and the number of decomposer
(R = 0.57, p = 0.003; Figure 7D) and predatory (R = 0.54,
p = 0.006) arthropods (Figure 7E).

DISCUSSION

Ecosystems with diverse tree communities are often superior
in the provision of multiple ES compared to less diverse
forests (Bullock et al., 2011; Gamfeldt et al., 2013; Brockerhoff
et al., 2017). Trees contribute to provisioning (food, fodder,
and fuelwood), regulating (pest regulation and carbon storage),
supporting (habitat for organisms), and cultural (esthetic,
symbolic, and religious) ES and determine the dynamics
and functioning of forests (Blicharska and Mikusiński, 2014;
Brockerhoff et al., 2017; Mori et al., 2017; Reed et al., 2017).

FIGURE 5 | Box plots of (A) carbon storage and (B) tree species richness in
the agroforestry system (Bosomkese forest reserve), actively restored (Terchire
restoration area) or natural forest (Asukese forest reserve; N = 8 per forest
type). The line represents the median value, the box limits are the 25th and
75th percentiles, error bars show 10th and 90th percentiles on a log scale.
Different letters indicate significant differences between the forest types
according to pairwise PERMANOVA.
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FIGURE 6 | Rader plot showing the relationship between ecosystem service proxies in forest types: •, agroforestry system (Bosomkese forest reserve); •, natural
forest (Asukese forest reserve); and ◦, actively restored forest (Terchire Restoration area: N = 8 per forest type). The highest average for each ES proxy across the
three forest types was set to 100% and values for the same ES proxy in the other two forests were scaled accordingly.

Active restoration promoted selected ES (fodder tree biomass
and predator numbers) compared to agroforestry in our study.
However, levels of ES proxies in the natural forest were at least
comparable or higher to the highest levels in agroforestry and
actively restored forest plots for all ES proxies that differed
significantly between forest types. Considering the ES proxies
quantified in this study, optimal levels are only provided by the
natural forest, followed by the actively restored forest which holds
an intermediate position between natural and agroforestry plots
showing the lowest benefits. Across forest types, several positive
relationships between food and fodder tree biomass and other ES
proxies became evident from multivariate analyses and highlight
the potential to restore forests with the target to simultaneously
promote multiple ES.

ES Proxies and Forest Types
Forest types offer different levels of ES due to specific properties
of individual tree species (Gamfeldt et al., 2013; Fu et al.,
2015; Bordt and Saner, 2019). Forest management (both
agroforestry and active restoration) resulted in lower tree species
richness compared to natural forest plots in our study, which
may constrain the provision of biodiversity-based ecosystem

functions due to negative effects on service-providing organisms
(Hättenschwiler et al., 2005; Gessner et al., 2010; Conti and Díaz,
2013; Faucon et al., 2017; Albrich et al., 2018). Decomposer
abundance indeed resembled the observed pattern for tree species
richness between forest types, but estimated levels of carbon
storage did not differ significantly between agroforestry and
natural forest plots. Active restoration, on the other hand,
resulted in relatively high fodder tree biomass and a large
number of predatory organisms. The high number of predatory
organisms in actively restored forest plots and natural forests
may be a response of these beneficial arthropods to more diverse
vegetation often coupled with higher prey availability (structure-
mediated and resource-mediated effects, Diehl et al., 2012).
Natural forest plots indeed had the highest tree species richness
and potentially offered diverse habitat structure supporting
predatory organisms (see also Bianchi et al., 2006; Staab and
Schuldt, 2020). Actively restored forest plots on the other hand
did not have significantly richer tree communities compared
to agroforestry plots. A previous study, however, showed that
actively restored forest plots had a more complex topsoil and soil
surface structure than agroforestry plots (Damptey et al., 2020)
thereby potentially also supporting higher predator numbers.

Frontiers in Forests and Global Change | www.frontiersin.org 8 May 2021 | Volume 4 | Article 630959

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-04-630959 May 6, 2021 Time: 17:41 # 9

Damptey et al. Active Forest Restoration

FIGURE 7 | Relationship between (A) food tree biomass and decomposer arthropod numbers, or fodder tree biomass and (B) medicine tree biomass, (C) mulch
tree biomass, (D) decomposer, and (E) predatory arthropod numbers across forest types: •, agroforestry system (Bosomkese Forest Reserve); •, natural forest
(Asukese Forest Reserve); and ◦, actively restored forest (Terchire Restoration area; N = 8 per forest type).
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Agroforestry programs in the tropics often aim for an
increasing timber or food production (Waldron et al., 2017;
Santoro et al., 2020). The observed significantly higher food
tree biomass in agroforestry plots compared to actively restored
forest plots is therefore not surprising. This benefit, however,
comes at the cost of significantly lower numbers of beneficial
arthropods. Previous studies highlighted the important role of
soil invertebrates as key drivers of soil functioning and ES
provision (Lavelle et al., 2006; Birkhofer et al., 2011; Soliveres
et al., 2016) making them valuable indicators of overall soil
quality (Fu et al., 2015). Hence, the low decomposer numbers
in agroforestry plots should be perceived as a warning sign for
the limited value of these agroforestry approaches in the study
region (see also Damptey et al., 2020). However, in contrast to our
hypothesis, agroforestry plots still produced a higher food tree
biomass compared to actively restored forest plots. Restoration
approaches need to be optimized toward higher levels of food tree
growth if food supply is relevant for the region.

Relationships Between Food-Related
and Other ES
Human societies demand different ES which are often competing
with each other, and thus, trade-offs are more common
than synergistic relationships in changing ecosystems (Fu
et al., 2015). In our comparison of active restoration to
other forest types, we observed several synergies between
food or fodder tree biomass and other ES proxies, but
no trade-offs which is in contrast to our hypothesis. Food
tree biomass increased with the number of decomposer
arthropods, whereas fodder tree biomass correlated with
medicine and mulch tree biomass and decomposer or predatory
arthropod numbers. High decomposer activity accelerates litter
decomposition and remobilizes nutrients essential for the
growth of plants (Kitz et al., 2015; Eisenhauer et al., 2018;
Maldonado et al., 2019). Decomposers have been found to
contribute to reduced soil compaction and increased soil
aeration which is essential for crop production (Manning et al.,
2016). These active contributions of decomposing arthropods
to primary production explain their positive correlation to
food and fodder tree biomass. Fodder tree biomass also
correlated positively with predatory organism numbers, which
may result from the presence of different ecological niches for
predatory organism or the presence of preferred tree species
in plots with higher fodder tree biomass. Diverse forests
often also harbor greater predator (natural enemies) abundance
which may simultaneously result in improved control of pests
(Staab and Schuldt, 2020).

The fact that the majority of tree species recorded had multiple
purposes to some extend partly explains the positive relationships
between different tree-related ES proxies. For instance, Moringa
oleifera serves well as food, fodder, and plant-derived medicine
species, Tetrapleura tetraptera is also used as medicine, for food
and fodder, Leucaena leucocephala serves as fodder for livestock,
mulch for crop cultivation and fuelwood for household cooking
while Senna siamea is known for its medicinal, fodder, and
fuelwood uses in the study regions.

CONCLUSION

Our comparison of ES proxies between actively restored forest,
agroforestry and natural forest plots highlighted the high value
of natural forests for the provision of ES in the study region.
However, creating a forest composition resembling the natural
forest plots through post-mining restoration approaches may
not be a realistic goal. Alternative restoration practices are
therefore needed to optimize the provision of ES and active
restoration seems to provide a viable option, as levels of fodder
tree biomass, predator and decomposer numbers were relatively
high. However, future active restoration approaches should be
optimized toward higher levels of food tree biomass that are at
least comparable to levels in agroforestry plots and would support
local human communities. The monitoring of ES proxies in
actively restored forests should further continue as the trajectory
of these plots over time is unknown.
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