
ORIGINAL RESEARCH
published: 14 December 2020
doi: 10.3389/ffgc.2020.569184

Frontiers in Forests and Global Change | www.frontiersin.org 1 December 2020 | Volume 3 | Article 569184

Edited by:

Catarina C. Jakovac,

Wageningen University and

Research, Netherlands

Reviewed by:

Renato Crouzeilles,

Instituto Internacional de

Sustentabilidade (IIS), Brazil

Adriana Manhães,

Rio de Janeiro State University, Brazil

*Correspondence:

Mário Marcos do Espírito-Santo

mario.marcos@unimontes.br

Specialty section:

This article was submitted to

Forest Disturbance,

a section of the journal

Frontiers in Forests and Global

Change

Received: 03 June 2020

Accepted: 24 November 2020

Published: 14 December 2020

Citation:

Espírito-Santo MMd, Rocha AM,

Leite ME, Silva JO, Silva LAP and

Sanchez-Azofeifa GA (2020)

Biophysical and Socioeconomic

Factors Associated to Deforestation

and Forest Recovery in Brazilian

Tropical Dry Forests.

Front. For. Glob. Change 3:569184.

doi: 10.3389/ffgc.2020.569184

Biophysical and Socioeconomic
Factors Associated to Deforestation
and Forest Recovery in Brazilian
Tropical Dry Forests
Mário Marcos do Espírito-Santo 1,2*, André Medeiros Rocha 3,4, Marcos Esdras Leite 4,

Jhonathan Oliveira Silva 5, Lucas Augusto Pereira Silva 4 and

Gerardo Arturo Sanchez-Azofeifa 6

1Departamento de Biologia Geral/Centro de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros,

Montes Claros, Brazil, 2Department of Geography, University of Exeter, Exeter, United Kingdom, 3 Faculdade de Filosofia

Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, Brazil, 4Departamento de Geociências/Centro de

Ciências Humanas, Universidade Estadual de Montes Claros, Montes Claros, Brazil, 5Colegiado de Ecologia, Universidade

Federal do Vale do São Francisco-UNIVASF, Senhor do Bonfim, Brazil, 6 Earth and Atmospheric Sciences Department,

University of Alberta, Edmonton, AB, Canada

The determination of land cover changes (LCCs) and their association to biophysical and

socioeconomic factors is vital to support government policies toward the sustainable use

of natural resources. The present study aimed to quantify deforestation, forest recovery

and net cover change in tropical dry forests (TDFs) in Brazil from 2007 to 2016, and

investigate how they are associated to biophysical and socioeconomic factors. We also

assessed the effects of LCC variables in human welfare indicators. For this purpose,

we used MODIS imagery to calculate TDF gross loss (deforestation), gross gain (forest

recovery) and net cover change (the balance between deforestation and forest recovery)

for 294 counties in three Brazilian states (Minas Gerais, Bahia, and Piauí). We obtained

seven factors potentially associated to LCC at the county level: total county area, road

density, humidity index, slope, elevation, and % change in human population and in

cattle density. From 2007 to 2016, TDF cover increased from 76,693 to 80,964 km2

(+5.6%). This positive net change resulted from a remarkable forest recovery of 19,018

km2 (24.8%), offsetting a large deforested area (14,748 km2; 19.2%). Practically all these

cover changes were a consequence of transitions from TDF to pastures and vice-versa,

highlighting the importance of developing sustainable policies for cattle raising in TDF

regions. Each LCC variable was associated to different set of factors, but two biophysical

variables were significantly associated both to TDF area gained and lost per county:

county area (positively) and slope (negatively), indicating that large and flat counties have

very dynamic LCCs. The TDF net area change was only associated (negatively) to the

humidity index, reflecting an increase in TDF cover in more arid counties. The net increase

in Brazilian TDF area is likely a result from an interplay of biophysical and socioeconomic

factors that reduced deforestation and caused pasture abandonment. Although the

ecological integrity and permanence of secondary TDFs need further investigation, the

recovery of this semi-arid ecosystem must be valued and accounted for in the national

forest restoration programs, as it would significantly help achieving the goals established

in the Bonn agreement and the Atlantic Rain Forest pact.
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INTRODUCTION

The detection of land cover change (LCC) and its causes
is fundamental to the formulation of public policies aiming
at reducing the loss of biodiversity and ecosystem services,
especially in highly threatened tropical regions. The typical land
use cycle in the tropics starts with deforestation of mature
or secondary forests, frequently with the use of fire, to the
establishment of pastures or croplands (Thomaz, 2013; Mesquita
et al., 2015; Barlow et al., 2020; Schmidt and Eloy, 2020). Indeed,
livestock raising and agriculture are the most important drivers
of land cover change in Latin America (Armenteras et al., 2017;
Curtis et al., 2018; Bonilla-Moheno and Aide, 2020). The extent
and consequences of such process are well-illustrated by the
recent and drastic increase in fires and deforestation in Brazil,
especially in the Amazon (Barlow et al., 2020; Escobar, 2020).

Usually, tropical agricultural lands are managed using
fertilizers, pesticides, and fire [Barona et al., 2010; Organization
for Economic Co-operation Development (OECD), 2018],
frequently causing soil exhaustion (Sousa et al., 2012; Rocha-
Júnior et al., 2017) followed by land abandonment (Lawrence
et al., 2010; Thomaz, 2013; Mesquita et al., 2015). Very degraded
soils in tropical regions are generally less suitable to plant
recolonization (Jakovac et al., 2016; Rezende and Vieira, 2019),
which can cause desertification especially in semi-arid regions
(Sousa et al., 2012; Marengo and Bernasconi, 2015; Queiroz
et al., 2020). However, natural regeneration is somewhat frequent,
but its speed and pathways depend on several factors, such as
landscape configuration (e.g., distance to forested areas, amount
of forest cover) that affect the sources of plant colonizers (Jakovac
et al., 2015; Rozendaal et al., 2019), and previous land use
practices that determine soil biotic and abiotic conditions for
seed germination and plant growth (Jakovac et al., 2015, 2016;
Rezende and Vieira, 2019).

In recent years, the importance of forest recovery and
secondary forests to biodiversity conservation has received
increased attention (Wright and Muller-Landau, 2006; Lugo,
2009; Poorter et al., 2016). Usually, forest recovery through
natural regeneration is more cost-effective than active restoration
through tree planting, especially at the regional and national

scales (Catterall and Harrison, 2006; Nunes et al., 2017;
Crouzeilles et al., 2020). A recent global meta-analysis also

indicated that, in tropical regions, natural regeneration is more

successful to restore biodiversity and vegetation structure than
active restoration when abiotic and biotic factors are controlled
(Crouzeilles et al., 2017). However, the effectiveness of natural
regeneration can be hindered in isolated, dry and/or highly
degraded regions, where active restoration is considered more
adequate (Holl and Aide, 2011; Crouzeilles et al., 2017)

In order to develop policies to stimulate large-scale restoration
initiatives, it is necessary to determine the spatial occurrence of
both deforestation and forest recovery, as well as their association
to biophysical and socioeconomic factors. It is also important to
assess the effects of LCC on human welfare, because agricultural
sectors in tropical countries claim that deforestation is necessary
for increasing employment and income (frequently based on
Kuznets environmental curves) (Bhattarai and Hammig, 2004;

Espírito-Santo et al., 2016; Santiago and Couto, 2020). On the
other hand, environmental agencies and researchers indicate that
decreasing natural vegetation cover inevitably erode ecosystems
services that support human well-being (IPBES, 2019). In many
cases, forest recovery occurs after land abandonment in private
properties for economic reasons, including decreasing demand
for commodities (e.g., beef, soybean, palm oil), change in
technology, urbanization and rural exodus, among others (Rey-
Benayas et al., 2007; Lambin and Meyfroidt, 2010; Espírito-
Santo et al., 2016; Stan and Sanchez-Azofeifa, 2019). However,
the frequency of land abandonment is influenced by biophysical
characteristics that affect productivity, such as terrain slope, soil
fertility, and climate (Díaz et al., 2011; Aide et al., 2013; Xie
et al., 2020). Local and regional socioeconomic factors are also
important, including access to bank loans, government subsidies,
distance to consuming markets and transport infrastructure,
among others (Laue and Arima, 2016; Trigueiro et al., 2020).

High deforestation and degradation rates were observed for
TDFs in the Americas (Miles et al., 2006; Portillo-Quintero
and Sánchez-Azofeifa, 2010; Grinand et al., 2013; Rudel, 2017;
Dupin et al., 2018), a situation that is worsened in Brazil by
the neglection of these ecosystems in terms of research and
conservation efforts, especially when compared to tropical wet
forests (Sánchez-Azofeifa et al., 2005; Santos et al., 2011; Blackie
et al., 2014). The present study aimed to estimate the extent
of LCC (with focus on forest recovery, deforestation and net
forest cover change) in Brazilian TDFs during 10 years (from
2007 to 2016). Based on previous studies at different scales (Aide
et al., 2013; Beuchle et al., 2015; Dupin et al., 2018), we predict
that TDF recovery is extremely important to offset the huge
deforestation rates observed in this ecosystem. Furthermore, we
hypothesize that deforestation and forest recovery (and also the
balance between them), which are motivated by distinct reasons,
are associated to different biophysical and socioeconomic factors.
For these purposes, we mapped an area of 917,768 km2 in the
states of Minas Gerais, Bahia and Piauí, where most TDFs are
concentrated (143,813 km2, 52.5%), using counties as analytical
units. We expect that deforestation will be higher in large,
flat, and humid counties with high density of roads, human
population, and cattle herd. Regeneration will also be higher in
large, flat, and humid counties, but negatively associated to the
density of roads, human population, and cattle herd. Finally,
we hypothesize that human welfare indicators are associated
with LCC. In this case, we predict that counties with high
deforestation from 2007 to 2016 will exhibit an increase in
inequality and a decrease in gross domestic product and human
development index.

MATERIALS AND METHODS

Study Region
In this study, we use the tropical dry forest definition of the
Brazilian Institute for Geography and Statistics (IBGE), which is
based on vegetation structure and phenology [Instituto Brasileiro
de Geografia e Estatística (IBGE), 2012]. As such, TDFs are
considered to have four strata (herbs, shrubs, treelets, and
trees), with dominance of trees with 20–30m in height, and are
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composed by deciduous plants that lose more than 50% of their
leaves during the dry season. This definition is also concurrent
with those of Murphy and Lugo (1986) and Sánchez-Azofeifa
et al. (2005). According to this stricto sensu definition, Brazilian
TDFs cover ca. 273,678 km2, and do not include most of the
Caatinga biome which does not have a forest structure [Figure 1;
Instituto Brasileiro de Geografia e Estatística (IBGE), 2012].

Since 1993 TDFs are considered “associated ecosystems” to
the Brazilian Atlantic Rain Forest (Federal Decree 750), due
to their floristic similarity with coastal forests. In 2006, such
status was ratified by the so-called Atlantic Rain Forest Law
(Federal Law 11428), and a map with the distribution of legally
protected TDFs (218,662 km2) was published (Federal Decree
6660) (Espírito-Santo et al., 2011; Muylaert et al., 2018), which
we used in the present study (Figure 1). Thus, most TDFs are
fully protected under the umbrella of the Atlantic Rain Forest,
with much stronger restrictions on land clearing (only permitted
for early successional stages or in cases of public utility or
social interest) (Dupin et al., 2018). TDFs are distributed along
three Brazilian biomes that cover the study region: Atlantic Rain
Forest (18.3%), composed by coastal ecosystems ranging from
mangroves to evergreen, tall closed-canopy forests; Caatinga, a
semi-arid woodland composed mostly of thorny and deciduous
plants (39.9%); and Cerrado, a savannic ecosystem characterized
by a grass layer and fire-adapted shrubs and trees (41.8%).
These states are composed by 10 meso-regions encompassing
619 counties, with a total population of 18 million inhabitants
[Instituto Brasileiro de Geografia e Estatística (IBGE), 2016].

Image Acquisition, Processing, and
Classification
To determine the land cover changes in the study region,
we obtained MODIS (Moderate Resolution Imaging
Spectroradiometer, MOD13Q1) visible and infrared reflectance
data at 250m spatial resolution from January to December of
2007 and 2016. The select time frame refers to 10 years after
the Atlantic Rain Forest law took effect (December 2006).
Four MODIS tiles encompassing the whole study region were
integrated to compose a single Raster product, a procedure that
was repeated for each month for 2007 and 2016, coming to 24
mosaics (Supplementary Table 1). As an initial standardization
process, these mosaics were reprojected from sinusoidal
projection to 1984 World Geodetic System—WGS/World
Mercator using the MODIS Reprojection Tool (available from
http://lpdaac.usgs.gov/; Justice et al., 2002) and resampled to
250m original spatial resolution (minimum mapping unit of
6.25 ha). In order to reduce the number of products applied in
the classification scheme, monthly datasets were converted into
seasonal averages. This step was fundamental for determining the
periods in which the vegetation classes mainly recorded the best
seasonal contrast. By such criterion, the summer (December–
March) and winter (July–September) seasonal averages were
employed to derive the majority of inputs used in the Decision
Tree (see below).

We defined eight land cover classes: TDFs, other native
vegetation types, urban areas, water, croplands, pastures/bare

soil, burned areas, and ecotones (a transitional native vegetation
type). Given the large extent of the study region and the fact
that many of the land cover classes exhibited spatial variations
in spectral responses, we decided to compartmentalize the study
region into 10 control sub-regions based on spectral (red and
near-infrared bands) and topographic criteria (Carvalho et al.,
2006), in order to cope with the spatial-spectral variability
inside the Decision Tree. For the specific purpose of region
compartmentalization, we derived slope and elevation using the
Digital Elevation Model—DEM from Shuttle Radar Topographic
Mission—SRTM (1:250,000 scale).

We used the Decision Tree as the supervised classification
method, in which a varied number of inputs can be employed
to assign each pixel to the most adequate class through binary
decisions (ENVI, 2004; Otukei and Blaschke, 2010). We assessed
pixel changes from 2007 to 2016 to describe the large-scale
patterns investigated at the county level. The red and near-
infrared bands of the winter and summer mosaics were used
in the classification, as well as the following derived vegetation
indices: Normalized Difference Vegetation Index—NDVI (Rouse
et al., 1973), Soil-Adjusted Vegetation Index—SAVI (Huete,
1988), and Normalized Difference Built-up Index—NDBI (Zha
et al., 2003). The final classification was improved by visually
checking confusing areas with digitized ground control points
for all land cover types obtained from medium to high
spatial resolution imagery (Landsat TM, OLI, and Google Earth
products). Finally, we performed a ground-truth validation
during March 2017 by visiting 23 different areas in the study
region where classification was difficult. To assess the accuracy
of our classification, we constructed an Error Matrix (Congalton
and Green, 2008) comparing our validation points with our
land cover map, which was used for the calculation of general
(Overall Accuracy and Kappa Coefficient) and individual (User’s
Accuracy) validation metrics. Image processing and classification
were conducted with ArcGIS 10.2.1, ENVI 5.3 and Google
Earth 7.1.5.

Factors Associated With LCC
In the present study, forest recovery was considered as both
unassisted and assisted natural regeneration (i.e., secondary
succession) and active restoration (i.e., full planting of native
species) of TDFs in areas without this land cover class in a
previous period. Thus, it represents gross gains in TDF cover
during the studied period, henceforth “TDF area gained.” We
considered deforestation as the change in land cover from the
class “TDF” to all other classes, except other types of natural
vegetation, including ecotones. In this sense, it indicated losses
in TDF cover (henceforth “TDF area lost”). We did not consider
forestry areas (plantations of exotic species such as Eucalyptus
and Pinus) as forest recovery. These areas were included in the
“croplands” class during the classification process, meaning that
conversion of TDFs to forestry was computed as deforestation.
Finally, we calculated the TDF net area change as the balance
between deforestation (gross loss in area) and forest recovery
(gross gain in area). Because of the large scale of the analysis and
the resolution ofMODIS imagery, we did not assess the ecological
integrity of the mapped TDFs.
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FIGURE 1 | Distribution of tropical dry forests (TDFs) in the northeastern region of Brazil, as legally defined by the Brazilian Institute of Geography and Statistics (IBGE,

Federal Decree 6660/2008) to the enforcement of the Atlantic Rain Forest law (see text for further details). Lines represent state (gray) and meso-region (black) limits.
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Using a map of the Brazil’s administrative regions [Instituto
Brasileiro de Geografia e Estatística (IBGE), 2010a] and the
SRTM, we obtained the following variables per county: total area
(km2), average slope (%) and average elevation a.s.l. (m). We also
calculated the road density (m/m2) using the IBGE’s transport
system database [Instituto Brasileiro de Geografia e Estatística
(IBGE), 2010b], and the humidity index using the IBGE’s climatic
map [Instituto Brasileiro de Geografia e Estatística (IBGE), 2002].
IBGE defined nine climate classes based on the number of
dry months per year, ranging from semi-arid (−100) to super-
humid (+100) (Supplementary Table 2). When the county area
contained more than one climate class, we calculated a weighted
average humidity index, considering the proportion of the
county covered by each climate class. Socioeconomic parameters
for each county were acquired from two different databases
(demographic and agricultural) from IBGE’s censuses. We used
demographic censuses from 2000 and 2010 [Instituto Brasileiro
de Geografia e Estatística (IBGE), 2010c] to obtain population
density (individuals/km2). Finally, we used agricultural censuses
from the IBGE to obtain the cattle herd density (heads per km2)
per county in 2006 and 2016 [Instituto Brasileiro de Geografia e
Estatística (IBGE), 2017b]. These variables were selected because
they were considered as important drivers of LCC in previous
studies that used counties as analytical units (e.g., Aide et al.,
2013; Espírito-Santo et al., 2016; Dupin et al., 2018; Trigueiro
et al., 2020).

Welfare Indicators
We used demographic censuses from 2000 and 2010 [Instituto
Brasileiro de Geografia e Estatística (IBGE), 2010c] to obtain
the Gini Inequality Index. We also generated the disaggregated
version of the Human Development Index (HDI-I) that
considers only income [Programa das Nações Unidas para o
Desenvolvimento (PNUD), 2015], as it reflects more directly the
economic gains from the conversion of the TDFs at the county
level (Espírito-Santo et al., 2016). The Gross Domestic Product
(GDP in Brazilian reais; standardized for the year 2010) was
extracted from the IBGE databases for 2006 and 2017 [Instituto
Brasileiro de Geografia e Estatística (IBGE), 2017a].

Statistical Analyses
Temporal Variations

LCC was assessed by calculating the total TDF area lost
(deforestation) and gained (forest recovery), and the TDF net
area change per county between 2007 and 2016 (three response
variables). We included seven explanatory variables as potential
factors associated with LCC: total county area, average slope,
average elevation, road density, humidity index, and percentage
variation in population and cattle density. To evaluate whether
the LCC variables and their associated factors (except for county
area, average slope, average elevation, and humidity index) differ
between 2007 and 2016, paired t-tests based on permutations
were used because the samples were temporally dependent. The
spatial autocorrelation (SAC) was estimated using spatial filters
(MEMs, Moran’s eigenvector maps; Dray et al., 2006) that were
selected progressively (Blanchet et al., 2008). For these analyses,
we followed the R code proposed by Eisenlohr (2014). The same

analyses were conducted for human welfare indicators (Gini
Index, GDP, and HDI-I).

Factors Associated With LCC

We used multiple linear regressions through generalized linear
models (GLMs) to test the effects of the seven factors on the three
LCC response variables. We built three complete GLM models
with Gaussian error distribution, and the models for TDF area
gained and lost were additionally adjusted for a log-link function
(Crawley, 2012). The variance inflation factor (VIF) was used
as measure of multicollinearity. We verified that there was no
collinearity between the predictor variables (variance inflation
factor<10; Quinn and Keough, 2002), which were all maintained
in the complete models. Themodels were adjusted for orthogonal
partitioning of variance (type III sum of squares), to verify the
proportion of variance attributed to each explanatory variable
regardless of their sequential order in themodels (Crawley, 2012).
None of the variables (either response or explanatory) was scaled
for these analyses.

We tested our models for SAC of the residuals through
minimal adequate GLMs using correlograms, with Moran’s
I coefficient as an indicator of SAC (obtained by package
“pgirmess” in the R software; R Development Core Team,
2020). The minimal adequate models were submitted to residual
analyses to verify the adequacy of the error distribution. The
significance of SAC in the residuals was detected by the
sequential Bonferroni criteria (Fortin and Dale, 2005). We found
SAC in all the minimal adequate GLMs. To address SAC, we
obtained spatial filters (MEMs; Dray et al., 2006) using the
“adespatial” and “spacemakeR” packages in the R software.
We performed a forward selection of spatial filters, following
the double stopping and R2 adjusted criteria recommended
by Blanchet et al. (2008). Finally, the best-fit model for each
response variable was selected based on the minimum Akaike’s
information criterion adjusted for small sampled size (AICc)
(Burnham and Anderson, 2002), using the function “dredge”
in the package MuMin (R Development Core Team, 2020).
We compared 231 competing models for each LCC response
variable, including a null model with no explanatory variables.
In these analyses, the best model has a 1AICc value of 0,
but all models with 1AICc ≤2 have substantial support and
may be considered equally plausible when the null model has
an 1AICc >2. However, alternative models that differ from
the best model by one additional parameter with unchanging
maximized log-likelihood should not be considered competitive
(i.e., larger models with uninformative parameters) (Burnham
and Anderson, 2002; Arnold, 2010). No significant SAC was
detected for these models (see Supplementary Tables 3, 4;
Supplementary Figures 1–3). The R code used for these analyses
was modified from Eisenlohr (2014) and is available at https://
github.com/pedroeisenlohr/variancepartition.

LCC and Human Welfare

We evaluated the potential association of LCC variables
with human welfare following the same procedure previously
described for the analyses of potential factors associated with
LCC. For this purpose, we calculated the percentage change per
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FIGURE 2 | Land cover changes in the studied region from 2007 to 2016. Forestry was included in the Cropland class. Lines represent state (gray) and meso-region

(black) limits.

county in the Gini Index and HDI-I between 2000 and 2010,
and in the GDP between 2006 and 2016. These parameters
were inserted as response variables in separate GLMs, with three
explanatory variables: TDF area gained, TDF area lost and TDF
net area change per county. All three models were adjusted with
a Gaussian error distribution. We tested the multicollinearity
between the predictor variables and, after detecting a VIF >10,
we removed TDF net area change from the complete models
(Quinn and Keough, 2002). To address SAC, we obtained
spatial filters (MEMs; Dray et al., 2006) using the “spatialreg”
package in R, because one region has no neighbors at the 1 km
threshold. This means that the general weights sum is zero for
this region (see Borcard et al., 2011; Legendre and Legendre,
2012). Model selection for environmental and spatial variables
and residual inspection for SAC were performed as described in
the previous models, using the R code proposed by Eisenlohr
(2014). No significant SAC was detected for these models (see
Supplementary Table 5; Supplementary Figures 4–6).

RESULTS

Trends in Land Cover Change
The overall accuracy of the generated map was estimated

to be 89.4%, with a Kappa coefficient of 86.8%. Accuracy

varied among LCC classes, being 85% for tropical dry forests
(Supplementary Table 6). We detected large changes in land

cover during 10 years in the study region. From 2007 to 2016,
TDF cover increased from 76,690 to 80,960 km2 (+5.57%), which

was proportionally higher than the observed for other natural

vegetation types (+1.62%) (Figure 2; Table 1). This positive net
change resulted from a remarkable forest recovery of 19,018 km2

(24.8%), offsetting a large deforested area (14,748 km2; 19.2%).
Practically all these cover changes were a consequence of TDF-
pasture transitions: 18,459 km2 of pastures recovered to TDFs
and 14,394 km2 of TDFs were converted to pastures (Table 1).
Pasturelands cover a much larger area than croplands in the
region, but decreased from 200,170 to 181,580 km2 (−9.2%)
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TABLE 1 | Changes among land cover classes in the studied TDF region from 2007 to 2016.

Land cover classes (km2)

2016 2007

TV Burned Water Urban Croplands Pastures TDF OVT

TV 30,231.8 0 0 0 0 0 0 0

Burned 0 83.8 0 0 0 34.3 7.7 86.9

Water 0 0 3,895.2 32.2 1.2 159.1 18.1 320.3

Urban 0 0 11.0 1,703.8 0.4 6.3 2.03 7.9

Croplands 0 1,680.2 11.7 0.3 27,027.1 5,667.8 325.3 12,701.9

Pastures 0 2,107.5 274.4 5.7 1,908.4 113,035.1 14,393.9 49,855.3

TDF 0 468.9 36.7 2.3 48.5 14,459.2 61,942.2 2.9

OVT 0 3,763.1 1,560.0 5.3 3,966.9 62,809.3 1.8 498,939.0

Total 2007* 30,231.8 8,103.4 5,879.0 1,749.5 32,952.5 200,170.9 76,690.8 561,914.3

Total 2016** 30,231.8 212.7 4,516.0 1,731.3 47,414.2 181,580.4 80,960.6 571,045.3

Loss 0.0 −8,019.6 −1,893.8 −45.8 −5,925.4 −87,135.8 −14,748.6 −62,975.3

Gain 0.0 +128.9 +530.8 +27.5 +20,387.1 +68,545.3 +19,018.4 +72,106.3

Net change (km2) 0.0 −7,890.7 −1,363.0 −18.3 +14,461.7 −18,590.5 +4,269.8 +9,131.0

Net change (% of 2007 area) 0 −97.3 −23.2 −1.04 +43.9 −9.23 +5.57 +1.62

*Sum of column values.

**Sum of row values.

TV, transitional vegetation; TDF, tropical dry forest; OVT, other vegetation types. Forestry was included in the Cropland class.

TABLE 2 | Changes in the area (km2) of tropical dry forests per meso-region from

2007 to 2016.

Meso-region Total area Loss Gain Net change

2007 2016

Southwest of Piauí (8) 6,061.2 7,716.9 1,702.8 3,358.5 +1,655.7 (27.3%)

Far West of Bahia (3) 13,026.7 14,417 1,826.1 3,216.4 +1,390.3 (14.0%)

São Francisco Valley of

Bahia (10)

15,101.3 15,737.5 2,038.5 2,674.6 +636.2 (4.2%)

Central-South of Bahia

(2)

20,922.1 21,522 4,514.5 5,114.4 +599.9 (2.86%)

Jequitinhonha (4) 3,846.9 4,038.2 628.4 819.8 +191.3 (5.0%)

Central-North of Bahia

(1)

252.9 277.2 29.9 54.2 +24.3 (9.6%)

North of Minas Gerais

(7)

17,480 17,250.6 4,010.1 3,780.7 −229.4 (1.3%)

Meso-regions are in decreasing order of TDF area net change.

during the study period. On the other hand, croplands exhibited
the greatest change from 2007 to 2016, increasing from 32,952 to
47,414 km2 (43.9%), mostly replacing other vegetation types and
pasturelands, but affecting a very limited TDF area. Although a
large area of other vegetation types was converted to pasturelands
(68,809 km2; 11.2%), the relative impact of this LCC was higher
for TDFs (18.9%) (Table 1).

TDFs were unevenly distributed across the 10 studied meso-
regions. For the three coastal meso-regions (5, 6, and 9), TDF
occurrence (as indicated in Figure 1) was very small and not
detected in our mapping. TDFs were mostly concentrated in

Central South and São Francisco Valley in Bahia state, and in
the North of Minas Gerais state (Figure 1; Table 2). A positive
TDF net area change was detected in six out of seven studied
meso-regions, varying greatly from more than +1,650 km2

(Southern Piauí state) to only +24 km2 (Central-North Bahia
state) (Table 2). In relative terms, the Southern Piauí state and
the Center-West of Bahia exhibited the highest forest recovery,
with TDF net gain of 97 and 76% higher than TDF loss. The only
meso-region with net TDF loss was the north of Minas Gerais
state (−229 km2). This pattern was reflected at the state level,
with Minas Gerais being the only state with a negative TDF net
area change (Supplementary Table 7).

Factors Associated With LCC
In the whole studied region, 294 out of 619 counties presented
TDFs either in 2007 or 2016. The number of counties with
positive TDF net area change (196) was twice the number of
counties with negative TDF net area change (98) (Figure 3).
In average, the TDF area per county showed a slight but
statistically significant increase (+0.5%) from 2007 to 2016
(Table 3). Temporal differences were also observed for the two
potential socioeconomic factors associated with LCC: population
density slightly increased and cattle density slightly decreased
during the study period (Table 3).

Our model selection indicated 10 models with 1AICc ≤2
that explain the relationship between TDF recovery (area
gained) per county and its potential associated factors in
the study region. Our best-fit model (i.e., with the lowest
1AICc; Supplementary Table 3) showed that three biophysical
factors were significantly associated to TDF recovery: county
area (positively), slope (negatively), and the humidity index
(negatively) (Figure 4). These variables reduced the AIC of the
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FIGURE 3 | Net change in tropical dry forest (TDF) cover along the 619 counties in each of 10 meso-regions, encompassing three Brazilian states (Minas Gerais,

Bahia and Piauí). 1 = Central-North of Bahia; 2 = Central-South of Bahia; 3 = Far West of Bahia; 4 = Jequitinhonha; 5 = Metropolitan Region of Salvador; 6 =

Northeast of Bahia; 7 = North of Minas Gerais; 8 = Southwest of Piauí; 9 = South of Bahia; 10 = São-Francisco Valley of Bahia. The eight classes of net change,

from net deforestation in red to net regeneration in blue, were defined based on four positive and negative quartiles for the 619 counties.
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TABLE 3 | Average tropical dry forest (TDF) area, factors associated with land

cover change and welfare indicators for the years 2007 and 2016 per county

(mean ± standard error).

Source Year

2007 2016 Change

(%)

Paired

T-test

P

TDF area (km2 ) 180.70 ± 12.95 186.72 ± 12.46 +0.5% 7.69 <0.001

Associated

parameters

Population density

(ind/km2 )

20.94 ± 5.41 22.36 ± 6.24 +6.78% 3.13 <0.001

Cattle density

(heads/km2 )

23.76 ± 1.82 22.19 ± 2.03 −6.61% 4.72 <0.001

Welfare indicators

Gini inequality

index

0.56 ± 0.01 0.51 ± 0.01 −8.92% 12.06 <0.001

GDP (thousands

R$)

70.43 ± 5.93 168.36 ± 9.37 +139.0% 70.47 <0.001

IDH-I 0.51 ± 0.01 0.58 ± 0.01 +13.7% 1.17 <0.05

Statistically significant differences (P < 0.05) are in bold.

null model from 1116.6 to 1032.8 (Supplementary Table 3).
The remaining models were not considered because they
contained additional uninformative parameters. Thus, forest
recovery was higher in flat and more arid areas. The minimal
adequate model had an adjusted R2 of 0.51, and each factor
explained only a small proportion of the observed variance
(Supplementary Table 4; Supplementary Figure 7). The same
pattern was observed for the effects of county area and slope
on deforestation (TDF area lost). In contrast, TDF loss was
negatively associated to the increase in population density but
not to the humidity index (Figure 5). In this case, only three
models had 1AICc ≤2, and the three explanatory variables
of the best-fit model reduced the AIC of the null model
from 1243.0 to 1205.3 (Supplementary Table 3). Alternative
models were not considered competitive due to their lower
weight. The minimal adequate model had an adjusted R2

of 0.50 (Supplementary Table 4). Finally, our model selection
indicated 12 models with 1AICc ≤2 that explain TDF net
area change. The best-fit model showed that this variable was
associated only to the humidity index (negatively; Figure 6),
which reduced the AIC of the null model from 3471.3 to
3462.1 (Supplementary Table 3). The remaining models were
not considered because they contained additional uninformative
parameters. The minimal adequate model had an adjusted R2 of
0.58 (Supplementary Table 4).

LCC and Welfare Indicators
The human welfare indicators considered in the present
study changed significantly from 2007 to 2016, reflecting
improvements in socioeconomic conditions in all three states
(Table 3; Supplementary Table 7). The GDP showed the greatest
change (+139% in average) in 10 years, increasing in all
counties but one. The HDI-I increased 13.7% (in all counties but
two) and the Gini inequality index decreased 8.92% (Table 3).
For the latter, variation per county was more pronounced:

FIGURE 4 | Effects of the (A) county area, (B) average slope, and (C) humidity

index on tropical dry forest area gained (km2 ) at the county level for three

Brazilian states. These explanatory variables were retained in the minimal

(Continued)
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FIGURE 4 | adequate generalized linear model with a Gaussian error

distribution (adjusted R2 = 0.51, p < 0.05) after stepwise model selection

(n = 294). Circles represent values obtained after summation of raw residuals

with the predict values for each variable, assuming average values for other

covariates. Partial model parameters: (A) Y = log(2.693 + 0.0001*area), R2 =

0.109; (B) Y = log(3.969 – 0.081*slope), R2 = 0.011; (C) Y = log(3.103 –

0.021*humidity), R2 = 0.090. Additional parameters for complete and minimal

adequate models are given in Supplementary Table 3.

13 counties had no change in the Gini inequality index,
whereas 61 showed an increase in this indicator. Human welfare
indicators were not associated with TDF area gained or lost
(Supplementary Table 5).

DISCUSSION

Tropical dry forests in the studied region experienced very
dynamic land cover changes from 2007 to 2016, with 33,766
km2 (23.5% of the original extent considered here) under some
type of transition among land cover classes. Deforestation was
unexpectedly high, considering that TDFs are fully protected
by the Atlantic Rain Forest law. However, such loss was offset
by an impressive extent of forest recovery, although we could
not assess the ecological integrity of recovered areas (e.g., if
deforestation of old-growth forests was offset by the recovery of
early-successional forests). Despite that, our results highlight the
importance of this process to the maintenance of forest cover and
associated ecosystem services (e.g., water provision, soil fertility,
carbon sequestration, climate regulation and pollination, among
others). We observed meso-regional differences in LCC, and the
main factors associated to deforestation and forest recovery at the
county level were county area, slope, humidity, and population
density. Although these results are important to inform policy-
makers on developing conservation strategies to Brazilian TDFs,
the trends detected in the present study should be confirmed
by multiple time-steps and updated frequently to reveal detailed
LCC dynamics.

Trends in LCC
The vast majority of TDF recovery in the study region occurred
in pastures used predominantly for cattle raising, reinforcing
that this economic activity deserves special attention for the
design of restoration policies (Strassburg et al., 2014; Latawiec
et al., 2015; Poore, 2016; Xie et al., 2020). This observed TDF
regrowth can be the result of (i) passive or active restoration
to conform to the Brazilian Native Vegetation Protection Law
(Federal Law 12727/2012); (ii) management practices such as
pasture rotation and (iii) land abandonment for socioeconomic
reasons. In the first case, the mentioned law indicates that every
rural private property must preserve at least 20% of its total
area as a “legal reserve” in the Atlantic Rain Forest (Brancalion
et al., 2016). Although this restriction existed for decades, it was
barely enforced in most regions, leading to a huge deficit in legal
reserves in this biome (Soares-Filho et al., 2014; Freitas et al.,
2017). Compliance to legal reserve requirements would demand
the restoration of 5.17 million hectares (Soares-Filho et al., 2014)

FIGURE 5 | Effects of the (A) county area, (B) average slope, and (C) increase

in population density (%) on tropical dry forest area lost (km2) at county level

for three Brazilian states. These explanatory variables were retained in the

(Continued)
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FIGURE 5 | minimal adequate generalized linear model with a Gaussian error

distribution (adjusted R2 = 0.50, p < 0.05) after stepwise model selection (n =

294). Circles represent values obtained after summation of raw residuals with

the predict values for each variable, assuming average values for other

covariates. Partial model parameters: (A) Y = log(2.653 + 2.22E-05*area), R2

= 0.060; (B) Y = log(3.583 – 1.08E-01*slope), R2 = 0.021; (C) Y = log(2.753

– 1.65E-02*populational density), R2 = 0.011. Additional parameters for

complete and minimal adequate models are given in Supplementary Table 3.

and, although the first steps toward this goal are ongoing (i.e.,
formally delimiting and registering areas to be permanently
assigned as legal reserves in each property in a standardized
database—the Rural Environmental Registry System—CAR in
Portuguese; Brancalion et al., 2016; Oakleaf et al., 2017), actual
TDF restoration initiatives are still limited. Recent reviews
indicate a large knowledge gap on TDF restoration in Brazil,
given that only 4–5% of the studies on this subject were
conducted in this ecosystem (Gardon et al., 2020; Guerra et al.,
2020).

In the second case, it is possible that some extent of short-
term TDF recovery is related to pasture rotation. The Atlantic
Rain Forest law prohibits the clearing of any TDF (i.e., the areas
indicated in Figure 1) except those in early successional stages.
Indeed, the Brazilian government has established technical
criteria to differentiate TDF successional stages based on species
composition, forest structure, plant life forms, and even the
amount of litterfall [e.g., CONAMA Resolution #392 for Minas
Gerais state; Ministério do Meio Ambiente (MMA), 2007]. For
example, TDFs with an average diameter at breast height (DBH)
higher than 8 cm can be considered as intermediate successional
forests and thus become fully protected under the Atlantic Rain
Forest law. As a consequence, it is likely that farmers in this
region would prevent TDFs to regrow, or adopt short rotation
intervals to keep the forest at a very early successional stage
and avoid being prohibited to clear fallow areas to establish
new pasturelands. Because our study period encompasses only
9 years (2007–2016), it is possible that regenerated areas result
from a rotational system for pasture management with a short
fallow period of natural regeneration. However, long-term TDF
recovery is less likely in this case because of possible legal
restrictions on the future use of regrowing areas. Thus, further
studies are needed to evaluate the persistence of recovered TDFs
in the landscape.

In this way, it is reasonable to assume that most TDF recovery
in northeastern Brazil during the study period is unlikely related
to active willingness to restore. Instead, TDF regrowth probably
occurred after land abandonment for socioeconomic and/or
biophysical reasons, and also as a consequence of management
practices (i.e., pasture rotation). In the northeastern region
of Brazil, which encompasses most of our study, estimates
indicate that approximately 73% of the pasturelands are degraded
and prone to abandonment (Dias-Filho, 2014). Indeed, our
LCC analyses demonstrated that pasture area decreased 10%
from 2007 to 2016 (see Table 1), which can reflect either land
abandonment or an intensification of cattle raising (i.e., an
increase in the number of animals per hectare). However, the

total size of the cattle herd in the study region decreased 11.2%,
from 7.2 to 6.4 million heads [Instituto Brasileiro de Geografia
e Estatística (IBGE), 2017b], suggesting that economic factors
are causing land abandonment thus opening space for natural
regeneration. This reduction was probably intensified by the
prolonged drought that occurred in the northeastern region from
2011 to 2016 (Mariano et al., 2018), causing land abandonment
and/or the replacement of cattle by goats, which are more
resistant to the semi-arid conditions and demand less pasture
area per head (Carvalho et al., 2005; Sousa-Júnior et al., 2008).

Such changing economic scenario can create opportunities for
large-scale restoration programs based on natural regeneration.
According to Dias-Filho (2014), the recovery of 25% of degraded
pastures in Brazil would be enough to sustain current cattle
raising levels, with the remaining area being released for other
purposes. If we consider that 73% of the pasture area in our study
region is degraded (=132,553 km2), we can estimate that 99,415
km2 would be available for restoration initiatives. However, it
is important to highlight that, despite the importance of forest
recovery (either through natural regeneration or planting) to the
potential reestablishment of biodiversity and ecosystem services
(Melo et al., 2013; Crouzeilles et al., 2017), secondary forests are
usually functionally different from old-growth forests (Espírito-
Santo et al., 2014; Crouzeilles et al., 2017; Rozendaal et al., 2019).
Indeed, the speed of natural regeneration in abandoned areas
and the ecological integrity of the resulting secondary forests
depends on the proportion of old-growth forests at the landscape
level (Chazdon et al., 2009; Jakovac et al., 2015; Rozendaal
et al., 2019). Thus, environmental policies that stimulate forest
recovery should be coupled to strategies to avoid further clearing
and degradation of old-growth forests.

Factors Associated With LCC
At the county level, we observed that deforestation and forest
recovery are mainly associated to the county area and slope.
However, deforestation was additionally associated to changes in
population density, whereas forest recovery was associated to the
humidity index. These results partially corroborate other studies
that used the same approach at different spatial scales (Aide et al.,
2013; Espírito-Santo et al., 2016; Dupin et al., 2018; Crouzeilles
et al., 2020; Trigueiro et al., 2020). The positive relationship
between both TDF area gained and lost with county area and
slope indicates that large, flat counties have very dynamic LCC,
a pattern already reported for TDFs in the north of Minas
Gerais (Dupin et al., 2018). It is likely that large counties also
possessed greater extent of TDFs and abandoned pastures in
2007, making them prone to further deforestation and forest
recovery. Indeed, the previous existence of vegetation remnants
(Aide et al., 2013; Trigueiro et al., 2020) and the county forest
proportion (Crouzeilles et al., 2020) are important drivers of
forest recovery, which is strongly influenced by the distance to
forest edges (Jakovac et al., 2015; Rozendaal et al., 2019). The
negative relationship observed between deforestation and slope
is common, indicating that flat areas are preferred for cattle
raising because mechanization is facilitated (Jasinski et al., 2005;
Aide et al., 2013; Espírito-Santo et al., 2016; Dupin et al., 2018;
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FIGURE 6 | Effects of the humidity index on the net change in tropical dry forest (TDF) area for three Brazilian states. This was the only explanatory variable retained in

the minimal adequate generalized linear model with a Gaussian error distribution (adjusted R2 = 0.50, p < 0.05) after stepwise model selection (n = 294). Positive

values indicate net area gain (natural regeneration) whereas negative values indicate net area loss (deforestation) at county level between 2007 and 2016. Circles

represent values obtained after summation of raw residuals with the predict values for each variable, assuming average values for other covariates. Partial model

parameters: Y = 3.468 – 1.146*humidity, R2 = 0.027). Additional parameters for complete and minimal adequate models are given in Supplementary Table 3.

Trigueiro et al., 2020). Thus, it is likely that flat counties also have
larger areas of abandoned pastures prone to forest recovery.

TDF area lost was slightly higher in counties with a decrease in
population density during the studied period, but no relationship
was observed with TDF area gained or net area change. The
effects of demographic variables on LCC reported in studies using
counties as analytical unit have been inconsistent. Although no
influence of population density was described for the Brazilian
Cerrado (Espírito-Santo et al., 2016; Trigueiro et al., 2020) and
the Atlantic Rain Forest (Crouzeilles et al., 2020), a negative
effect of population increase on forest recovery was detected for
TDFs in the north of Minas Gerais state (Dupin et al., 2018). In
their study for all Latin America and the Caribbean, Aide et al.
(2013) found a negative effect of population density on forest
recovery, but only for counties with more than 50% of forest
cover in the beginning of the study period. These authors also
found that low population counties, which were in the beginning
of the colonization process, had higher rates of deforestation,
whereas densely populated counties had already been deforested,
exhibiting high forest recovery rates.

The humidity index was negatively associated to both TDF
area gained and net area change, indicating that arid counties
had higher forest recovery. This is an important finding because
some studies on the definition of priority areas for restoration
programs suggested that active restoration may be more
appropriated in regions with low precipitation levels (Crouzeilles
et al., 2017, 2019a, but see Holl and Aide, 2011), where natural
regeneration is too slow or not very successful (Chazdon and
Guariguata, 2016; Poorter et al., 2016). It is possible that, in more
arid counties, the frequency of land abandonment is higher, a
pattern already reported in other studies in northeastern Brazil
(Redo et al., 2013; Sampaio et al., 2017). Nevertheless, the remote
sensing techniques used here only indicate structural vegetation
recovery, and other parameters related to biodiversity and
ecosystem functioning are necessary to determine the potential
of forest recovery in low humidity TDF areas. Studies using
high resolution images (García-Millán et al., 2014; Almeida et al.,
2020) to discriminate between TDF successional stages are also
important, as the causes of deforestation may differ from early to
old-growth forests.
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It important to highlight that, in general, our models
explained 50–60% of the total variance in LCC variables,
suggesting that other biophysical and socioeconomic factors
need further investigation. Alternatively, it is possible that the
limited predictive power of the models was caused by the
observed spatial variation on the effects of each factor. We
found that most factors were differently associated to TDF
area gained, lost and net area change in Minas Gerais, Bahia
and Piauí (Supplementary Figures 8–10). Indeed, such spatially
structured effect of factors associated to LCC have already been
reported in large scales studies encompassing several contrasting
regions (e.g., Aide et al., 2013; Trigueiro et al., 2020). These
findings reinforce the importance of analyzing causes of LCC,
preferably using high-resolution imagery and multiple time-
steps, to develop environmental and development policies finely
adjusted to different counties and regions in Brazil.

LCC and Welfare Indicators
The temporal variation in welfare indicators was not associated
with LCC at the county level in the study region, suggesting
that the relationship between deforestation and socioeconomic
development is complex and deserves further investigation.
The developmentalist association between deforestation and
well-being is usually based on the Kuznets environmental
curve, which illustrate an increasing environmental degradation
in the first stages of development, when per capita income
also increases until a turning point is reached (Bhattarai
and Hammig, 2004). After that, usually the dependence
on the primary sector (e.g., agriculture, mining) decreases
with industrialization (as predicted by the forest transition
theory), and human welfare would continue to improve
with decreasing degradation and even regeneration of natural
ecosystems (Barbier et al., 2017). Although the study region
experienced an improvement in all evaluated welfare indicators
and an increase in TDF area, the lack of association between
these variables at the county level do not support the
conclusion that Brazilian TDFs are in a steady, consistent
transition. Thus, the establishment of alternative development
policies based on sustainable practices and social justice are
still necessary.

CONCLUSIONS

Our results provide valuable basic information on the factors
associated to land cover change in Brazilian TDFs, which can
help supporting the design of environmental and development
policies aimed at reducing deforestation and maximizing
forest recovery. Further studies with fine spatial and temporal
resolution need to focus on the reversibility (see Schwartz et al.,
2020) and ecological integrity of regenerated areas in order to
assess their potential to provide long-term ecosystem services.
Such approach would also allow to more precisely determine the
causal relations between biophysical and socioeconomic factors

and LCC at the county level and their spatial structure at
larger scales (e.g., the state level), which is important to adjust
restoration strategies to different regional political scenarios.
In TDF regions, large, flat and more arid counties with very
dynamic LCC deserve special attention. Given that TDF-pasture
transitions vastly dominate LCC in the studied region (and also
other vegetation types in Brazil), environment-friendly practices
are urgently needed to avoid soil exhaustion and optimize
cattle raising efficiency. Such goal can be achieved in regional
planning programs through sustainable intensification in high
productivity areas and TDF restoration in marginal agricultural
lands with low opportunity costs (Latawiec et al., 2015). Although
TDFs are mostly neglected in restoration programs compared
to wet forests, the net forest recovery observed in the present
study was expressive (427,106 ha) and provides a significant
contribution to Brazil’s commitment under the Bonn agreement
(3.6% of 12 million ha by 2030) and the Atlantic Rain Forest
pact (42.7% of 1 million ha by 2020) (Crouzeilles et al., 2019b).
Considering that the total TDF recovery in 10 years was
1,901,800 ha, most of these goals would be achieved with efficient
enforcement of current environmental laws and clear policies for
passive restoration.
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