AUTHOR=Penman Trent D. , Clarke Hamish , Cirulis Brett , Boer Matthias M. , Price Owen F. , Bradstock Ross A. TITLE=Cost-Effective Prescribed Burning Solutions Vary Between Landscapes in Eastern Australia JOURNAL=Frontiers in Forests and Global Change VOLUME=3 YEAR=2020 URL=https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2020.00079 DOI=10.3389/ffgc.2020.00079 ISSN=2624-893X ABSTRACT=

Fire management agencies undertake a range of fire management strategies in an attempt to reduce the risk posed by future wildfires. This can include fuel treatments (prescribed burning and mechanical removal), suppression and community engagement. However, no agency has an unlimited budget and numerically optimal solutions can rarely be implemented or may not even exist. Agencies are trying to quantify the extent to which their management actions reduce risk across multiple values in the most cost-effective manner. In this paper, we examine the cost-effectiveness of a range of prescribed burning strategies across multiple landscapes in south-eastern Australia. Landscapes considered include vegetated areas surrounding the cities of Hobart, Melbourne, Adelaide, Canberra, and Sydney. Using a simulation approach, we examine the potential range of fires that could occur in a region with varying levels of edge and landscape prescribed burning treatment regimes. Damages to assets are measured for houses, lives, transmission lines, carbon and ecological assets. Costs of treatments are estimated from published models and all data are analyzed using multi-criteria decision analysis. Cost-effectiveness of prescribed burning varies widely between regions. Variations primarily relate to the spatial configuration of assets and natural vegetation. Regions with continuous urban interface adjacent to continuous vegetation had the most cost-effective fuel treatment strategies. In contrast, those regions with fragmented vegetation and discontinuous interfaces demonstrated the lowest cost-effectiveness of treatments. Quantifying the extent to which fuel treatments can reduce the risk to assets is vital for determining the location and extent of treatments across a landscape.