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Lactic acid bacteria (LAB), essential in fermenting milk, produce an array of
antimicrobial compounds, notably bacteriocins, which contribute to the
extended shelf life of dairy goods. Bacteriocins, ribosomally synthesized
peptides, display broad or narrow-spectrum antimicrobial activity, thus
holding promise in food preservation. The classification of LAB bacteriocins is
intricate, reflecting evolving genomic insights and biosynthesis mechanisms.
Strategies for integrating bacteriocins into dairy products include purified
forms, bacteriocin-producing LAB, and bacteriocin-containing fermentates,
each with distinct advantages and considerations. Optimization of
fermentation conditions, encompassing time, temperature, pH, and culture
medium, is essential for maximizing bacteriocin production. This optimization
facilitates enhanced quality and safety of fermented dairy items, aligning with the
growing consumer preference for natural, minimally processed foods.
Furthermore, the incorporation of bacteriocins into a hurdle approach
alongside thermal and non-thermal treatments holds promise for augmenting
food bioprotection while reducing reliance on chemical preservatives. This
comprehensive overview underscores the potential of LAB bacteriocins as a
natural, effective alternative to conventional food preservatives, offering insights
into their application and optimization in dairy product preservation.
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1 Introduction

Lactic acid bacteria (LAB) are a heterogeneous group of non-spore forming, Gram-
positive, catalase-negative without cytochromes, anaerobic or aerotolerant, fastidious, acid
tolerant, and strictly fermentative bacteria with lactic acid as the major product during sugar
fermentation. LAB have long been revered for their crucial role in the fermentation of dairy
products, contributing not only to flavor and texture but also to the preservation of these
foods (Deegan et al., 2006; Favaro et al., 2015). The latter characteristic primarily stems from
LAB’s production of antimicrobial compounds, predominantly including organic acids,
hydrogen peroxide, diacetyl, acetoin, ethanol, antifungal peptides, and bacteriocins. Among
these, bacteriocins stand out as potent antimicrobial peptides with diverse applications in
food preservation.

Bacteriocins are ribosomally synthesized antimicrobial peptides able to kill
microorganisms that are closely related or not (narrow or broad spectrum, respectively)
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(Alvarez-Sieiro et al., 2016; O’Connor et al., 2020). Many LAB and
their products fulfill the status of Generally Regarded As Safe
(GRAS) of the Food and Drug Administration (FDA, USA) or
the Qualified Presumption of Safety (QPS) from the European Food
Safety Authority (EFSA), for microorganisms intentionally
introduced into the food chain. Therefore, LAB can be used in
the food industry for the manufacture of fermented products, due to
their biopreservative abilities. Particularly in fermented dairy
products, bacteriocins offer an attractive solution. These peptides
not only inhibit the growth of pathogens post-processing but also
regulate adventitious microorganisms and enhance the fermentation
process, ultimately enriching the sensory attributes of cheeses and
similar products (O’Connor et al., 2020; Simons et al., 2020).
Bacteriocins from LAB exhibit remarkable heat resistance, can
withstand a broad spectrum of pH levels, possess no discernible
color, odor, or taste, and are vulnerable to degradation by human
digestive proteases, thereby preserving the balance of gut
microbiota. These attributes render bacteriocins well-suited for
use in food preservation (Daba and Elkhateeb, 2020). The
utilization of bacteriocins in the dairy industry reflects a broader
societal shift towards natural, minimally processed foods devoid of
synthetic preservatives.

In light of expanding consumer demand for natural, additive-
free foods, the incorporation of bacteriocins represents a promising
opportunity for safeguarding the integrity and healthiness of
dairy products.

2 Bacteriocins from LAB

2.1 Classification

The classification of bacteriocins from LAB is a complex
landscape, enriched by recent genomic studies and evolving
understanding of these antimicrobial peptides. Since
Klaenhammer’s initial classification in 1993, several schemes have
been proposed, focusing on biosynthesis mechanisms and biological
activities (Simons et al., 2020).

Although there is still no full consensus, some authors (Arnison
et al., 2013; Cotter et al., 2013; Alvarez-Sieiro et al., 2016) proposed a
classification based on biological activity and mechanisms of
biosynthesis. Here we present a brief overview:

Class I, lantibiotics, or RiPPs (ribosomally produced and post-
translationally modified peptides, heat resistant) bacteriocins which
includes: class Ia, which are peptides undergoing post-translational
modifications with lanthionine or (methyl)lanthionine addition
(e.g., nisin); class Ib (head-to-tail cyclized peptides) formed by
circular peptides linked N- and C-terminally. They form pores in
bacterial membranes; and class Ic, which are sulfur-to-α-carbon-
containing peptides with hairpin structures. Class II, non-
lantibiotics (or unmodified bacteriocins, heat resistant),
encompasses class IIa or pediocin-like, which are broad-spectrum
bacteriocins active mostly against Listeria species (e.g., pediocin PA-
1); class IIb comprises two different peptides (e.g., lacticin F); class
IIc, are cyclic peptides (e.g., enterocin AS-48) and class IId or non
pediocin-like bacteriocins, are linear peptides. Class III are large,
heat sensitive proteins that comprise class IIIa or bacteriolysins (e.g.,
enterolysin A) and class IIIb are non-lytic proteins. Class IV are

complex, heat sensitive proteins with lipid or carbohydrate moieties
(lipo- or glycoproteins; e.g., lactocin 27) (Figure 1).

2.2 Use of bacteriocin in dairy foods

Bacteriocins can be used for food biopreservation, either alone
or in combination with other methods of protection. However,
in vitro results must be confirmed in the food matrix to assure
bacteriocin effectiveness. To apply bacteriocins to foods, certain
important criteria must be met. The producing strains should be
food-grade (GRAS or QPS), exhibit a broad spectrum of inhibition,
have high specific activity, pose no health risks, offer beneficial
effects (such as improving food safety, quality, and flavor), and
demonstrate stability in heat and pH, as well as optimal solubility
and stability for the specific food application (Silva et al., 2018).

Numerous studies have been conducted on bacteriocin activity,
characterization, target organisms, and applications; however, only a
few have been commercialized. Before reaching that stage, various
concerns must be addressed. Bacteriocins used in foods must be safe
and have no toxicity for human cells. Some studies reported low
cytotoxicity in both in vitro and in vivo assays, but only after using
high bacteriocin amounts (beyond the requiredminimum inhibitory
concentrations for pathogen or spoilage organisms) and long-time
incubation. In addition, the presence of some compounds (such as
proteases) in the food matrix can rapidly degrade bacteriocins,
preventing from their bioprotective activity (Soltani et al., 2021).
Lastly, the commercial production of bacteriocin will depend on the
cost-benefit balance of producing large quantities of purified
bacteriocin. This involves large-scale production, appropriate
purification processes, and proper storage to ensure bacteriocin
stability (Reuben et al., 2024).

For centuries, bacteriocins have been consumed in fermented
and non-fermented foods. More recently, more people are looking
for natural foods without artificial preservatives. This trend is
particularly evident in the dairy industry, where consumption of
naturally fermented milks is growing, prompting a shift toward
exploring new and more natural preservation methods.

Fermented dairy products require refrigerated storage, which is
optimal for the survival and proliferation of psychrotrophic bacteria
such as L. monocytogenes. Consequently, contamination can occur
during later stages of dairy product processing (Carpentier and Cerf,
2011). Hence, bacteriocins emerge as an optimal solution for
inhibiting the growth of this pathogen post-cooking (Cotter
et al., 2005). Furthermore, bacteriocins can serve to regulate
adventitious microorganisms such as non-starter lactic acid
bacteria (NSLAB) in cheese. Moreover, bacteriocins can be
helpful in accelerating food fermentation, expedite cheese
ripening, and even augment its flavor profile (O’Sullivan et al., 2002).

Bacteriocins can be included into dairy products as purified
compounds, by adding a bacteriocin-producer LAB (as adjunct
culture), or a fermentate containing bacteriocin (as an additive or
ingredient) (Silva et al., 2018; O’Connor et al., 2020)
(Figure 2; Table 1).

2.2.1 Purified bacteriocins
Purified bacteriocins employed in dairy products offer some

advantages compared to the use of fermented product-containing
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bacteriocin or bacteriocin-producer LAB. Firstly, purification
processes ensure the removal of impurities, resulting in a higher
concentration of active bacteriocin. This increased potency
allows for more effective inhibition of pathogenic and
spoilage bacteria, thereby enhancing the shelf life and safety
of dairy products. Moreover, purified bacteriocins exhibit
improved stability and consistency in their antimicrobial
activity, making them reliable and predictable agents for food
preservation (Leroy and De Vuyst, 2010). Additionally,
purification facilitates the removal of any unwanted taste or
odor that may be associated with unpurified bacteriocins,
thereby preserving the authentic flavor profile of the dairy
product. Overall, the use of purified bacteriocins represents a
superior approach to enhancing the quality, safety, and sensory
attributes of dairy products compared to their unpurified
counterparts. However, they require expensive regulatory
approval. Up to date, nisin is the only commercial purified
bacteriocin used. Nisin is a type IA bacteriocin produced by
Lactococcus lactis (Egan et al., 2016; O’Connor et al., 2020).
There were discovered more than ten nisin variants. Nisin A, F,

Q and Z are produced by L. lactis, nisin U/U2, H, P, and G are
produced by Streptococcus species, while nisin J, O and kunkecin
A are produced by additional bacteria (Sugrue et al., 2023). Nisin
holds approval for commercial use in over 60 countries as a food
additive. Its commercial application falls under the European
Food Safety Authority (EFSA) regulation, where it is licensed as a
food preservative (E234). Moreover, nisin is recognized as a safe
biopreservative in foods by the Joint Food and Agriculture
Organization/World Health Organization (FAO/WHO) Expert
Committee on Food Additives. At present, commercial nisin is
offered by several companies: Nisaplin® (Danisco), NisinA®

(Handary), or Niseen® (Siveele) are some examples (Table 1).
Nisin is effective against numerous Gram-positive bacteria
(including LAB), pathogens such as Staphylococcus and
Listeria, and spore-forming bacteria like Bacillus and
Clostridium. The use of nisin is extensive, going from
refrigerated milk to combat the growth of pathogenic Listeria
monocytogenes and Staphylococcus aureus, to diverse cheese
varieties to prevent late blowing, a condition caused by
Clostridium species (Silva et al., 2018; O’Connor et al., 2020).

FIGURE 1
Overall classification of bacteriocins from lactic acid bacteria. Sub-classes I-b (labyrinthopeptins) and I-c (sanctibiotics) were included in the scheme
(in grey), as well as example molecules, though they were not reported in lactic acid bacteria to date.
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2.2.2 Bacteriocin-producer LAB
The addition of LAB-producing bacteriocins to the food matrix

has no regulatory limitations, and offers the advantage of localized
and continuous release of antibacterial agents as the strain
proliferates. Furthermore, it is less expensive than purified
bacteriocins because there is no need for costly purification
processes (Pujato et al., 2014). Bacteriocin synthesis depends on
various factors including environmental conditions and bacterial
growth phase. These variables may affect the consistency and
effectiveness of bacteriocin activity in dairy products. Together,
bacteriocin-producing bacteria could also generate unwanted

metabolites that could affect organoleptic characteristics of the
final product, such as taste, flavor and texture. Although,
companies producing commercial ferments guarantee that
protective cultures do not negatively influence on sensory
characteristics of the product.

There are some commercially available bacteriocin-producer
cultures (Table 1). BIOSAFE® (Chr. Hansen) contains a nisin
A-producing strain, L. lactis subsp. lactis BS-10, that is used in
hard and semi-hard cheese manufacture to prevent late blowing
defects. HOLDBAC® (Danisco) is a series of protective cultures
containing undefined bacteriocins from Propionibacterium

FIGURE 2
Antimicrobial compounds produced by lactic acid bacteria. Benefits and drawbacks of diverse approaches for incorporating bacteriocins into
dairy products.
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TABLE 1 Bacteriocins applied in dairy foods.

Bacteriocin Producer bacteria Target organism Commercial
brand

Application in dairy
foods

Source

Purified bacteriocin

Nisin A and Z Lactococcus lactis L. monocytogenes, S. aureus,
spore-forming bacteria
(Bacilllus, Clostridium)

Nisaplin® (Danisco) Cheese (cottage, feta, ripened),
refrigerated milk

www.iff.com

NisinA®, NisinZ®
(Handary)

www.
handary.com

Niseen® (Siveele) www.siveele.com

Delvo®Nis (DSM) www.dsm.com

Enterocin Enterococcus faecalis L. monocytogenes, S. aureus,
spore-forming bacteria
(Bacilllus, Clostridium)

non commercial Cheese (Saint-Paulin, fresh,
cottage), infant milk formulation

Ribeiro et al.
(2017), Liu et al.
(2008)

Lacticin Lactococcus lactis L. monocytogenes, spore-forming
bacteria (Clostridium
tyrobutyricum, Bacillus)

non commercial Cheese (cottage, fresh), yogurt,
UHT milk

Ribeiro et al.
(2016), Yildirim
et al. (2016)

Pediocin PA-1 Pediococcus pentosaceus L. monocytogenes, S. aureus non commercial Cheese (cottage), cream, cheese
sauce, raw buffalo milk

Pucci et al. (1988),
Verma et al. (2017)

Bacteriocin-producer LAB

Nisin A Lactococcus lactis subsp. lactis L. monocytogenes, S. aureus,
Clostridium

BIOSAFE® (Chr.
Hansen)

Cheese (cottage, feta, ripened) www.chr-
hansen.com

Undefined
bacteriocins

Lacticaseibacillus rhamnosus
and Propionibacterium
freudenreichii
subsp. shermanii

L. monocytogenes,
heterofermentative lactobacilli,
yeasts and molds

HOLDBAC® (Danisco) Cheese (soft, blue, semi-hard,
cottage)

www.iff.com

Undefined
bacteriocins

Lacticaseibacillus rhamnosus
and Propionibacterium
freudenreichii
subsp. shermanii

Heterofermentive lactobacilli,
yeasts and molds

Befresh™ YM (Handary) Cheese (quarg, mozzarella, feta/
white), yogurt

www.
handary.com

Undefined
bacteriocins

Lactic acid bacteria Listeria, yeasts and molds Fargo™ (Kerry Group) Cheese (cream, cottage), sour
cream, buttermilk, yogurt,
yogurt products, frozen yogurt,
yogurt drinks

www.kerry.com

Undefined
bacteriocins

Lactic acid bacteria L. monocytogenes, Clostridium,
spoilage mesophilic and
psychrophilic bacteria, yeasts
and molds

4Protection AYM, AL,
AC, AOSM (Sacco
System)

Cheese (soft, hard, semi-hard),
milk, other dairy products

www.
saccosystem.com

Nisin A and Z Lactococcus lactis L. monocytogenes, Bacillus
cereus, E. coli, Salmonella sp

non commercial Cheese (fresh, cottage) Kondrotiene et al.
(2018), Dal Bello
et al. (2012)

Enterocin Enterococcus faecalis L. monocytogenes, S. aureus non commercial Cheese (fresh) Muñoz et al.
(2007)

Enterocin Enterococcus faecium L. monocytogenes non commercial Cheese (fresh), raw and sterile
milk

Vandera et al.
(2017), Aspri et al.
(2017)

Uvi-B Leuconostoc citreum L. monocytogenes non commercial Skim milk Pujato et al. (2014)

Bacteriocin-containing fermentate

Pediocin PA-1 Pediococcus acidilactici Gram-negative and Gram
positive bacteria, yeasts and
molds

MicroGARD® (Danisco) Shelf-life extension of dairy
foods: cottage cheese, yogurt,
sour cream, dairy spreads

www.iff.com

Pediocin PA-1 Pediococcus acidilactici and
Lactobacillus plantarum

L. monocytogenes non commercial Milk Hartmann et al.
(2011)

Undefined
bacteriocins

Lactic acid bacteria Gram-negative spoilage bacteria,
yeasts and molds

DuraFresh™ (Kerry
Group)

Cheese (cottage), yogurt, sour
cream, buttermilk, refrigerated
dairy desserts

www.kerry.com
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freudenreichii subsp. shermanii DSM 706 and Lacticaseibacillus
rhamnosus DSM 7061. They can be used in several foods
including cheeses, meats, fermented vegetables, and beverages
(O’Connor et al., 2020), generating various metabolites including
bacteriocins, acids and other beneficial compounds that enhance
their biocontrol capabilities. It is worth noting that more than
230 bacteriocin-producing bacteria have been isolated and
studied in dairy products (Silva et al., 2018).

2.2.3 Bacteriocin-containing fermentates
Some commercial food-grade fermentates containing

bacteriocins are available for use in the dairy industry (Table 1).
This innovative antimicrobial solution is obtained from cultivating a
bacteriocin-producing strain within a food-grade medium. They
offer numerous advantages over the addition of bacteriocinogenic
strains, such as cost-effectiveness, minimal regulatory obstacles, and
the presence of other beneficial metabolites in the fermented
product. Additionally, it allows adjusting the best conditions for
bacteriocin production and minimizing undesirable by-products
(e.g., CO2). Moreover, heat treatment could deactivate
bacteriocin-producing bacteria without affecting heat-resistant
bacteriocins, thus preventing competition with starter strains
(Pujato et al., 2022). However, additional time is required to
produce the fermentate separately. Despite the benefits, this extra
step could lengthen the production process. Some examples of
commercial available options are MicroGARD® (Danisco) and
DuraFresh™ (Kerry Group P.L.C., Kerry, Ireland). MicroGARD®

is a line of fermentates containing bacteriocins and other metabolites
produced by Pediococcus acidilactici that offers a convenient way to
introduce antimicrobial compounds into food products, helping in
shelf-life extension of dairy foods and chocolate sweets (Makhal
et al., 2015; Mills et al., 2017).

2.3 Optimization in bacteriocin production

Optimal production of bacteriocins depends on meticulous
control of several physical and nutritional conditions. Firstly,
fermentation time is crucial for maximizing bacteriocin
production. Bacteriocins, generally considered primary
metabolites, are mainly produced during the exponential growth
phase of bacteria. The production rate of these metabolites often
correlates with the growth rate of the bacterial cells. Numerous
studies document bacteriocins that follow this pattern, such as nisin
A/Z and lactococcin 140 (Parente and Ricciardi, 1994), pediocin
PA1/SA-1 (Anastasiadou et al., 2008), mesenterocin 5 (Daba et al.,
1993), lactocin 705 (Vignolo et al., 1995) lactostrepcin (De Vuyst,
1994) and leucocin (Geisen et al., 1993). However, some LAB
produce bacteriocins during the stationary phase when
conditions such as lower pH and reduced nutrient availability
prevail. Examples include Lactobacillus plantarum LPCO10
(Jimenez-Díaz et al., 1993), L. lactis subsp. lactis (Cheigh et al.,
2002), Lactobacillus pentosus B96 (Delgado et al., 2005). This
variation requires an understanding of growth kinetics and
metabolic processes for optimization (Sidooski et al., 2019).

Secondly, bacteriocin production is highly sensitive to
temperature. Temperature directly influences enzymatic activity
and cell growth rates of microorganisms. Studies suggest that

optimal bacteriocin production often occurs at temperatures
below the optimal growth temperature. For instance, Leuconostoc
mesenteroides MB1 (Pujato et al., 2022) and Streptococcus
macedonicus ACA-DC 198 (Van den Berghe et al., 2006) grew
best at 30°C and 42°C, respectively, but their bacteriocin production
peaked at 25°C. However, this is not a universal rule. Some LAB
strains, such as Enterococcus faecium RZS C5 (Leroy and De Vuyst,
2002), P. acidilactici 13 (Altuntas et al., 2010), showed no significant
differences in bacteriocin production between optimal and
suboptimal growth temperatures. Therefore, it is essential to
investigate the best temperature conditions for each case to
maximize bacteriocin production.

In addition, pH affects enzymatic activity, growth rate, and
metabolite production, including bacteriocins. High acidity can
impair nutrient transport and essential cytoplasmic processes,
leading to reduced cell growth and bacteriocin synthesis (Guerra,
2014). Excessive acidification, often due to high lactic acid levels,
negatively influences bacteriocin production by decreasing the
release of immune peptides in growing cells. Sometimes it is
required the acidification of the medium to stimulate the
bacteriocin making. In these cases, a buffered process would
negatively affect their production (Guerra et al., 2008). For
example, in Leuconostoc citreum MB1 the optimal pH for
bacteriocin production was lower (pH 5 and 6) than that needed
for maximum bacterial growth (pH 7) (Pujato et al., 2022).
Therefore, to optimize bacteriocin production, it is crucial to
control pH during fermentation (Sidooski et al., 2019).

One of the most influential factors in bacteriocin production by
LAB is the culture medium. Supplementing the medium with key
nutrients such as carbohydrates, nitrogen sources, vitamins, and
salts can significantly enhance bacteriocin production. Although
complex media like MRS are effective, they are costly and contain
proteins that complicate downstream processing. Therefore,
simpler, supplemented media offer a cost-effective alternative
(Garsa et al., 2014). Moreover, optimizing carbon sources such as
glucose and lactose is crucial as they influence enzyme production
andmetabolic activity. However, too high concentrations can inhibit
bacteriocin production due to increased lactic acid levels. Nitrogen
sources like yeast extract and tryptone, are also essential, providing
amino acids and peptides that promote cell growth and bacteriocin
synthesis (Leães et al., 2011). Minerals like magnesium and
manganese are vital for enzymatic activities and the overall
metabolism of LAB, supporting the structural and functional
integrity of bacteriocins. Specific amino acids and vitamins also
play a role in enhancing production, acting as precursors and co-
factors in bacteriocin biosynthetic pathways (Moretro et al., 2000;
Sidooski et al., 2019).

Fermentation conditions significantly affect bacteriocin
production. Batch fermentation, where all nutrients are provided
at the beginning, is straightforward but might result in lower yields
due to nutrient depletion. Continuous fermentation, which
maintains a steady supply of nutrients and removes waste
products, often leads to more consistent and higher bacteriocin
synthesis (Guerra, 2014).

Optimization of physical and nutritional conditions makes it
possible to maximize bacteriocin production by LAB, making the
process more efficient and economically viable for applications in
food preservation.
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3 Conclusion

From some time now, there is an increased interest in returning
to less processed, chemical-free and more natural foods. In this
sense, the use of bacteriocins in foods can be an effective alternative
to chemical preservatives that could fulfill the current healthy
lifestyle standards required. Depending on the need, cost and
food type, bacteriocins can be included in food matrix as purified
compound, by adding bacteriocinogenic LAB -with in situ and
continuous release of the antimicrobial compound-, or by adding
a fermentate-containing bacteriocin. Additionally, optimizing
fermentation conditions, including time, temperature, pH, and
culture medium, is crucial to maximize bacteriocin production,
thereby enhancing the quality and safety of fermented dairy
products. The use of bacteriocins into a hurdle approach
including thermal and non-thermal treatments could increase
food bioprotection and reduce or eliminate the use of potentially
dangerous chemical preservatives.
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