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The expanding consumption of plant proteins in the diet to overcome the
environmental issues associated with animal proteins is increasing the
incidence of food-induced allergic reactions. One of the 21st-century
research drivers in agriculture sciences is the development and validation of
concrete approaches for modulating the expression of allergenic proteins in
crops before harvesting. The increasing incidence of plant food allergies is
primarily induced by seed storage proteins that clinicians are experiencing
recently because of the more predominant use of plant-derived proteins in
the food industry. Increased availability of high-throughput technologies has
generated an ever-growing number of omics data, allowing us to have better
structural knowledge of SSPs and molecular properties that can inform the
allergenicity assessment. The recent systems for targeted genome
engineering, without double-strand DNA breaks, allow the introduction of
precise modifications directly into commercial plant species. Artificial
intelligence is significantly transforming scientific research across every stage,
assisting scientists, processing large-scale data, making predictions, automating
tasks. During this epochal change, marked by the encounter between artificial
intelligence and synthetic biology, a next-generation research assistant (NGA) is
coming alive. Here, we propose a newconceptual vision to facilitate and speed up
the editing of cross-reactivity sites to obtain hypoallergenic cultivars and avoid
pleiotropic effects. Finally, we discuss the potential applications of this new way
to conceive the research. NGA may be undoubtedly capable of managing the
evolution of SPP allergies through the prediction of novel epitopes, as well as the
prediction of immunological response mechanisms.
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Introduction

Food allergy (FA) is an IgE mediated response of the immune system of sensitive
subjects to specific food proteins, as described by the National Institute of Allergy and
Infectious Diseases (NIAID) guidelines. Food allergens are a tremendous concern for
consumers and for the food industry around the globe, particularly because there is no
reliable prophylaxis in the case of accidental ingestion, aside from the utilization of
adrenaline injections to prevent severe anaphylactic reactions (Du Toit et al., 2015; Loh
and Tang, 2018). Symptoms can range from mild to severe depending on environmental
and genetic factors. The prevalence of food allergies is increasing because of the
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complexity and global nature of a modern diet (Liu et al., 2022),
and the introduction in the market of novel food ingredients
(Nitride et al., 2023; Quintieri et al., 2023). Antigen-presenting
cells (APC) recognize and process allergens that first enter the
body through the epithelial barrier, inducing Immunoglobulin E
(IgE) production in B cells. IgE then binds to mast cells and
basophils, sensitizing the body. Subsequent exposure to the same
antigen activates mast cells and basophils and releases potent
inflammatory mediators. The substances released by these cells
(such as histamine, prostaglandins, and leukotrienes) are the
major factors responsible for symptoms like skin rash or
anaphylaxis (Sathe et al., 2016; Dong et al., 2021). According
to the World Health Organization (WHO), the incidence of FA
has been increasing in developed countries over the past
2 decades. The European Academy of Allergy and Clinical
Immunology estimates the prevalence of allergies among
European children to be between 1.7% and 5%. Researchers
have observed similar trends in developing countries alongside
their economic growth (Leung et al., 2018; Prescott SL et al.,
2013). Indeed, the rapid increase in FA is evident in Asian
countries and in Africa (Arakali et al., 2017). Gupta et al.
(2013) calculated that food allergies cost the economy a total
of $24.8 billion per year. Among the allergenic proteins, plant
allergens affect 1 in 100 adults and 1 in 10 children (Shahali and
Dadar, 2018). According to WHO/IUIS (International Union of
the Immunological Societies) classification and curated databases
like COMPARE (https://db.comparedatabase.org/) and FARRP
AllergenOnline databases (http://www.allergenonline.org/),
several plant-based foods have the potential to induce severe
anaphylactic reactions in susceptible individuals (Shahali and
Dadar, 2018). The prevalence of sensitization to a given
allergenic ingredient significantly varies across geographical
regions and subjects ages. The recent WHO/FAO expert
consultation includes only gluten, peanut, and specific tree
nuts (almond, cashew, hazelnut, pecan, pistachio, and walnut)
in the list of global priority allergenic ingredients, restraining
several others to individual countries (Datema et al., 2015;
Datema et al., 2018). Most plant allergens are proteins
associated with storage proteins in seeds (Breiteneder and Radauer,
2004). Seed storage proteins (SSPs) encompass prolamins and cupins,
which are the most common groups of plant allergens (Table 1).

Cupin and prolamin superfamilies exemplify class I food allergens
(Moreno, 2007; Moreno and Clemente, 2008). These proteins are
normally considered highly stable to thermal denaturation, acidic
environment and gastrointestinal proteases and can cause moderate
to severe allergic reactions (Harrer et al., 2010; Mendes et al., 2019).
Members of the cupin superfamily are characterized by two short-
conserved consensus sequences and a beta-barrel structural core
domain, which is the source of its designation “cupin” (Breiteneder
and Mills, 2005). Vicilins and legumins are 7S- and 11S-type globulins,
respectively, with two core domains (bicupins), considered the
prevalent SSPs in several nuts and pulses (Breiteneder and Mills,
2005). Scientists divided the Prolamin superfamily into various
families. The nonspecific lipid transfer proteins (nsLTPs), is typically
located in several parts of the plant, including seeds, leaves, roots and
fruits. The 2S albumins, α-Amylases and cereal prolamins are generally
found in the seeds (Breiteneder and Mills, 2005). These three protein
superfamilies include almost 65% of the identified plant food allergens
so far. The nsLTP and the 2S albumin are major triggers of allergic
reactions in peanut and soybean allergy (Ara h 2, 6 and 7 and Gly m 8,
respectively) (Taylor et al., 2021). In cashew nut, Ana o 1 and Ana o 2
(cupin superfamily) have been classified asmajor allergens, according to
Mendes et al. (2019). Radauer et al. (2017) reported that in peanut
(Arachis hypogaea), the 2S albumins, Ara h 2 and Ara h 6 are the most
potent allergens followed by the cupins Ara h 1 and Ara h 3, 7S vicilin
and 11S globulins, respectively. Gly m 5 and Gly m 6 have been
identified in Soybean (Glycine max), the Cor a 11 and Cor a 9 in
Hazelnut (Corylus avellana), the Jug r 2 in walnut, and several other
SSPs belonging to the cupin superfamily, have been identified as
important allergens in legumes, nuts, and other fruit seeds (Radauer
et al., 2017; Barre et al., 2018). Storage proteins like Act d 12, an 11S
globulin, or Fra a 3, an ns-LTP, are the major allergenic proteins in
fruits such as kiwifruit and strawberry, respectively, whose seeds are
consumed alongside the flesh (Sirvent et al., 2014; Sirvent et al., 2014).
The WHO FAO Expert committee on Risk assessment of Food
Allergens recently included Kiwi fruit in the watch list for CODEX
as emerging allergen (Risk Assessment of Food Allergens, 2022).
Recently, Barre et al. (2018) reported a detailed table of fruits
containing cupin allergens (legumin, vicilin, germin and germin-
like protein). High sequence and structural homology frequently
result in the cross-allergenicity, which is often attributed to the
similar epitopic sequences (Shahali and Dadar, 2018). Therefore,

TABLE 1 Seed storage protein genes well-characterized using RNAi and CRISPR/Cas9 as biotechnological approaches.

Gene name Superfamily (family) Protein domain (ID) Species References

Ara h 2
Prolamin (2S albumin) Trypsin-alpha amylase inhibitor (smart00499) Arachis hypogaea Dodo et al., 2008

Ara h 6

Ara h 1 Cupin (7S globulin, vicilin) Cupin_7S_vicilin_like_C (cd02245) Arachis hypogaea Konan et al., 2009

Lyc3

Prolamin (nsLTPs) Lipid-transfer protein type 1 (cd01960) Solanum lycopersicum Lorenz et al., 2006Lyc3.1

Lyc3.2

Gly m 5 Cupin (7S globulins) Cupin_1 (pfam00190) Glycine max Sugano et al., 2020

Bra j 1 Prolamin (2S albumin) Alpha amylase inhibitor (cd00261) Brassica juncea Assou et al., 2022
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allergic individuals sensitive to specific SSPs of a particular plant may
exhibit cross-reactive IgE to homologous proteins found in
other plants.

The development of genetic approaches to obtain hypoallergenic
crops dates to over 25 years ago. These approaches were based on
classical breeding and mutagenesis (Takahashi et al., 1996; Hajika
et al., 1998). To enhance comprehension of SSPs and mitigate food
allergies, researchers have employed RNA interference (RNAi) to
change the expression of SSPs. Notably, the downregulation of specific
allergenic protein expression in plants has yielded promising
outcomes, as evidenced in studies involving peanuts and tomato
plants (Singh and Bhalla, 2008; Scheurer, 2009). On peanuts
plants, researchers employed RNAi-mediated gene silencing to
eliminate the immunodominant Ara h 1 and Ara h 2 proteins
(Table 1). Chu et al. (2008) used biolistic methods that led to a
stable transformation of the Ara h 2 gene in peanut plants. As Ara h
2 has sequence homology with Ara h 6, RNAi plasmid targeting Ara h
2 was reported to silence both the Ara h 2 and Ara h 6 proteins
expression. Seed weight and germination of transgenic plants showed
no significant differences. By utilizing patient sera as a source of IgE
antibodies, they observed a decreased level of immunobinding,
demonstrating a noteworthy reduction in the allergenicity level.
Similarly, the Agrobacterium-mediated transformation method was
used to silence Ara h 2 allergen (Dodo et al., 2008). However, several
factors can interfere with the accumulation of RNAi molecules in the
cell cytoplasm, which is why RNAi may not fully silence genes (Tseng
et al., 2009; Ulrich et al., 2015). In this respect, it is worth mentioning
that the dose of apple predicted to elicit a reaction in 50% of the
allergic population is of 150 mg of protein. Therefore, it is still
acceptable to partially silence genes, and researchers could define a
suitable level of silencing for each allergenic commodity. Le et al., 2006
achieved substantial suppression of the Lyc e 3, an allergenic nsLTPs
in transgenic tomato plants, with a decreased accumulation compared
to wild-type plants (Table 1). Interestingly, one RNAi construct
efficiently silenced both Lyc e 3 isoforms Lyc e 3.01 and Lyc e 3.02,
which showed a 76.5% base pair identity. Using two patient sera with
specific IgE-reactivity to Lyc e 3 it was possible to show that the ability to
recognize the nsLTP Lyc e 3 in the deficient tomatoes was reduced by
10–100-fold. While in vitro testing using sera of allergic subjects is quite
informative about the IgE binding capacity of protein exacts from
transgenic plants, in vivo testing (skin testing and food challenges) are
the golden standards for assessing the allergenic potential. Lorenz Y
et al. (2006), tested genetically modified foods with reduced allergenic
potential in humans with a remarkable reduction in skin reactivity. In
addition to nsLTPs, researchers targeted tomato profilin Lyc e 1 for gene
silencing through RNAi in transgenic tomato plants (Le et al., 2006).
However, despite the utilization of RNAi as a tool to decrease the
expression of allergenic proteins, silencing a single allergen will not
automatically abolish the risk of food allergy in the population, however,
it could contribute to its mitigation (Peters et al., 2011). Often, a tiny
amount of allergenic food proteins can also trigger food allergic
reactions and multiple gene products can confer these reactions
(Knoll et al., 2011; Graham et al., 2020). Hence, researchers can
achieve the simultaneous inhibition of gene family members by
selecting nucleotide regions of high sequence homology, which are
often found within coding regions (Chu et al., 2008). Therefore,
scientists have the option to adopt other strategies to overcome
problems derived from using RNAi.

During the Neolithic Revolution, starting approximately
10,000–13,000 years ago (Stitzer and Ross-Ibarra, 2018), gene
knockout (or loss-of-function alleles) played a prominent role in
crop evolution during domestication, diversification, and
improvement (Monroe et al., 2020; Zhang, 2023). The modern
biotech approaches, as an integral supplement to conventional
plant breeding, have tried to emulate this complex natural process,
proving to be assisted-evolution technologies for enhancing crop traits
(Zsögön et al., 2018). CRISPR/Cas9 system often led to DNA double
strand breaks, nucleotide deletion and frameshift with consequent
gene loss-of-function and thus resulting as one of the most popular
genome editing (GE) tool for plant breeding (Aksoy et al., 2022; Li
et al., 2022). The development and implementation of this technology
resulted in the obtainment of crops with enhanced resistance to biotic
and abiotic stresses and reduced breeding cycles (Yıldırım et al., 2023).
However, complete gene knockouts or knockdowns of fitness-relevant
genes, and not only, may induce pleiotropic phenotypes (Bauer et al.,
2015; Auge et al., 2019; Hanika et al., 2021), as one gene can directly or
indirectly effects multiple traits (Burstin et al., 2007; Nguyen et al.,
2015). Moreover, limited genomic information may lead to
unintended off-target effects or result in new mutant variants due
to repair post-cleavage (Yıldırım et al., 2023).

CRISPR/Cas9-mediated gene knockout has also been used to
mitigate FA by targeting genes encoding for SSPs. For example, a
recent study introduced large deletions and frameshifts in both Bra j
1 homologous, the major allergen in brown mustard plants (Brassica
juncea) (Table 1). Mutations were inherited by the T1 generation, which
showed reduced or absent quantities of Bra j 1 in seed extracts (Assou
et al., 2022). Similarly, the CRISPR-Cas9 system has been used to induce
mutations in genes encoding the 7S alpha and alpha’ subunits of beta-
conglycinin, the Gly m 5 allergen in soybeans (Table 1). This approach
resulted in the generation of cas9-free offspring devoid of these major
allergenic proteins in the seeds, while preserving the processing
properties (Sugano et al., 2020). However, to detect undesired effects
that may have escaped visual evaluations, a deep phenotypic
characterization is generally necessary. An innovative work was also
carried out in the Italian durum wheat Svevo grains. Camerlengo et al.
(2020) employed a multiplexing CRISPR-Cas9 marker gene-free
approach, to induce mutations in the α-amylase/trypsin inhibitors
(ATI) subunits WTAI-CM3 and WTAI-CM16, which are
recognized as key proteins involved in the development of bakers’
asthma. Although they successfully achieved a complete gene knock-
out, they noted the emergence of pleiotropic effects attributed to the
activation of the ATI 0.28 pseudogene in the edited lines. By interfering
with well-established gene networks upstream and downstream,
classical gene knock-out can lead to unintended pleiotropic effects,
consistent with these notions. Scientists have advanced our
understanding by revealing that plant systems biology, including
seed development and maturation, involves complex and intricate
gene networks (Duan et al., 2023). Although the regulatory network
controlling SSPs in developing seeds is being elucidated, loss-of-function
mutations inmaster regulators of seedmaturation give rise to unwanted
seed phenotypes, including a significant reduction of SSPs (Tang et al.,
2008). Selecting SSP targets for obtaining allergenic-free cultures
requires a comprehensive understanding of gene regulation in plant
growth and development (Ojolo et al., 2018). Modern and innovative
approaches of precise genome editing (PGE) methods, well reviewed by
Yıldırım et al. (2023), enable themodification of specific gene ortions by
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using catalytically impaired Cas9, allowing the direct writing of new
genetic information into a specified DNA site (Andolfo et al., 2016).
Recent advancements, including the identification of new Cas variants
and the development of new editing strategies, demonstrated the
evolving landscape of PGE techniques in plants (Yanagawa et al.,
2023; Yıldırım et al., 2023). This would enable us to modify
specifically the epitopic sequence instead of silencing the proteins,
thus avoiding the risk of pleiotropic effects associated with
traditional gene knock-out techniques. Additionally, it could be
utilized to modify the cross-reactivity sites on genes encoding for
SSPs. In particular, the huge amount of information obtained so far
about the utilization of PGE techniques in plants through the CRISPR-
Cas complex (Figure 1), including homology direct repair (HDR), base
editing, prime editing, RNA guided transposases and the last
CRISPR-tool called programmable addition via site-specific

targeting element (PASTE) (Strecker et al., 2019; Anzalone
et al., 2020; Anzalone et al., 2022) could be contextually
evaluated by AI software to identify the best techniques for a
specific purpose (e.g., changes of a specific nucleotide, introduction
or substitution of specific nucleotide fragments).

Discussion

In this scenario, synthetic biology (SynBio) approaches that
meet artificial intelligence (AI) techniques became a genuine
opportunity to tackle SSP-related food allergies (MacMath
et al., 2023). A next-generation research assistant (NGA)
based on AI-SynBio combination can be conceived as
laboratory equipment supporting research activity (Figure 1).

FIGURE 1
Next-generation research assistant (NGA) for artificial intelligence–assisted synthetic biology. By integrating knowledge-based methods (KBMs),
machine learning approaches (MLAs), and agent-based models (ABMs), NGA can largely advance our insights on SSP gene precise editing and promote
the development of therapeutic strategies for seed storage allergens. KBM can identify feature goals from public and private allergenic multi-omic
(genomics, transcriptomics, proteomics, metabolomics and phenomics) and digital (allergens DBs) data, clinical trials, and scientific knowledge.
MLAs can identify novel epitopes (antigen-binding site), off- and on-targets and the most suitable precise editing technique. ABMs can predict innate
immunity responses related to a specific SSP allergen. Arrow shows the different outputs (novel antihistamine molecules, hypoallergenic cultivars, new
clinical trials, novel food allergens and allergen specific immunotherapy) generated by artificial research activity.
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AI includes knowledge-based methods (KBMs), machine learning
approaches (MLAs), and agent-based models (ABMs) (Maserat,
2022). KBMs can determine the goals of feature selection of
allergenic omics data (genomics, transcriptomics, proteomics,
metabolomics, and phenomics), biological, and hypersensitive
reaction entities. Researchers have access to a vast amount of
information obtained through different platforms, such as omics
data obtained by single cells or multicellular tissue analysis (Haque
et al., 2019). The innovation of high throughput biotechnologies has
allowed the accumulation of omics data at an alarming rate, thus
introducing the era of ‘big data’. Discovering and elucidating complex
interactions among different data can be a complex and time-
consuming process (Amoroso et al., 2023). Published and private
data generated by different omic platforms and instruments (e.g.,
omics data, scientific evidence, datasets about clinical tests) can be
simultaneously analyzed by NGA. Interestingly, KBMs have been
utilized to facilitate the interpretation and understanding of complex
omics data. For instance, Türei et al. (2021) conducted a fascinating
study by analyzing several omics data to investigate cell–cell interactions
and downstream intracellular signaling processes in humans, mice, and
rats. In recent years, computational methods have also been used to
create accessible allergen databases containing a large amount of
information on allergen epitopes or antibodies (Kadam et al., 2017).
Hence, to handle biological big data, modern prediction models have
largely advanced our insights into the treatment of allergies also by
discovering plant genetic patterns that could be potentially modified by
precise editing techniques (Haque et al., 2019; Li et al., 2022). The
development and application ofMLAs andABMs can perform analyses
for epitope and immunological predictions (Jumper et al., 2021).
Indeed, machine-learning approaches have been used to predict the
potential allergenicity of novel proteins (Jumper et al., 2021; Nedyalkova
et al., 2023). ML methods have contributed to the understanding of
allergens and their potential epitopes in plants through epitope
prediction and immunological analysis (Wang et al., 2013).
Therefore, we assume that in the future, NGA will be able to drive
scientists toward more precise and efficient research in the field of
synthetic biology, for the development of new hypoallergenic crops, also
via the identification of novel food allergens, antihistamine molecules
and development of clinical trials (Figure 1). (Garcia-Moreno and
Gutiérrez- Naranjo, 2022). Deep learning neural networks have been
utilized to predict the activity and specificity of guide RNA sequences,
used by PGEs (Luo et al., 2019). AI has already helped in predicting the
best in vitro conditions for plant growth (Malabadi et al., 2023).
Similarly, Akin et al. (2020) employed a data mining technique on
tissue culture studies, which turned out to be a promising tool to analyze
non-parametric data. Plant biological datasets are frequently distorted,
high dimensional, dynamic, and heterogeneous (Ben Ayed et al., 2022).
NGA could also support the choice of parametric or nonparametric
machine learning algorithms, analyzing the data proprieties to be
processed. Indeed, the most crucial stages for the efficient use of
MLAs are data transformation and preprocessing pipeline design
(Booij et al., 2022). NGA, by integrating different AI-systems, can

serve as a scientific instrument for the analysis of information obtained
through differentmethods, facilitating the identification of the best PGE
technique, transformation, and regeneration procedure for specific
purpose (Figure 1). Hence, in this global vision, PGE became an
instrument, in which synthesis of DNA/RNA fragments, vector
assembly, and choice of the transformation method became directly
available for the researcher, depending on the final research goal. So far,
ML has already proven to be a revolutionary tool in supporting clinical
studies, medical and precise diagnosis (Mansour et al., 2021; Fang et al.,
2022) with application in medical diagnostics and for detecting,
forecasting, and predicting of immunity responses (Nawaz et al.,
2021; Buendgens et al., 2022). In this context, the utilization of an
NGA for the comprehensive analysis of allergens could be completely
revolutionary in human health. NGA could work as a “fully fledged
researcher” (Figure 1), providing new insights for developing
hypoallergenic cultures. In the near future researchers should
consider NGA as a helpful laboratory equipment to speed up and
improve their research work. However, evaluating the outputs will still
remain a fundamental part of the process.
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