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Marine collagen hydrolysates and purified peptides can be sourced from a variety
of species. Application of collagen peptides to animal models of diabetes and
obesity is contributing to the goal of elucidating a mode of action and their broad
spectrum application includes wound healing and bone fracture, both of which
are significant co-morbidities of diabetes and obesity related illnesses.
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Introduction

Obesity has reached epidemic proportions in the world and is increasing rapidly as
traditional diets are replaced by more readily available processed and high fat content foods.
Obesity is a complex condition with several drivers which can influence a person’s weight,
this results in a number of co-morbidities including cardiovascular disease and type
2 diabetes. In Australia, it is estimated that over 66.9% of adults are overweight or obese
and this is increased further in regional and remote communities (Obesity Evidence Hub).
According to the World Health Organization 2016 report, 1.9 billion adults were overweight
with an estimated 650 million being obese (WHO). In Australia, it is estimated that
1.3 million people have type 2 diabetes, and WHO estimates that around 422 million
people have diabetes (WHO).

Metabolic syndrome is attributed to a collection of disorders and behaviors including
obesity, lack of physical exercise which contributes to insulin resistance and development of
diabetes and increased risk of cardiac and renal dysfunction.

Increasing studies have focused on nutritional and nutraceutical approaches to alleviate
dysregulation associated with obesity and diabetes and this focused review will highlight
advances in the effects of marine collagen in vitro and in vivo studies.

Collagen peptides are generated from a variety of sources, from marine creatures to
land-based mammals including cows, pigs, and sheep (Table 1). A readily available source of
collagen is waste products from the fish industry including fish skins and skeletons.
Structurally, collagen as a triple helical molecule is conserved across species, however
variation in amino acid composition may confer subtle differences particularly in relation to
denaturation temperatures and bioactivity properties. Studies have shown differences in
denaturation temperature between different sources of marine collagen from warm and cold
waters. Figure 1 illustrates the recent exploration of therapeutic applications of marine
collagen peptides in obesity related illnesses.
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In vitro and in vivo anti-obesogenic
properties

An original paper by Lee et al (2017) described the effects of tuna
skin collagen hydrolysates on the differentiation of the preadipocyte
3T3 cell line and also in high fat diet (HFD) fed mice. Treatment of
3T3 cells with 0.5–1.0 mg/mL of hydrolysate resulted in a reduced
intracellular accumulation of oil droplets, and reduced gene
expression of adipogenic markers such as PPAR-gamma. In a
parallel in vivo study, mice which were previously fed a high fat
diet and received 300 mg/kg/day of hydrolysate and gavaged three
time per week showed a reduction in body weight compared to
control animals. Treatment of animals with marine collagen peptide
also showed a reduction in the mRNA expression of key
transcription factors involved in regulation of adipogenesis,
namely, C/EBR-alpha and PPAR-γ. Histological assessment of
HFD mice fed with peptide also showed a reduction in adipocyte
size correlating with a reduction in body weight.

Commercially available sea fish collagen peptides, “Naticol”
were also administered to mice fed a HFD, at a much higher
dose of 4 g/kg/day in drinking water over a 20 week period
resulted in a reduction in total body weight of the treated
animals by week 12 (Astre et al., 2018). An amino acid analysis
of Naticol showed a typical collagen profile of Glycine
(approximately 20%) and proline, glutamic acid and
Hydroxyproline). Other parameters affected by peptide treatment
included some reduction in inflammatory cytokines (IL-6 and IL-
1β) concentration in isolated adipocytes whilst no obvious changes
in glucose tolerance and insulin sensitivity were observed.

Human clinical trials

A limited number of studies describe the effects of marine collagen
peptides in human clinical trials. In one study by Zhu et al. (2010), a
cohort of type 2 diabetic patients who received 13 g of peptide daily for

upto 3 months showed changes in glucose and lipid metabolism
markers with increased levels of insulin sensitivity reported together
with reduced levels of fasting glucose, triglyceride, and free fatty acids.
Improvements in kidney function were also seen. A similar study was
performed in a group of type 2 diabetic patients with hypertension
compared with to a non-hypertensive group who received 13.5 g of
peptide per day. A therapeutic effect was more apparent in the non-
hypertensive group (Zhu et al., 2010).

The effects of collagen peptide administration in animal models
of obesity was recently described by Kalmikova et al (2023) using
lowmolecular weight Antarctic fish collagen fragments generated by
pepsin digestion followed by ultrafiltration. In rats fed a HFD
together with collagen peptides (1 g/kg over a 6 weeks in period),
a reduction in body mass and inflammation were observed, which
may promote a decrease in adipose tissue content. This study follows
on from an earlier investigation by (Raksha et al., 2018) where
collagen peptides were associated with lower blood glucose, glycated
hemoglobin and serum insulin levels.

Effect of marine collagen peptides on
intestinal microbial flora

Obesity and related illnesses, particularly diabetes, can have
profound effects on the microbial community that inhabit the gut.
This can have a variety of effects including; decreased production of
short chain fatty acids (SCFAs), increased localized inflammation,
disruption of the gut barrier and a higher abundance in pathogenic
bacteria. A number of studies have investigated the effects of
collagen peptides on gut microbiome. A recent study by Baek
et al (2023) highlighted a change in the ratio of Firmicutes/
Bacteriodetes in an obese mouse model using a fish (Tilapia)
collagen peptide co-administered with a HFD compared with
soybean and yeast. Whilst there was no change in the alpha
index (microbial community richness) of treated animals a
number of bacterial taxa were increased which have previously

TABLE 1 Summary of Extraction methods for selected studies.

References Extraction method

Astre et al. (2018) Naticol® (commercially available) peptides

Rahabi et al. (2022)

Baek et al. (2023) Pretreatment with NaOH, Na2SO4, and NaHCO3 and extraction HCl and H2SO4 digestion with a mixture of endopeptidases and
exopeptidases

Kalmukova et al. (2023) 0.5 M acetic acid extraction and salting out

Vijayan et al. (2022)

Miao et al. (2022) Pepsin Soluble Fraction

Zheng et al. (2020) Treatment with a variety of enzymes, Neutrase, Alcalase, Pepsin, Papain

Zhu et al. (2017) Mixed peptides (Not specified)

Ren et al. (2022) Treatment with a variety of enzymes, Trypsin. Neutrase, Alcalase, Pepsin, Papain

Tian et al. (2020)

Ye et al. (2022) Neutral protease digestion and ultrafiltration

Lee et al. (2017) Subcritical water hydrolysis
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been associated with anti-obesogenic effects such as Faecalibaculum,
however there were no changes in Akkermansia muciniphilia.

In a novel modification of collagen peptides through ferrous
chelation, Jiang et al (2022) showed changes in the microbial
community in a rat model of iron deficiency which reversed gut
dysbiosis. The collagen peptide-iron complex increased the relative
abundance of short chain fatty acid-producing bacteria, such as Blautia,
Ruminococcus and Roseburia that can restore the pH of intestinal
lumen, promote repair of intestinal tissue and inhibit inflammation.
The collagen peptide-iron complex also enhanced the abundance of
bacterial flora such as Subdoligranulum and Christensenellaceae_R-7_
groupwhich have been linked to beneficial effects related to obesity and
type II diabetes (Chen et al., 2021). In this study by Chen et al. (2021),
the microbiota profile of patients with diabetic nephropathy was
compared to patients with diabetes alone and a healthy control
group. A number of distinguishing characteristics were found,
including a lower diversity of gut microbiota in the group with an
advanced stage of diabetic nephropathy. The presence of urinary
protein following a 24 h collection correlated with certain species,
including Alistipes and Subdoligranulum. A reduced estimated
glomerular filtration rate (eGFR) was associated with the
Ruminococcus (torques group).

Applications of collagen peptides in
models of liver steatosis and diabetic
nephropathy

Diabetic nephropathy is a major microvascular complication
of chronic diabetes compromising the structural integrity of the

nephron with increased extracellular matrix deposition,
basement membrane thickening and tubular fibrosis. The
effect of marine collagen peptides in the streptozotocin
induced diabetes rat model was explored by Lin et al (2021)
where tilapia skin peptides used at 3 g/kg/day over an 8 week
period showed a reduction in the kidney hypertrophy index, and
other biochemical parameters such as blood urea nitrogen
(BUN), creatine and cholesterol. Histological examination also
showed a reduction in kidney injury and the protective
mechanism of the peptides was proposed to involve increased
Bnip/nix signaling and mitophagy. Table 2 presents a summary
of recent studies on the modulatory effects of marine derived
collagen peptides in metabolic diseases.

Obesity is also linked to chronic kidney disease collagen
peptides derived from monkfish meat which had the highest
2,2-diphenyl-1-picrylhydrazyl (DPPH) clearance rate, were
administered to mice on HFD at 100 or 200 mg/kg for 8 weeks.
Treatment showed a reduction in biochemical parameters
(creatinine, uric acid, and BUN) in conjunction with a
reduction in thickness around renal tubules (Ren et al., 2022).
The peptide treated group also showed changes in gut microbial
communities with an improvement in the Firmicutes/
Bacteroidetes ratio. In a similar murine study of HFD induced
kidney damage by Miao et al., 2022, the effect of monkfish peptides
(at 100 or 200 mg/kg which showed the highest DPPH clearance
rate), were associated with a reduction in biochemical parameters
(creatinine, BUN, uric acid). Histopathological staining also
showed reduced glomerular surface area and mesangial area
compared to HFD controls. HFD fed mice exhibited a
characteristic liver steatosis and monkfish collagen peptide fed

FIGURE 1
Target sites for applications of marine collagen peptides in obesity and diabetes related illnesses.
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mice showed a more regular hepatocyte morphology (Miao et al.,
2022) Table 3.

An increasing number of studies have highlighted the protective
effects of Monkfish peptides in non-alcoholic fatty liver disease
(NAFLD) induced by HFD. Ye et al. (2022) applied monkfish
peptides to a mouse model of NAFLD, specifically low molecular
weight peptides of < 1 KDa and sequencing revealed a range of
peptide sizes with octa and nona peptides being predominant.
Monkfish peptides were administered at a dose range of
50–200 mg/kg/day for 8 weeks and NAFLD mice treated with
peptides showed a decrease in body weight of up to 28%, lower
triglyceride levels and elevated antioxidant enzymes. In this study,
liver function (ALT and AST) was improved at the high dose
together with a reduction in cholesterol and triglycerides. Liver
pathology was also improved, including a reduction in the number
of lipid droplets. The mechanism was proposed to be via
enhancement of pathways that increased lipid beta oxidation and
therefore reduced fatty acid synthesis.

Other non-fillet parts from the monkfish, including the swim
bladder has been shown as a rich source of bioactive peptides. An
extensive analysis of papain digests of the swim bladder (Shenkoohi
et al., 2023) revealed a number of peptides with increased DPPH
scavenging activity and protection of HepG2 cells for H2O2 induced
oxidative stress. A comparison of enzyme treatments by Tian et al
(2020) found that neutrase, alcalase and papain digestion of
monkfish meat yielded peptides with greater DPPH clearance
and ultrafiltration to acquire peptides of <1 kDa also contributed
to greater antioxidant activity and upregulation of antioxidant
enzymes in RAW 264.7 cells. An interesting approach in
generating hydrolysates from monkfish muscle by Hu et al
(2017), involved a gastrointestinal digestion mix of pepsin and
trypsin and appropriate conditions with peptides showing
increased DPPH and hydroxyl ion scavenging activity and
protection of HepG2 cells from H2O2 oxidative stress.

Underutilized fish may also provide an alternative to generation of
bioactive products for value adding. One example is sprat, a small oily
fish that is widely used as a food source in Eastern Europe but otherwise
underutilized. In a recent study sprat protein hydrolysate (Shekoohi
et al., 2023) was characterized for its antioxidant activity and for its
ability to stimulate muscle protein synthesis in the C2C12 myotube cell
line. Ageing is associated with both a growing risk of diabetes and
increased muscle loss and the features of type 2 diabetes, insulin
resistance and inflammation have a negative impact on muscle
mass. Sprat protein hydrolysate showed active antioxidant and free
radical scavenging ability, promoting muscle protein synthesis and
increased myotube thickness compared to controls. A similar study,
although not involving purified collagen peptides, evaluated muscle
hypertrophy in rats fed Alaska pollock protein (Uchida et al., 2022).
This study demonstrated increased gastrocnemius muscle mass
attributed to larger muscle fiber size in rats fed fish protein which
was incorporated into a normal and HFD. The authors noted that the
hypertrophymaybe associated with a suppression of pathways involved
in protein degradation. In a related study, Ayabe et al. (2015) applied a
novel peptide purified from tryptic digestion of Alaska pollock protein
and when applied to a mouse model of type 2 diabetes, resulted in
glucose lowering. A specific C-terminal peptide was used at a lower
concentration of 1 mg/kg also lowered blood glucose and enhanced
glucose uptake in a mouse skeletal muscle cell line.

The interplay between collagen peptides and muscle paracrine
factors involved in wound healing was highlighted in a study by Li
et al (2021) where squid cartilage type II collagen was shown to
enhance tibial fracture healing in mice via upregulation of IGF-1
and Irisin.

Obesity, diabetes and wound healing:
application of marine collagen peptides

Obesity and type 2 diabetes can both be associated with
dysfunctional wound healing, in particular chronic ulcer
development, caused by poor capillary flow. Peripheral artery
disease is also prevalent in diabetic patients which can also
contribute to delayed wound healing. There is growing interest
in the application of marine collagen to improving wound
healing and this has recently been reviewed by Cruz et al
(2021) and Geachan et al (2022). Application of Tilapia skin
collagen hydrolysates prepared by protease and papain
digestion promoted in vitro wound healing at 50 μg/mL in
the commonly used HaCat cell scratch assay (Hu et al.,
2017). The same study also applied peptides to a rabbit
model of scalding and wound healing was promoted by day
11 post scald. In an interesting combination of marine based
bioactives, Ouyang et al (2018) developed a hydrogel composed
of chitosan and tilapia peptides, which enhanced cell migration
and proliferation of L929 cells in vitro. It also promoted wound
healing as observed in a rabbit burn assay with increased
epithelialization. Collagen peptides derived from marine
sponges are attractive due to their relative ease of extraction
from raw material. Pozzolini et al (2018) showed HPLC purified
marine sponge collagen peptides exhibited antioxidant and
oxygen free radical scavenging ability which also promoted
cell proliferation in a variety of cells (L929, Raw 264.7 and
HaCat). The sponge collagen also enhanced in vitro wound
healing in the scratch assay.

Jellyfish species have also been investigated as a source of
collagen peptides which may have wound healing capabilities.
Felician et al (2019) isolated collagen peptides from Rhopilema
esculentum using pepsin digestion and demonstrated in vitro
proliferation in an endothelial cell line (HUVECs). The
jellyfish derived collagen peptides when administered orally
up to 0.9 g/kg for 6 days, improved wound closure in a
mouse model.

Vascular endothelial growth factor (VEGF) is a major
contributor to effective wound healing. An approach to
elucidate the mode of action of marine collagen peptides,
Yang et al (2019) tested peptides isolated from the skin of the
giant croaker Nibea japonica. The study demonstrated that
marine collagen peptides modulated the expression of VEGF
together with other growth factors including fibroblast growth
factor (FGF) and epidermal growth factor (EGF) via the NF-κ B
signaling pathway.

Protein hydrolysates derived from salmon and mackerel
skeletons were formulated as a nutritional supplement and fed
to mice which had received a punch biopsy wound. The mode of
action of collagen peptides in wound healing was highlighted by
increased expression of Ccl3 and Cx3cl-1 chemokines which are
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TABLE 2 Reported anti-obesity effects exerted by marine collagen.

Source of marine
collagen

Key findings Models & parameters Authors’ interpretation References

Warm sea fish skin, Type I and
III collagen peptides
(Naticol®)

-Lower gain of weight and fat mass in HFD
group at 9 and 18 weeks

Mice (C57BL/6J) -Delay of obesity Astre et al
(2018)

-Lower basal glycemia, (but no effect in
glucose tolerance)

in vivo -L-arginin content in collagenmay have
enhanced glycemic control

-Decrease of inflammatory cytokines (IL-6,
IL-1β)

4 g/kg bw/d -Potential enhancement of insulin
sensitivity

-Decreased plasma cholesterol in HFD Duration: 20 weeks -Target inflammatory processes to
improve metabolism of adipose tissues
in non-obese or obese mice

Fish skin (Tilapia), collagen
peptides

-Reduced gut microbiota Firmicutes/
Bacteroidetes ratio

Mice (C57BL/6) -Anti-obesity effects and associated
metabolic pathways due to altered gut
microbiota

Baek et al (2023)

-Increased Clostridium_sensu stricto_1,
Faecalibaculum, Bacteroides, Streptococcus

in vivo -Potential application as auxiliary
therapy to slow the onset of obesity

-Lower gain of weight, fat mass, blood glucose
in HFD

100 µL peptide (gavage) -May alleviate HFD-induced intestinal
inflammatory responses via reduced
faecal endotoxin levels

-Decreased HFD-induced faecal endotoxin Duration: 3 weeks days

-Normalisation of pro-inflammatory
cytokines (IL-6)

In vitro

-Enhanced polysaccharide degradation and
essential amino acid synthesis in HFD

Murine macrophage cell line
(Raw264.7)

Gut Microbiome taxonomic &
27 obesity metabolic pathways
prediction analysis

Antarctic marine fish scales
(mackerel icefish), low-
molecular mass collagen
fragments

-Lower rate of mass gain and relative
subcutaneous fat in HFD

Rat (Wistar) -Anti-obesity effects Kalmukova et al
(2023)

-Reduced infiltration of immune cells, mast
cells and fibrosis

in vivo -Promising application to modulate
comorbidities linked to obesity

-Improved morphological parameters
(decrease in hypertrophy of adipocytes and
markers of chronic inflammation seen in
obesity)

1 g/kg intragastric

Duration: 6 weeks

Histology

Warm sea fish skin, Type I and
III collagen peptides
(Naticol®Gut)

-Immunomodulation (colonic macrophage,
CD4 T cells towards a Th2 response and
decreased CD8 activation during colitis

Mice (C57BL/6) -Protective agent against colitis Rahabi et al.,
2022

-Promotion of anti-inflammatory and anti-
oxidant phenotype in human monocytes

in vivo -Fish collagen peptides enhances gut
microbiota via immune modulation

-Alters gut microbiota, supports probiotic
species in colitis group

0.1 g/kg bw/d -Application as new functional food in
gut health

Duration: 8 days

Ex vivo

human monocytes

(IBD patients)

Great hammer-head shark
skin (Sphyrna mokarran)

-Prevented formation of ulcerative lesions on
gastric tissues

Rat (Wistar) -Protective action of fish collagen
peptides towards the HCl-ethanol
induced gastric ulceration

Vijayan et al.,
2021

-Normalised the pH and volume of gastric
juice

In vivo

-Downregulated pro-inflammatory marker
(IFN-γ), upregulated IL-4

600 mg/kg/day (gavage)

(Continued on following page)
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associated with enhanced migration of inflammatory cells that
can release pro-angiogenic growth factors such as VEGF (Lapi
et al., 2021).

A further insight into the mechanism of collagen peptides in a
wound healing setting is provided by Mei et al (2020), who applied
marine collagen peptides (Salmo salar and Tilapia nilotica) via
intragastric delivery (2 g/kg) to rats which received an incision
wound for up to 12 days. Both peptides improved wound healing
compared to controls and this was associated with decreased
expression of pro-inflammatory cytokines (TNF-α, IL-6) and
upregulated expression of VEGF. Interestingly, molecules
associated with pathogen pattern recognition were upregulated
and a wound healing bacterial community was promoted
(Enterococcus and Bacillus).

Full-thickness wounds can be associated with an increased risk
of bacterial infection, necrosis, and life-threatening complications.
To overcome these challenges, a novel biomaterial which
incorporate marine collagen may also accelerate wound healing.
Feng et al (2020) described a hybrid hydrogel composed of aminated
fish collagen, oxidized sodium alginate, and antimicrobials
(polymyxin and bacitracin) applied to a full-thickness wound in
a rat model. The hydrogel withmarine peptides appeared to improve
wound healing compared to controls, in terms of epithelialization
and collagen deposition. In vitro cell proliferation and angiogenesis
assays suggested that the addition of the antimicrobials also had an
enhancing effect.

Wound healing complications can be associated with cesarean
section and further compounded by co-morbidities such as obesity
and diabetes. In a study by Peng et al (2020), marine collagen
peptides (4.4 mg/kg) were delivered intragastrically to rats which has
received a cesarean section. Higher dosages of peptides appeared to
improve skin wound tensile strength and uterine bursting pressure.
The use of marine peptides (Tilapia) in a composite biomaterial
containing hydroxyapatite also showed wound healing potential via
inhibition of inflammatory cytokine expression in a rabbit scald

burn model (Ouyang et al., 2021). Incorporation of marine collagen
peptide (Sipunculus nudus) into an ointment has been applied to a
full-thickness excision wound in mice (Lin et al., 2021), with
improved wound closure at day 10 compared to controls. Peptide
treatment was again associated with a reduction in inflammatory
markers and improved collagen deposition.

Obesity and diabetes: bone health

Obesity can affect overall bone health and function through a
variety of mechanisms including increased weight and fat
volume, dysregulation of bone formation, resorption and
expression of pro-inflammatory cytokine. Adipokines, such as
leptin can exert direct anabolic effects on osteoblasts. In diabetes,
a complex interplay of hyperglycemia, insulin resistance and
dysregulation of insulin-like growth factors maybe associated
with increased risk of fracture.

Whilst collagen-based biomaterials have been extensively
applied to models of fracture repair, recent studies have
highlighted a potential role for marine collagen peptides to
improve bone health directly or indirectly. An early study by Xu
et al (2010) demonstrated that marine collagen based salmon
hydrolysates administered to rats could increase serum
osteocalcin levels which may enhance osteoblast activity and
reduce bone resorption. The application of collagen scaffolds
derived from jellyfish has shown promise in promoting bone
formation via inflammatory macrophage recruitment. Flaig et al.,
2020), implanted jelly fish 3D scaffolds into a rat model and
demonstrated increased de novo bone formation after 60 days.

Squid derived collagen II has been shown to improve tibia
fracture repair in a mouse model, where new bone formation was
accelerated via upregulation of muscle paracrine factors, IGF-1 and
Irisin (Li et al., 2021). Furthermore, Cruz et al (2020) generated a
collagen scaffold for application in a rat cranial critical bone defect

TABLE 2 (Continued) Reported anti-obesity effects exerted by marine collagen.

Source of marine
collagen

Key findings Models & parameters Authors’ interpretation References

-Enhance antioxidant defence enzymes
(SOD) and catalase, lowering membrane lipid
peroxidation

Duration: 10 days

Ulcer induction: day 10

Histopathology

Great hammer-head shark
skin (Sphyrna mokarran)

-Lower weight gain Rat (Wistar) -Dietary supplement of fish collagen
peptides attenuated HFD induced
hyperlipidemic abberations in the liver

Vijayan et al.,
2022

-Enhanced cholesterol metabolism and lipid
lowering ability

In vivo -Promising nutraceutical to ameliorate
liver dysfunctions and oxidative stress

-Decreased fatty acid synthase, 3HMG-CoA
reductase

600 mg/kg/day

-Upregulation of LCAT in the liver HFD, Alcohol

-Enhanced SOD, catalase and reduced lipid
peroxidation in liver tissues

Duration: 60 days

HFD, high fat diet; IBD, inflammatory bowel disease; IFN, interferon; IL, interleukin; LCAT, lecithin-cholesterol acryltransferase; SOD, superoxide dismutase; ROS, reactive oxygen species,

3HMG-CoA, 3-Hydroxy-3-methylglutaryl-CoA.
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TABLE 3 Modulatory effects of marine peptides in metabolic dysfunction.

Marine peptides Type of dysfunction Reported effects Models References

Fish (Tilapia) Skin collagen
peptides

Diabetic nephropathy -Activated Bnip3/Nix signaling Rat, Diabetic Streptozotocin-
induced T2DM

Jin et al (2020)

Mitochondrial dysfunction -Reversed the over-production of
mitochondrial superoxide and
cellular ROS, improving
mitochondrial dysfunction

8 weeks

-Improved renal morphology (8 g/kg/day)

-↓ glomerular injury Histopathology

-Protective against renal fibrosis Cell culture

(rat GMCs)

Monkfish (Lophius litulon) Skin
collagen peptides

Chronic kidney disease in HFD -Pepsin-solubilized collagen peptide
(200 mg/kg) ↓ serum uric acid,
creatinine and blood urea nitrogen

Mice, HFD Miao et al
(2022)

Liver steatosis in HFD -Improved renal tubule and
glomerular integrity, alleviated renal
fibrosis in HFD

6 weeks

-↑ SOD, glutathione peroxidase,
catalase

(100 or 200 mg/kg)

-↓ MDA Histopathology

-↓ inflammatory cytokines (IL-1β,
IL-6, TNF-α) via modulation of Nrf2
& NLRP3 pathways

Giant Croaker (Nibea japonica)
Swim bladder collagen peptides

Chronic diseases with excessive
reactive oxygen radicals

-Dose-dependent scavenging on free
radicals

Cell culture Zheng et al
(2020)

-Promoted proliferation of human
umbilical vein endothelial cells

(human umbilical vein endothelial
cells)

-↓ oxidative stress damage by H2O2 H2O2-induced oxidative injury

-↓ ROS, MDA

-↑ SOD, glutathione peroxidase,
catalase

(25–100 μg/mL)

Chum Salmon (Oncorhychus keta)
Skin collagen peptides

Liver steatosis -Prevented weight loss Rat, Diabetic Streptozotocin-
induced T2DM, 4 weeks

Zhu et al (2017)

Type 2 diabetes mellitus -Improved blood lipid metabolism Histology

Blood lipid metabolism disorder -↓ oxidative stress markers,
inflammatory cytokines and
adipocytokines

-Improved liver steatosis
(2.5–4.5 g/kg/day)

-Improved glucose metabolism and
insulin sensitivity (≥4.5 g/kg/day) in
T2DM via modulation of
GLUT4 and PPAR-α

Monkfish (Lophius litulon) Meat
peptides

Nephrotoxicity induced by HFD -↓ oxidative stress and inflammation Mice, 8 weeks (200 mg/kg) Ren et al (2022)

-↑ SOD, glutathione peroxidase Histopathology

-Regulated intestinal dysbiosis,
improved Firmicutes/Bacteroidetes
ratio

Intestinal Microbiome

(Continued on following page)
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which in combination with photobiomodulation resulted in an
increased amount of connective tissue and newly formed bone.
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