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Food production cannot be decoupled from human and planetary wellbeing.
Meeting safety, nutritional, sensorial, and even price requirements entails applying
an integral view of food products and their manufacturing and distribution
processes. Virtualization of food commodities and products, i.e., their digital
representation, offers opportunities to study, simulate, and predict the
contributions of internal (e.g., composition and structure) and external factors
(e.g., processing conditions) to food quality, safety, stability, and sustainability.
Building virtual versions of foods requires a holistic supporting framework
composed of instrumental and computational techniques. The development of
virtual foods has been bolstered by advanced tools for collecting data, informing
and validating modelling, e.g., micro-computed tomography, to accurately assess
native food structures, multi-omics approaches, to acquire vast information on
composition and biochemical processes, and nondestructive and real-time
sensing, to facilitate mapping and tracking changes in food quality and safety
in real-world situations. Comprehensive modeling techniques (including heat and
mass transfer, thermodynamics, kinetics) built upon physic laws provide the base
for realistic simulations and predictions of food processes that a virtual foodmight
undergo. Despite the potential gaps in knowledge, increasing the adoption of food
virtualization (data-based, physics-based or hybrid) in manufacturing and food
systems evaluation can facilitate the optimal use of resources, the rational design
of functional characteristics, and even inform the customization of composition
and structural components for better product development. This mini-review
focuses on critical steps for developing and applying virtual foods, their future
trends, and needs.
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Introduction

Efficient use and transformation of resources along the food supply chain are critical to
achieving sustainability goals such as food security and waste reduction. To this end, food
systems must be integrally conceptualized to acknowledge their dynamic nature, complex
interactions, and transformations, and the effects of external factors on their safety, quality,
stability, and even consumer acceptance (Erdogdu et al., 2017; Vitrac et al., 2021; Marra,
2022). Adopting advanced modeling, high-resolution, and real-time data acquisition
techniques plays an important role in virtualizing, simulating, and predicting
phenomena in foods so that suchmilestones can be achieved (Saguy, 2016; Datta et al., 2022).
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Although the role of virtualization of the food supply chain as an
improvement tool has been introduced for over 10 years, its
applications are still limited (Marra, 2016). ‘Virtual foods’ or ‘in
silico foods’ can be defined as digital representations with the same
characteristics (e.g., physical properties, chemical composition) as
their real-life counterparts (Verdouw et al., 2016). They are digital
twins constrained to the food product itself (Verboven et al., 2020).
To be effective and useful, these digital twins of specific commodities
or products should be built so that all physical principles, transport
phenomena, and food reactions are applicable to them. As such,
virtual foods should respond to simulated stimuli in ‘virtual
environments’ in ways that accurately mimic the behavior of
their real-world versions. The ‘virtual environments’ can be
tuned to reflect relevant scenarios throughout the food supply
chain to i) evaluate external effects on food structure, quality,
and safety, ii) develop and optimize processes to attain high
efficiency and sustainability (Marra, 2023), iii) predict the
occurrence and impact of failure events during distribution and
storage (Peleg et al., 2011); and iv) reduce the time-to-market of new
products (Saguy, 2016; Mengucci et al., 2022). Building virtual foods
is intricate since it relies on the availability of extensive databases of
physical, structural, chemical, and biological attributes and a holistic
supporting framework of advanced characterization, modeling, data
processing, and management approaches (Datta et al., 2022). This
mini-review aims to identify the critical components, summarize the
available approaches, and discuss the challenges, needs, and future
trends in developing and applying food product virtualization.

Building a virtual food

Food undergoes transformations from harvest to consumption
(Singh and Corradini, 2023); some are intentional and rapid such as
those imposed by processing, and others progressive and
cumulative, such as the ones that ensue from a food’s inherent
deterioration processes. Regardless of their triggers, these

transformations highly depend on a food’s intrinsic properties,
such as physical attributes, chemical composition, hierarchical
organization of its structural components, and natural
microbiota. External factors, such as temperature, humidity,
atmosphere composition, and airflow (Duan et al., 2020), also
influence the rate and extent of the transformations a food
undergoes along the supply chain. Linking these factors
coherently provides the foundation to build a virtual version of
an actual product. Even if a physics-based digital twin is being built,
it requires knowledge of actual food properties to assist in its
development and validation (Datta, 2016; Erdogdu et al., 2017;
Erdogdu, 2023). Thus, accurate and careful spatial and temporal
mapping of food properties, components, structures, and
surrounding factors is required to create a reliable avatar of a
product. This thorough assessment will allow accounting for the
effects of intrinsic and extrinsic factors and their dynamic nature on
transport phenomena and reactions kinetics modeling. The
following sections will briefly present techniques valuable to build
upon information on intrinsic factors and modeling approaches, as
seen in Figure 1, and to incorporate this information into data-
based, physics-based, or hybrid food models.

Physical properties and structural
features

Knowing the physical properties of food materials (e.g., density,
size, shape, thermal properties) is one of the cornerstones of
effectively simulating natural and manufacturing processes.
Measuring techniques for these properties have been extensively
documented (e.g., Figura and Teixeira, 2007). Although important
progress has been achieved on every front, advances in size, shape,
and structural determinations have probably benefited the most due
to the advent of high-resolution image acquisition, analysis, and
reconstruction. Hence, they will be primarily discussed in the
following section.

FIGURE 1
Contributions to the development of a virtual food and potential applications.
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Data acquisition

Food (micro)structure is complex and heterogeneous. The
irregular arrangement of different structural units, e.g.,
lignocellulosic backbones and protein networks, and component
compartmentalization result in materials with irregular shapes and
composition (Piovesan et al., 2021). Regarding size and shape, 3D
laser scanning has been identified as an improved tool for collecting
information to develop geometric models of foods with irregular
shapes at high morphological resolution (Zhang et al., 2020).
Similarly, over the past 20 years, high-resolution techniques have
improved the scouting of foodmicrostructure (Gruyters et al., 2020).
Microstructural features percolate into macroscopic properties,
transport phenomena, and biochemical processes at different
stages of a product’s life (Mahiuddin et al., 2018). Therefore,
accurate visualization and realistic representation of
microstructural constituents are useful in developing or
validating an in silico food. Several techniques traditionally used
for medical applications, such as magnetic resonance imaging (MRI)
and X-ray micro-computed tomography (X-ray μCT), have been
consistently gaining popularity for the nondestructive and
noninvasive assessment of food structure (Kirtil et al., 2017; Van
Dael et al., 2019).

Based on the differences in components’molecular mobility within
a food matrix, MRI has been employed to characterize food structure
and track moisture distribution and loss during processing (Schork
et al., 2020). X-ray μCT has been applied to capture the 3D
microstructure of various foods and track the deformation of, for
example, porous networks’ specific surface area, size, and
fragmentation during processing, including drying, cold storage, and
ripening (Cantre et al., 2014; Gruber et al., 2021). Despite the efficacy of
these techniques in characterizing microstructural features in solid
foods, their application to liquid/semi-solid, soft materials (e.g.,
multiphase products such as weak gels, emulsions, froth, or frozen
foams) still encounters several hurdles due to these materials’ optical
opacity, low shear strength, and susceptibility to beam effects due to
high energy synchrotronic radiation that can induce melting,
deformation, and damages (Metilli et al., 2021). These limitations
can be overcome by clever sample preparation (e.g., inclusion within
sheltering structures), pre-tempering samples at freezing conditions
(e.g., −15°C), or rapid data acquisition (Guo et al., 2017). However,
alternative techniques should be applied to soft materials for proper
characterization. It should also be noted that in-situ and real-time
characterization of food structures during processing is still rare.

Data use

Food properties and quality attributes have been linked to
features revealed from X-ray μCT images by complementing
them with other measuring techniques and multivariate analysis.
For example, internal defects, disorders, and injuries were detected
in vegetables and fruits using this approach. Even the position- and
porosity-dependent effective O2 diffusivity have been accurately
determined in this kind of product based on high-resolution
images (Chigwaya et al., 2021; Nugraha et al., 2021).

Extensive research has been conducted on reconstructing food
structures and modeling deformation using empirical and

mechanistic-based approaches from high-resolution data. X-ray
CT images have been used to rebuild food geometry at different
levels of granularity, from a single corn kernel microstructure to
bulk packing of pears in a box (Suresh and Neethirajan, 2015;
Verdouw et al., 2016; Gruyters et al., 2020). The reconstructed
geometric models can be implemented into computational fluid
dynamics (CFD) and transport models to simulate, for example, the
performance of cooling systems on a food’s temperature during
storage (Yin et al., 2022). Machine learning approaches (e.g.,
artificial–ANN- and convolutional neural networks - CNN) have
also been applied to rebuild structures from images (Wu et al., 2019;
Röding et al., 2020).

Regarding modeling structural deformation during processing,
Mahiuddin et al. (2018) provided a comparative analysis of
mechanistic-based approaches to account for these changes. Proper
material characterization allows the informed selection of a model for
different foods (e.g., elastoplastic, linear-elastic, viscoelastic, or hyper-
elastic), resulting in more realistic simulations. Novel hybrid models, as
proposed by Pacheco-Aguirre et al. (2015), who introduced a shrinkage-
deformation algorithm to simulate size reduction, shape change, and
microstructure deformation more realistically during drying and
evaluate the effect of these changes on moisture diffusivity, will
increasingly play a more important role in reproducing food
structure more realistically and accurately simulating deformations
in virtual foods.

Food composition and microbiota

Foods have complex compositions, with specific compounds
contributing to their nutritional, organoleptic, and quality attributes.
Not only does chemical composition varies among food items, but it
also changes throughout a food’s production and shelf-life. A series
of chemical and biochemical reactions, whose rates are dependent
on external factors, progressively modify food composition (van
Boekel, 2008). Additionally, foods are natural hosts of various
microorganisms and are susceptible to spoilage by bacteria,
yeasts, and fungi. The comprehensive study of food composition,
reaction mechanisms, microbial-host interactions, and kinetics,
thus, is essential for accurately simulating food quality changes
and predicting the remaining shelf life in digital renderings of a food.

Data acquisition

Similar to physical properties, there is no lack of methods to
report on food composition accurately (Nielsen, 2017). However,
the comprehensive assessment of major and minor food
components requires innovative and multidisciplinary approaches
to address the interconnected reactions occurring alongside food-
related phenomena.

Nondestructive and real-time sensing based on spectroscopic
techniques, e.g., machine vision and hyperspectral imaging (HSI) in
several modes, allows the simultaneous and continuous acquisition
of composition and spatial information. These spatially resolved
spectra are fast and easy to acquire noninvasively and in-line, being
capable of monitoring from compositional changes to the
effectiveness of processing operations (Colaruotolo et al., 2021).
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Foodomics refers to applying high-throughput omics techniques
(e.g., genomics, proteomics, lipidomics, interactomics) to monitor
biomolecules in foods (Cifuentes, 2012; Pollo et al., 2021). Currently,
it is impossible to think about food safety without genomics.
However, its applications have expanded beyond surveillance to
allow characterizing the complex microbial communities in foods
involved in potential spoilage and safety risks (Beck et al., 2021;
Palevich et al., 2021). A foodomics-based approach has also been
used to gain insights into underlying mechanisms involved in food
quality losses (Hu et al., 2022) and bioactivity (Ding et al., 2023), as
well as mapping changes in composition and microbial loads during
processing (Sinanoglou et al., 2014; Lerma-García et al., 2016;
Topcam et al., 2023). It has also been proposed as a potential
replacement for costly and subjective methods, such as sensory
analysis. By implementing a foodomics approach, arrays from
electronic noses and tongues coupled with chemometrics can
result in accurate sensory prediction models (Tan and Xu, 2020).
These models could be integrated with transport and reaction
kinetics models to predict the ‘virtual smell and taste’ of the
virtual foods. Hence, foodomics will progressively play a more
prominent role in holistically mapping the relationships between
composition and food phenomena, contributing to developing
representative and accurate virtual foods.

Data use

Chemical formation and degradation kinetics, as well as
microbial growth, and inactivation models are critical to
developing representative virtual foods. Although novel
analytical techniques progressively allow better elucidation and
monitoring of these processes, this progress has not permeated to
data analysis or characterization. Microbial inactivation and
chemical reactions (e.g., Maillard reaction, lipid oxidation,
vitamin degradation) kinetics in foods have been historically
described using fixed-order kinetic models, particularly first-
order (van Boekel, 2008; Corradini, 2018). Microbial growth is
routinely modeled using several empirical models, e.g., Verhulst’s
model variants (Peleg et al., 2011). The parameters of these
primary models have been primarily estimated on model
systems or liquid foods, and their dependence on state
variables has been primordially established using models with
limited physical meaning, for example, the Arrhenius equation
(Peleg et al., 2012; Saguy, 2016). Hence, to adequately mimic
changes in composition and microbial load in a virtual food, some
advances need to be implemented. Since most kinetic models are
valid only under the assumption that the involved reactions are
elementary, which is not always the case, a comprehensive study
of complex reaction networks and mechanisms is needed. Also,
coupling food reaction kinetics with multidimensional and
multiscale transport models should become the norm rather
than the exception (Ranjbaran et al., 2021). Such efforts would
help provide a more realistic view of chemical and microbiological
changes in the entirety of a food matrix (Peleg, 2023). Finally,
recent advances in deep learning techniques have enabled the
extraction of kinetic parameters from limited data, which could
potentially accelerate the accurate modeling of these reactions in
real and virtual foods.

Transport models for the utilization of
virtual foods

Food exposure to different and fluctuating environmental
factors, e.g., temperature and relative humidity, throughout the
supply chain lead to thermal and water content gradients within
food matrices, significantly influencing reaction rates and non-
homogenous changes in quality and safety attributes (Sun et al.,
2021). Therefore, transport models are important building blocks to
ensure the development and utilization of a virtual food.

Food materials are multiscalar matrices with unique shapes,
porosity, and cellular microstructures (Janssen et al., 2020). To
realistically and accurately represent a food matrix, transport
models should be multiscalar too. They should be composed of a
hierarchy of interconnected sub-models, each of them defining the
food’s behavior and properties at a specific scale (Rahman et al.,
2018). At a macroscopic scale, transport phenomena are governed
by heat and mass balance principles, grounded in classic theory such
as Fourier’s law of thermal conduction, Fick’s law of diffusion, and
Darcy’s law of pressure-driven flows (Turner and Mujumdar, 1996;
Erdogdu et al., 2017). Applying these principles allows for
characterizing and simulating the spatial-temporal distribution of
state variables (e.g., temperature, pressure). The integrated
application of these principles within a multiphase transport
approach allows for modeling water evaporation/condensation
within solid porous media as driven by local dynamically and
under nonequilibrium gradients of water vapor pressure, for
example,. Hence, heat and moisture exchange between a food
and its environment can be estimated more accurately and
realistically than ever before (Chen and Pan, 2021).

By using finite element (FE) or finite volume (FV) methods,
modeling transport phenomena in bodies with irregular geometries,
material discontinuity, and heterogeneous composition, such as
foods, can be effectively achieved (Curcio et al., 2016; Chen et al.,
2022). Mesh-free methods (MFM), including pore network,
dissipative particle dynamics, and smooth particle
hydrodynamics, can be applied to overcome some of the
limitations imposed by FE or FV methods due to the rigidity of
the mesh itself. MFM allows diving into an assumed ‘homogenized
region’ and studying microscopic deformations and transport
phenomena at the microscale (Karunasena et al., 2015). This
results in accurate descriptions of pore geometry, dynamic
tracking of the gas-liquid interfaces and gas distribution within
porous media, and determining moisture diffusivities at a cellular
level (Metzger, 2019; Welsh et al., 2021; Panda et al., 2022).

Building interconnected multiscale transport models could
provide valuable insights into composition-property-structure-
environment relationships in foods and food processes. However,
applications of such models are still few, and several challenges
remain to be surmounted to expand their use. They will require i)
increased accessibility to rapid, high resolution, nondestructive data
acquisition of structural attributes and components in real time, ii)
obtaining accurate food properties and state variables data at
multiple scales for model validation; ii) expanding the modeling
of metabolic gases (e.g., O2, CO2) transport in porous food matrices,
and iv) increased use of deep learning approaches to determine
governing equations and critical parameters for processes such as
diffusion in a heterogeneous media (Im et al., 2023). It is envisaged
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that these advances and hybrid approaches will contribute
significantly to the development of virtual foods (Sun and Shi, 2022).

Applications of a virtual food

The value of developing virtual foods is profound for
scientific research and practical applications. Conceived as
comprehensive in silico models of real foods, they will allow us
to better study and understand composition-structure-property-
performance relationships. From a practical perspective, and as a
crucial component of more extensive digital twins comprising a
process, sets of thereof or even the whole supply chain, these avatars
can be paraded through different virtualized environments to
acquire realistic responses of a commodity or product to
different scenarios as discussed below.

Novel product design and development

Accurate in silico foods could facilitate the development of
novel food products, including packaging (Marra, 2022).
Desirable geometries, microstructural features, and nutrient
stability can be pinpointed, designed, and tested through
modeling and simulation to meet sensorial attributes,
nutritional requirements (e.g., personalized needs), and
sustainability goals (Nikitina and Chernukha, 2020; Marra,
2023). Additive manufacturing could be applied to build
actual prototypes for validation. Packaging allows preserving
quality and freshness, in silico food models can be used to
scout and predict the performance of packaging materials
virtually.

Process development, improvement, and
optimization

Food processing is critical for producing safe, nutritious, and
sustainable products. However, thermal and nonthermal processing
result in lower food quality, functionality, or nutrition. Additionally,
several conventional treatments, such as hot air drying, pose
sustainability challenges, e.g., excessive energy consumption.
Thus, as a food avatar embedded within a process digital twin
can help develop efficient food processes and optimize operating
conditions (Verboven et al., 2020; Erdogdu, 2023; Topcam et al.,
2023). A virtual food could serve as a new ‘pre-check’ approach to
test whether a novel processing approach works. Using a
multiphysics approach, optimal operating conditions could be
matched to specific commodity varieties or products with
different composition. This will allow the simultaneous
optimization of food and process.

Supply chain mapping and smart logistics

Food virtualization provides a feasible, rapid, and efficient way
to assess potential sources of concern throughout the supply chain
that might shorten a product’s shelf-life or present a higher risk of

exposure to potential contamination (Tagliavini et al., 2019;
Defraeye et al., 2021). By simulating these situations and
retrieving valuable information from the food avatar, a smarter
distribution/storage system with integrated measures to minimize
risks can be enacted and customized for different types of foods to
prevent food waste and outbreaks, as recently reported by
Shrivastava et al. (2022).

Conclusions and recommendations

Several elements that contribute to the virtualization of a food
product, from databases to modeling approaches, are already
available. Advances in computational power, characterization
techniques, and data integration strategies are completing the
jigsaw puzzle. Despite their potential value, the implementation
this powerful tool has been demonstrated on limited occasions.
Numerous challenges remain for their full implementation as a
routine tools to optimize the performance of the food supply chain.

Full virtualization of a food product requires interdisciplinary
contributions. Expanding collaborations beyond strictly food
disciplines at the academic and industrial level can facilitate this
process. The data needed to inform each component of a virtual food
are substantial and require contributions that reflect spatial and
temporal variability. Thus, cloud-based storage with the capability to
integrate categorized information should be established and shared
among stakeholders.

Additionally, development and operation of virtual food models
will require specific knowledge and skills, which may limit their
applicability. Translation and dissemination of the outcomes
(Kansou et al., 2022), user-friendly graphical user interfaces
(GUI), and proper training in relevant skills are critical to
expanding their future use and building more sustainable and
secure global food systems.
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