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Biorefinery systems that are embedded in their local setting provide an attractive
framework for the valorisation of locally available food- and other bio-waste
streams. They can aid in the provision of local bio-waste processing facilities as
well as the targeted revalorisation of local bio-waste feedstocks by converting
them in locally desired biorefinery products. Since food- and other bio-waste
feedstocks are often diffuse feedstocks, small-scale biorefineries that are tailored
for their local setting are the most suitable biorefining system for their processing.
Whereas small-scale biorefineries cannot rely on the economy-of-scale to be an
economic sustainable endeavour, they need to be meticulously optimised
according to multiple sustainability objectives. These objectives can be of
economic, societal, or environmental nature. A commonly used optimisation
criterion in these problems is the energy requirements of the entire biorefinery
system. For many commonly used biorefinery processesmass balancemodels are
available (which are often mechanistic models), however, energy balances are
difficult to obtain. Chemical process simulators, like Aspen Plus, provide an
extensive toolkit to easily model the mass- and energy balances of a multitude
of chemical processes. However, especially in the context of multi-objective
optimisation, the obtained white-box models are too complex to simulate the
considered processes efficiently consecutively. Therefore, in this contribution, a
critical analysis is presented of the use of white-box versus the black-box models
in the context of the multi-objective optimisation of a small-scale biorefinery. An
in-house developed biorefinery network is re-modelled in Aspen Plus and used as
a digital twin for the development of a surrogate model. Eventually, the modelled
biorefinery network is optimised using both models and a comprehensive
evaluation is drafted.
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1 Introduction

Historically, the necessity for (local) biorefinery systems has
been justified using the argument of climate change (Aristizábal-
Marulanda et al., 2021; Solarte-Toro and Cardona Alzate, 2021;
Kaur et al., 2022). Climate change, and its increasingly more present
implications on the environment, supplies and services, and our
lifestyles, has forced the global community to look for novel and
sustainable ways to provide for our current needs in resources whilst
simultaneously reducing their impact on the planet and future
generations. Biorefineries allow for converting the dense structure
of lignocellulosic biomass into value-added and desirable products.
By doing so, the need for extracting additional raw fossil materials is
being avoided. The (historic) intensive usage of fossil raw materials
by humankind has caused our climate to become hotter and more
unpredictable (IPCC, 2021). Supplying novel methods to support
the world’s energy and material requirements without further
contributing to continued heating of the climate is one of the
most important tasks to tackle climate change in the long run
(Solarte-Toro and Cardona Alzate, 2021). The further
development of biowaste biorefineries would enable communities
to revalorise their available biowaste-streams, allowing them to
provide themselves in the local needs of biorefinery products
(e.g., biogas, compost, fertiliser) without needing to extract
additional fossil carbon (Kolfschoten et al., 2014; Moretti et al.,
2022).

Furthermore, biowaste biorefineries would allow (local)
authorities to become increasingly more self-sufficient regarding
their energy- and resource provision, decoupling their prosperity
from that of the limited number of oil- and gas-producing countries
in the world (Kolfschoten et al., 2014; Clauser et al., 2016).
Moreover, as the proposed biorefinery would use a waste stream
as its main feedstock, the plant in question would also contribute to
local waste management (Leong et al., 2021). The initially
considered target region is the densely populated region of
Flanders, Belgium. In 2020, 674,588 tonnes of lignocellulosic
biowaste have been collected in the considered region. Since
2013, the average total amount of annually collected
lignocellulosic biowaste amounted to 699,285 ± 24,634 tonnes
per year, most of which is being composted (OVAM, 2021).
Although composting is already a commonly-used biowaste
biorefining process, there are a multitude of further biorefining
processes available to convert lignocellulosic biowaste into a legion
of biorefining products (Clauser et al., 2016; De Buck et al., 2020;
Aristizábal-Marulanda et al., 2021).

As a result of their obvious potential benefits regarding local self-
sufficiency and climate change mitigation, the field of study on
biorefineries has gradually increased the past decade(s) (De Visser
and Van Ree, 2016; Leong et al., 2021). One of the most commonly
cited challenges regarding biorefineries is their overall energy
consumption. When the energy consumption of the biorefinery
exceeds the energy it is creating, the climate change mitigatory effect
of the biorefinery is nullified. Nonetheless, few energy models of
biorefinery (unit operations) are available in literature. The
development of energy models, in order to be able to perform in-
depth performance analysis and optimisations of proposed
biorefinery layouts, has often been coined as an essential next
step in this field of study.

In addition to a limited overall energy consumption, it is equally
essential for a biorefinery design to be economically viable, i.e., the
returned profit exceeds the (fixed) costs that are paired with the
operation of the plant (Solarte-Toro and Cardona Alzate, 2021; di
Chen et al., 2018; Senthil Rathi et al., 2022). Given that these two
objectives, i.e., the minimisation of the plant’s energy consumption
and the maximisation of the generated profit, must be
simultaneously considered, the optimal design of an energy
efficient and simultaneously profitable biorefinery should be
considered as a multi-objective optimisation problem.

In this contribution, the multi-objective optimisation of a small-
scale and flexi-feed biorefinery is considered. The considered
biorefinery design was previously presented by Sbarciog et al.
(2022) and is specifically tailored for the considered Flemish
setting. Small-scale biorefineries outperform their large-scale
counterparts by being specifically designed for the (small) local
area they serve. However, because of their limited production scale
and, thus, incapability of processing high quantities of feedstock, it is
crucial they are operated as optimally as possible to maximally
increase profit-margins. A profitable (SS)BR (or any process for that
matter) is one that produces the best quality and quantity of
products, whilst consuming the least amount of energy and other
consumables. This bivalent goal is translated in this contribution to
two objectives that are being considered simultaneously: i)
minimising the consumed energy of the proposed SSBR, and ii)
maximising the generated profit. One of the main challenges,
however, is modelling the energy consumption of proposed
biorefinery design (De Buck et al., 2020; Aristizábal-Marulanda
et al., 2021). In order to be able to make a sufficiently accurate
assessment of the consumed energy of the proposed biorefinery
design, an Aspen Plus model is developed. The considered
biorefinery network was previously presented in Sbarciog et al.
(2022) is re-considered in this contribution. The Aspen Plus
(A+) model is based on the mass-balance models presented in
Sbarciog et al. (2022) and, in combination with the latter, will
allow for simultaneously modelling the biorefinery’s mass yields
as well as its energy consumption. Notwithstanding major efforts
have already been made in the context of modelling the energy
consumption of a multitude of biorefinery designs (e.g., Davis et al.
(2016) developed an Aspen Plus model of an algal biorefinery;
Humbird et al. (2011); Davis et al. (2015) developed Aspen Plus
models for the dilute-acid and enzymatic treatment of
lignocellulosic biomass; Nguyen (2014) developed an Aspen Plus
model of the anaerobic digestion process (which is considered in the
studied biorefinery network)), a thorough literature review did not
reveal any energy, or Aspen Plus models, of the additional processes
of the considered biorefinery network.

Even though A+ is capable of approximating the energy
consumption of a modelled design, it also displays two major
drawbacks. Firstly, the usage of A+ (or any other proprietary
software) as a simulation platform limits the application potential
of the obtained energy-model as it can only be used within the A+
software environment. Although it is possible to access an Aspen
Plus model from an optimisation platform like MATLAB or Python,
using communication software like INPROP, as presented inMuñoz
López et al. (2018), major hurdles still occur when considering
licensing. Moreover, A+ and other chemical simulation platforms
are notorious for being slow. Especially when there is a need for a
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high number of consecutive simulations of the same process, being it
with different control settings, the overall simulation time can easily
increase to an unpractical amount. In consideration of both of these
drawbacks, the second part of this contribution focusses on the
initial steps towards the development of a surrogate model of the
developed Aspen Plus energy-model. The surrogate model is
developed based on data obtained from the original Aspen Plus
model. As it is being developed away from the Aspen Plus
environment, it has no need for the dedicated simulation
environment and is simultaneously considerably faster. The
effectiveness of the developed surrogate models will be illustrated
by repeating the same multi-objective optimisation problem and
comparing the obtained results with those obtained when using the
original Aspen Plus model.

As an extension of the introduction, Section 1.1 briefly re-
introduces the in-house developed biorefinery network, which
was initially presented in Sbarciog et al. (2022). Section 1.2
discusses the concept of black-box modelling and its application
in (bio-)chemical process engineering, whereas Section 1.3
introduces the general definitions of a multi-objective
optimisation problem. Section 2 focusses on the used software
and methods. Finally, Section 3 discusses the obtained results
regarding: i) The development of the comprehensive, digital twin,
of the considered biorefinery network in Aspen Plus; ii) the
development of a surrogate, black-box model of one of the
considered biorefinery unit-operations, and iii) the extensive
discussion and comparison of the multi-objective optimisation of
the biorefinery network using both the comprehensive model as well
as the newly developed black-box model.

1.1 Biorefinery network

The considered biorefinery network is represented in Figure 1
(Sbarciog et al., 2022). The selection of the processes is based on
expert knowledge considering the most common lignocellulosic
biowaste streams in Flanders and/or commonly requested
biorefinery products in that area. The depicted biorefinery

network serves as an all-encompassing design for a biorefinery in
Flanders. Note that, depending on the local requirements and/or
locally available lignocellulosic biowaste feedstock streams, the
applicability of the presented biorefinery network should be
thoroughly assessed. In the following, each unit operation (shown
in red in Figure 1) will be briefly discussed. The interested reader is
referred to Sbarciog et al. (2022) for a more detailed explanation of
each unit operation, the underlying mass balance equations, as well
as initial simulation results.

The considered biorefinery network can be subdivided into two
independent production lines: i) the steam refining production line,
processing the bulk of the collected wood waste, and ii) the anaerobic
digestion production line, processing the collected food waste
through a concatenation of several processes following an
anaerobic digestion process. Considering the steam refining
production line, the collected wood waste is converted into fibres
and oligosaccharides by injecting wood chips and steam into a batch
milling-reactor. The mass balance equations of this process where
modelled by Borrega et al. (2011a,b). While food waste does not
require as rigorous processing as the crystalline lignocellulosic
matrix of wood (Pastor-Poquet et al., 2018), it was opted to
process food waste using the anaerobic digestion (AD) process.
During the AD process, the feedstock stream is converted into a
(liquid) digestate stream and a methane-rich biogas stream. The
mass balances of the anaerobic digestion process are, most
commonly known, modelled by the ADM1-model, developed by
Batstone et al. (2002). However, in this contribution, the ADM1-
model adaptation for the AD of food waste, presented by Nguyen
(2014) is employed. As food waste contains a high amount of protein
(Banks et al., 2008), the liquid digestate stream rendered by the AD
process still contains a high amount of under-valorised ammonia.
Hence, it was opted to include an ammonia stripping step a
posteriori the anaerobic digestion process to strip this excess
ammonia from the digestate stream. In a subsequent scrubbing
process, this gaseous ammonia could be captured into solid
N-fertiliser. The ammonia stripping process is modelled by
Değermenci et al. (2012); Değermenci and Yildiz (2021). Lastly,
in order to fully utilise the collected feedstock streams, a composting

FIGURE 1
Outline of the modelled biorefinery network (adapted from Sbarciog et al. (2022), licensed under CC-BY 4.0).
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process was added to the biorefinery network. Unlike the anaerobic
digestion and ammonia stripping processes, the composting process
is again a batch process. In several composting cells, a mixture of the
leftover wood waste and stripped digestate stream is converted into
compost. The considered composting model was developed by
Martalò et al. (2020).

In this contribution, the biorefinery network presented by
Sbarciog et al. (2022) will be modelled in Aspen Plus to obtain a
comprehensive mechanistic biorefinery model. As illustrated in the
above, mechanistic (white-box) models modelling the mass balances
of the selected biorefinery process are already available in literature.
Energy models, however, are not as easily available. Chemical
process simulators, like Aspen Plus, provide a straightforward
method to model similar (bio-)chemical process, enabling the
user not only to simulate the mass balances of the considered
unit operations, but additionally its energy balances too.
Combining the mechanistic kinetic models sourced from
literature together with the built-in energy models of Aspen Plus,
will render an all-encompassing model of the studied biorefinery
network.

1.2 Surrogate modelling

The kinetic models presented in Section 1.1 are so-called white-
box or mechanistic models (see Figure 2). They rely on a prior
insight in the underlying mechanisms of the to-be-modelled system.
This dependence on a priori knowledge on the system enables them
to accurately model the considered system, within certain feasibility
boundaries. However, they can be extremely cumbersome to
develop, especially when there is no detailed understanding of
the studied systems or when the system is very complex and
there are no well-established modelling paradigms available.
Contrarily, black-box models do not require prior insight
knowledge on the considered system but instead rely on a well-
designed and -spread dataset containing input/output data of the
concerned system’s aspect. Combined with a well-defined
experimental design, black-box models only rely on the provided
input/output data to define the model framework, structure, and
parameters (Gernaey et al., 2004; Almquist et al., 2014; Lo-Thong
et al., 2020; Shokry et al., 2020; Mora-Mariano and Flores-
Tlacuahuac, 2022).

Surrogate models could be considered as a special type of black-
box models, bridging the gap between both black-box and white-box
models: Surrogate models are in essence black-box in the sense that
they map the relationship between a certain process input and
output whitout much attention to system’s inner workings.
However, the input/output dataset that they are fed and trained
with is not directly sourced from experiments, but rather from a
distinctively more complex (and often white-box) model of the
considered system (Koziel et al., 2011; McBride and Sundmacher,
2019). This more complex process model, that is used to generate the
data needed to draft the surrogate model, is often referred to as the
digital twin of the considered process (Lopez et al., 2020; Lave et al.,
2021). The most commonly used examples of surrogate model
frameworks are polynomials, kriging, and artificial neural
networks. As these modelling frameworks are noticeable by their
speed, the eventually obtained surrogate model, capable of
estimating the desired output for a valid input vector (i.e., within
the scope of the model), is usually significantly less computationally
expensive than the original full process model (Koziel et al., 2011;
McBride and Sundmacher, 2019). The associated decrease in
simulation time and cost have made surrogate models of
(complex) (chemical) processes especially popular in the context
of process optimisation.

This, so-called, surrogate optimisation of chemical processes is
already commonly applied in the field of chemical process
engineering and optimisation. Quirante et al. (2015); Quirante
and Caballero (2016) have applied surrogate models on the
optimisation of distillation and stripping columns, respectively,
whereas, amongst others, Caballero and Grossmann (2008);
Boukouvala and Ierapetritou (2013) have applied surrogate
optimisation in the context of flowsheet optimisation. Lin et al.
(2017) have applied surrogate modelling techniques specifically in
the context of optimising the production of hydroxymethylfufural
(HMF), levulic acid (LA) and formic acid (FA) from glucose
obtained from biomass, i.e., a biorefinery process. Lin et al.
(2017) have already applied surrogate models for estimating the
yield of a biorefinery process, whereas Huntington et al. (2023)
clearly indicated the power of the usage of surrogate models in the
context of the techno-economic analysis of biorefineries.

In this contribution, the newly developed comprehensive Aspen
Plus small-scale biorefinery model will be employed as a digital twin
for generating an input/output database for training a surrogate

FIGURE 2
Graphical representation of the modelling exercise and the different focusses and modelling approaches of white-box versus black-box modelling
(Based on Spriet and Vansteenkiste (1982)).
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energy model of the steam refining process. Subsequently, both
models will be employed in the context of a multi-objective
optimisation of the considered unit operation, after which the
obtained results of both approaches will be discussed and
compared to assess the applicability of surrogate models within
the context of optimising small-scale biorefineries. The main goal is
to enable a more thorough optimisation of the considered process as
the number of generated solutions and iterations of the optimisation
algorithm will not be affected as much anymore by technical
constraints.

1.3 Multi-objective optimisation

As already mentioned before, the bivalent design goals of
biorefineries (i.e., mitigating the effects of climate change whilst
still being an economically viable enterprise) demand for optimising
any proposed design considering both these objectives
simultaneously, rendering a multi-objective optimisation problem
(Tay et al., 2011; Geraili and Romagnoli, 2015; Punnathanam et al.,
2016; Rodríguez Carpio et al., 2021; Riveros-Gomez et al., 2022).

1.3.1 Mathematical definition

Multi-objective optimisation is the area of research that
considers the optimisation of a process whilst considering
multiple optimisation objectives simultaneously (Logist et al.,
2010). In process engineering, these objectives are either of
economic, environmental, or societal nature (Sharma and
Rangaiah, 2013). Due to the fact that these objectives are often
conflicting, a multi-objective optimisation problem (MOOP) does
not possess one unique optimal solution but, alternatively, an
infinite set of equally optimal trade-off solutions: the so-called
Pareto front. When the decision maker (DM) changes the
settings of their process from one Pareto-optimal solution to
another, a trade-off occurs, meaning that whilst certain objectives
will improve, others will inevitably worsen (Hashem et al., 2017; De
Buck et al., 2021). Mathematically, a MOOP can be defined as (Das
and Dennis, 1997):

min
x∈C

F(x) � J1 x( ), . . . , JM x( ){ } ,M≥ 2 (1)

With:

C � x: h(x) � 0; g(x)≤ 0; a≤ x ≤ b{ } (2)
F(x): Rn ↦ RM is the vector function containing the M

objective functions Ji(x): Rn ↦ R (with i ∈ [1, M]), mapping the
n-dimensional decision vector x onto the M-dimensional objective
space. The decision variable space C is defined by the ne equality
functions h(x): Rn ↦ Rne, the ni inequality functions
g(x): Rn ↦ Rni, and the boundary constraints, with a and b the,
respectively, lower and upper boundaries of the decision variable x
(Das and Dennis, 1997; Logist et al., 2010).

The solution set of aMOOP is the Pareto set (PS) which contains
all the Pareto-optimal solutions that satisfy (1). When solving a
MOOP, the main goal is to approximate the Pareto set PS as closely
and efficiently as possible. A multitude of highly tailored multi-

objective optimisation algorithms are available. In this contribution,
the in-house developed tDOM-II algorithm will be employed for
tackling themulti-objective optimisation of the proposed small-scale
biorefinery design (De Buck et al., 2021).

The comprehensive Aspen Plus (A+) model, presented in this
contribution, will be used in the context of a multi-objective
optimisation of the considered biorefinery network, as well as the
surrogate model based on the A+ model, with regard to the total
amount of consumed energy and the total amount of profit that is
generated.

2 Materials and methods

2.1 Software and hardware

Aspen Plus V10 (A+) was used for developing the Aspen Plus
(energy) model of the proposed small-scale biorefinery. MATLAB
R2021a was used as the optimisation platform, as well as a modelling
platform. The in-house developed INPROP interface (Muñoz López
et al., 2018) was used as the communication platform between
MATLAB and A+. All simulations were run on a 64-bit Windows
10 system, equipped with an Intel Core i7-8665U CPU at
1.90 GHz–2.11 GHz and with 32 GB of RAM installed.

2.2 Methods

2.2.1 Process models
The mass balances of each of the considered biorefinery

processes were taken from literature and implemented in
MATLAB. For the steam refining process of the wood waste, the
kinetic models developed by Borrega et al. (2011a,b) were employed.
Themass balances of the anaerobic digestion process were simulated
using the ADM1-adaptation proposed by Nguyen (2014) (i.e., an
adaptation of the ADM1-model, originally proposed by Batstone
et al. (2002), for the anaerobic digestion of household kitchen waste).
Next, the ammonia stripping process of the ammonia-rich digestate
stream is modelled using the ammonia-removal-efficiency model
developed by Değermenci et al. (2012); Değermenci and Yildiz
(2021). Finally, the aerobic degradation of the ammonia-poor
digestate stream and the remaining wood waste using a
composting process is modelled using the kinetic models
developed by Martalò et al. (2020). For a more in-depth
discussion of the considered biorefinery unit operations, see
section 1.1 and Sbarciog et al. (2022).

2.2.2 Optimisation algorithm
The multi-objective optimisation algorithm that will be

employed in the context of this contribution is the in-house
developed tDOM-algorithm, developed by De Buck et al. (2021).
The tDOM-algorithm is a genetic algorithm which main framework
is based on theNon-dominated Sorting Genetic Algorithm-II(NSGA-
II) developed by Deb et al. (2002).

2.2.3 Surrogate modelling
From theMATLAB environment, the A+model of the SSBR was

repeatedly run for different process control settings. In the context of
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this contribution, only the steam refining process was considered for
the development of a surrogate model (SM). Based on the unit
operation’s lower and upper boundaries, a set of test-points is
developed. Although surrogate modelling is often coupled with
low simulation/high information density sampling methods like
Latin Hypercube sampling, in this contribution a sampling
technique with a higher sampling density is used. More
specifically, the range of the temperature control of the steam
refining process is subdivided into a set of uniformly spread
sample points, while the range of the time control is subdivided
into a set of unevenly spread sampling points, following a
logarithmic spread with a high density of sampling points close
to the lower boundary, and a decreased density of sampling points
close to the upper boundary of the time control.

The obtained dataset is used to model a response surface, the
expression of which can be used as a surrogate model of the system.
The total energy consumption and total generated profit are
modelled separately. The response surface is modelled in
MATLAB using a grid-based linear interpolation technique.

3 Results and discussion

The initial focus of this section will be on the developed Aspen
Plus model. In section 3.1, each unit operation will be discussed in
detail. Subsequently, in Section 3.2, the A+ model of the steam
refining process will be applied as a digital twin for developing a
surrogate model (SM). Finally, in section 3.3, the multi-objective
optimisation problem for optimising the considered SSBR regarding
its energy consumption and generated profit will be drafted. In an
initial optimisation problem, the comprehensive A+ model, drafted
in Section 3.1, will be used in its entirety to simulate and calculate the
objective costs of the optimisation problem. In a second
optimisation problem, the steam refining process specifically will
be re-considered for a multi-objective optimisation, however, this
time the performance of the original A+ model versus the newly
developed SM will be compared and discussed in detail.

3.1 Modelling the SSBR in Aspen Plus

3.1.1 Operating a small-scale biorefinery
One of the major hurdles in the considered SSBR design was the

presence of both continuous (AD and ammonia stripping) and
batch process (steam refining and composting) that were run in
sequence of each other. While continuous processes produce a
steady process output in function of time, batch processes do
not. The latter are only commencing when a sufficient amount of
feedstock is available. Only once finished, the process output can be
harvested. While a continuous process requires a continuous flow of
feedstock into the system, and products out of the system, batch
process require them to accumulate over a certain amount of time.
This causes issue in the continuity of any production line that
contains both types of processes, so, in order to run them in
sequence of each other, a decoupling method between both
process streams was developed.

Firstly, as the steam refining process makes up a separate
production line by itself (its products do not feed into another

process), there is no need for a decoupler. The composting process,
however, is fed using the ammonia-poor digestate stream coming
from the anaerobic digestion and ammonia stripping processes. As
both of these processes are operated continuously, a decoupler is
needed between them. In practice, a decoupler often is a holding
tank that is placed between the two processes whose feedstock-/
product flows need to be decoupled from each other. In the case of
the presented biorefinery network, the continuous process’ constant
outflow of product is collected in a holding tank. Once the holding
tank is full, its content is transferred into the batch reactor, after
which the batch process can be started. The empty holding tank can
be refilled with the, still, constant output flow of the continuous
reactor. In the optimisation problem, defined in Section 3.3, much
attention has been paid to coordinate the volumes of the holding
tanks, the volumes of the batch reactors, and the size of the flows
between them, in order to obtain a semi-continuous process.

The overall runtime of the considered SSBR is set to 1 year, more
specifically 364 days. During that time, the anaerobic and ammonia
stripping process are run continuously whereas several batches of
the steam refining process will be run. Figure 3 represents a more
detailed flowsheet of the operation of the considered SSBR, focussing
on the steam refining process. During the modelling and
optimisation exercise presented in this contribution, it is assumed
that all the wood waste is collected annually, i.e., at the start of the
364 days operating time frame, mw kg of wood waste is available for
processing. During the operating time frame, the wood waste
feedstock will be depleted, following a discontinuous, gradually
decreasing, step function.

To allow for more control over both continuous processes, the
anaerobic digestion process and the ammonia stripping process are
decoupled from each other via another holding tank (see Figure 4).
The flow rates of the input (and, thus, output flows) through both
processes can be optimised separately from each other. Moreover, as
the holding tank is assumed to be a reaction-free environment and
considered to be perfectly mixed, the feedstock stream of the
ammonia stripping process has a consistent composition,
facilitating the fine-tuning of the ammonia stripping process
controls. Regarding the anaerobic digestion process, its feedstock
is the biweekly collected household kitchen waste. Although this
could be seen as a limiting factor for operating the anaerobic
digestion process, the highly perishable household kitchen waste
cannot be stored for a long time regardless (Degueurce et al., 2020).
The biweekly collected amount of household kitchen waste mk is
continuously processed via the anaerobic digestion process until the
supply is depleted, ideally coinciding with a new collection round.

The digestate stream coming from the anaerobic digestion
process feeds into a first holding tank, which is considered to be
reaction-free and perfectly mixed. Once this first holding tank is full,
the content is continuously fed into the ammonia stripping process,
whilst the digestate stream fills into a second, parallel, holding tank.
The ammonia-poor digestate coming from the ammonia stripper
feeds into a first holding tank to decouple the continuous ammonia
stripping process from the batch composting process. This time,
once this holding tank is full, its content is immediately fully
transferred to a composting cell, after which the batch
composting process can start. By installing multiple, parallel
composting cells (and holding tanks), a semi-continuous
composting process is obtained: several batch processes are
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performed in parallel, avoiding a hold-up in the production line due
to the unavailability of a reactor.

3.1.2 Aspen Plus properties settings
The Aspen Plus model is developed starting from the “solids

template”, included in the Aspen Plus software, and this using metric
units (global unit set: METSOLID). The list of components that is
defined in the properties database is included in the Supplementary
Table 1. The used component databases are: APV100PURE36,
APV100AQUEOUS, APV100SOLIDS, APV100INORGANIC,
APV100BIODIESEL, APV100ASPENPCD, and APV100POLYMER. In

terms of methods used, the method filter is set to COMMON and
the used thermodynamic model is the NRTL-model (i.e., the non-
random two-liquid model).

3.1.3 Aspen Plus model of steam refining
production pipeline

Figure 5 displays the Aspen Plus flowsheet of the steam refining
production pipeline. The WOOD input stream is the wood stream
leaving the pretreatment process, as indicated in Figure 1. The
STEAM input stream is the saturated stream of steam coming
from the boiler. The boiler is modelled using the HEATER

FIGURE 3
Flowsheet of the steam refining process, with mw the mass of the collected wood and Vr the steam refining reactor volume.

FIGURE 4
Flowsheet of the anaerobic and ammonia stripping process.

FIGURE 5
Aspen Plus flowsheet of the steam refining production pipeline.
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exchanger block. The XSteam Matlab extension, developed by
Holmgren (2022), is employed for calculating the pressure of the
saturated steam leaving the boiler. The BOILER is specified using the
required temperature change between the in- and output stream,
and the vapour fraction of the output stream. While the former is
defined by the chosen steam refining process severity R0, the vapour
fraction of saturated steam is set at 1. The severity of the steam
refining is defined as (Hagel and Saake, 2020):

logR0 � t × e
T−100( )
14,75 (3)

The steam refining reactor is modelled using an RSTOIC reactor
block in Aspen Plus. Using the reaction stoichiometry as given by
the kinetic models developed by Borrega et al. (2011a,b), and the
identification of conversion ratios, A+ is capable of estimating the
energy consumption of the considered process. The conversion
ratios are calculated using the kinetic models as defined by
Borrega et al. (2011a,b) in the MATLAB environment and are,
using the INPROP communication interface, updated in the A+
model. The temperature and pressure of the steam refining reactor
are set to be the same as the temperature and pressure of the
incoming STEAM stream, coming from the BOILER. The output
stream of the RSTOIC reactor is being further processed using a
solid-liquid separation, modelled by the SOLIDSEP block in A+. For
the sake of simplicity, the separation of the liquid extract stream
(containing oligosaccharides) and solid fibres stream is considered
to be perfect.

In Section 3.2, a surrogate model will be drafted of this specific
production pipeline, which will be used in the context of a multi-
objective optimisation problem in Section 3.3.

3.1.4 Aspen Plus model of anaerobic digestion
production pipeline

Figure 6 displays the Aspen Plus flowsheet of the anaerobic
digestion production pipeline. Similar to the steam refining
production pipeline, the mass balances of the anaerobic digestion
reactor are modelled in the MATLAB environment using the kinetic
model developed by Nguyen (2014). The wide range of different
components of the anaerobic digestion process, as specified by
Nguyen (2014), makes it difficult to model all the reaction
equations immediately in Aspen Plus as many of the considered
components are not available in the Aspen Plus component libraries,

not even in more specialised component databases like the one
developed by Wooley and Putsche (1996). The anaerobic digestion
reactor is modelled using an RCSTR reactor block in Aspen Plus. The
main energy term of the anaerobic digestion process is linked to
keeping the reactor at a predefined temperature as well as keeping
the liquid phase inside the reactor homogenous by continuously
stirring it.

As mentioned in 3.1.1, the digestate stream coming from the
anaerobic digestion process is fed into a storage tank which is
considered to be i) reaction-free, and ii) perfectly mixed. By
doing so, the ammonia stripping process is decoupled from the
anaerobic digestion process. This allows for a greater amount of
freedom over the control of both processes, enabling a more tailored
(multi-objective) optimisation of both processes. The storage tanks
are modelled in the MATLAB environment using the mass balances
obtained from the kinetic models, equally modelled in the MATLAB
environment.

The ammonia stripping process, unlike the previously discussed
unit operations, is entirely modelled in Aspen Plus employing a
RadFrac unit operation block. The stripping column consists out of
25 trays, with the digestate being fed on the top tray, and the air at
the bottom tray. While the digestate-input stream of the ammonia
stripping process is sourced from the storage tank between the
anaerobic digestion process and the ammonia stripping process, per
storage tank that is being processed, the input concentrations are
constant. Note that, while the anaerobic digestion process is run
continuously for 364 days, three storage tanks are being filled. The
effect this will have on the controls of the ammonia stripping process
is graphically represented in Figure 7.

The output of the ammonia stripping process is, again, collected
in storage tanks. This time to ensure the decoupling between a
continuous and batch process operated in sequence of each other.
Three collection tanks are being considered, which are filled in
sequence. As for the storage tanks located between the anaerobic
digestion process and the ammonia stripping process, the collection
tanks are considered to be reaction-free and perfectly mixed.

As soon as the first collection tank is full, its content is
transferred to the first composting cell. In Aspen Plus, the
composting cell is modelled using an RCSTR reactor block. The
mass balances of the composting process are modelled in the
MATLAB environment using the kinetic models developed by
Martalò et al. (2020).

FIGURE 6
Aspen Plus flowsheet of the anaerobic digestion production pipeline.
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3.2 Surrogate model

The A+ model of the proposed biorefinery could be used as a
source of experimental data for developing a new, surrogate model
that can mimic the behaviour of the original, fullmodel but without
it being too computationally expensive. To indicate the potential
power of surrogate models in the context of the optimisation of
(biorefinery) flowsheet models, a surrogate model is developed for
the steam refining production pipeline that is considered in the
studied biorefinery network. Subsequently, the developed surrogate
model will be used for the multi-objective optimisation of the steam
refining production pipeline (for energy and profit) and the obtained
results are compared to the results obtained with the original A+
model (see Section 3.3).

3.2.1 Surrogate model development
As indicated by Eq. 3, the severity R0 of the steam refining

process is influenced by two input variables: the temperature T of the
reactor/steam that is injected in the system, and the residence time t
of the wood waste inside the reactor. Based on literature, the lower
and upper boundaries of both input variables have been set to
[180°C − 240°C] for the reactor temperature, and
[10 min −1,440 min] for the residence time. In order to create a
sample data set for developing the surrogate model of the output of
the A+ model of the steam refining production pipeline, i.e., the
energy consumption of the boiler and the reactor, and the profit
generated from the produced fibres and oligosaccharides, the input
ranges of both input variables T and t are subdivided into an (un-)
evenly spread of sampling points. Even though surrogate modelling
is often coupled with sampling techniques like Latin Hypercube
Sampling, the chosen approach here is to generate a sampling dataset
that covers the entire range of the two input variables as densely as
possible. Given the relatively limited cost of one simulation of the
steam refining production pipeline using the A+ model
(i.e., compared to the entire biorefinery flowsheet), a sampling
data set with a similarly high degree of coverage is attainable
from a computational point of view.

Based on literature, a steam refining process with a small
residence time is preferred over one with a higher residence
time. To reflect this preference in the sampling data set, the
input range of the residence time is subdivided into unevenly
spread sampling points following a logarithmic scale with a higher
sample point density close to the lower boundary of the residence
time t input range (Janzon et al., 2014; Hagel and Saake, 2020;
Hagel et al., 2021). The temperature T range, however, is
subdivided into an evenly spread number of sampling points.
For each combination of sampling points, the A+ model of the
steam refining process is run and the overall energy consumption
and generated profit are being recorded, rendering a gridded
sampling dataset.

The obtained datasets of both the total energy consumption and
the generated profit are presented in Figures 8A, B, respectively.
From Figure 8A, it can be clearly seen that the evolution of the
energy consumption of the steam refining production pipeline
follows a linear behaviour (i.e., with increasing temperatures and
residence time, the energy consumption increases). The generated
profit, however, follows a more logarithmic behaviour with regard to
time: when the residence time surpasses a certain threshold, the
generated profit decreases drastically and remains negligible for any
remainder of time. It was opted to model the behaviour of both the
energy consumption and the generated profit via a response surface
which was generated using linear interpolation. This was deemed to
be acceptable as the input/output database was sufficiently dense in
both the T as well as the t directions.

As can be seen from Figure 8, the obtained interpolating
functions closely match the sampling points. Since it can be
used to calculate the energy/profit at query points within the
sampled input ranges, it can effectively be used as a surrogate
model of the energy consumption/generated profit of the steam
refining process. In the following section, the obtained surrogate
models will be used in the context of the multi-objective
optimisation of the steam refining production pipeline. Their
performance in this context will be compared to the
performance of the original full A+ model.

FIGURE 7
Exploitation of the ammonia stripping process decoupled from the anaerobic digestion process using three storage tanks (see Table 1 for the
definition of the controls).
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3.3 Multi-objective optimisation of an SSBR

3.3.1 Problem definition
The Aspen Plus model of the SSBR, presented in section 3.1,

allows for estimating the energy requirements of each separate unit
operation in the considered SSBR network and, thus, the entire SSBR
plant, depending on the settings of each unit operation. As one of the
key design aspects of a (small-scale) biorefinery is sustainability, it is
essential that the energy consumption of the biorefinery does not
exceed the (potential) energy content of its products. Nonetheless,
the biorefinery needs to remain sustainable from an economic point
of view too. Generally, when simultaneously optimising a process’s
energy consumption and profit, the optimal outcomes for the two
separate objectives are not in accordance with each other, rendering
a multi-objective optimisation problem. The optimisation problem
can be summarised as follows:

min
x∈C

F(x) � J1 x( ), J2 x( ){ } (4)

With.

J1 x( ) � ESR x( ) + EB x( ) + EAD x( )
+ENH3 x( ) + ECompost x( ) (5)

J2 x( ) � −1 × PSR,OS x( ) + PSR,F x( ) + PAD x( )(
+PNH3 x( ) + PCompost x( )) (6)

The energy consumption of the considered SSBR network is
summed in objective J1, whereas J2 is the summation of all the
profitable output streams of the biorefinery: oligosaccharides (OS)
and fibres (F) obtained from the steam refining process, biogas from
the anaerobic digestion (AD) process, ammonia (NH3) from the
ammonia stripping process, and compost. Eq. 4 shows that the
multi-objective optimisation problem is formulated as a
minimisation problem (as per convention), thus whilst the profit
objective J2 is supposed to be maximised, the entire objective
function is multiplied by −1.

The controls of the optimisation problem are summarised in
Table 1, together with their lower- and upper boundaries, defining
the decision variable space C. Additionally, Table 1 displays the
reference settings for each control variable, the value of which were

sourced from literature. In total, 16 controls and 1 fixed parameter
are defined. In order to keep the number of controls, and the total
number of required simulations, to a minimum, the number of
controls for the continuous anaerobic digestion process and
ammonia stripping process are kept at 3 and 6, respectively.

The controls are subjected to the following (practical) inequality
constraints:

g1 x( ): F1 × t1,2 + F2 × tf − t1,2( )≤ 0 (7)
g2 x( ): 0.875 × FW − F1 × t1,2 + F2 × tf − t1,2( )( )≤ 0 (8)

g3 x( ): F1 − 0.25 × VAD,l ≤ 0 (9)
g4 x( ): F2 − 0.25 × VAD,l ≤ 0 (10)

g5 x( ): F1 − F2 ≤ 0 (11)
g6 x( ): Ct1,2 + 2 − Ct2,3 ≤ 0 (12)

Inequality constraint g1, as defined by Eq. 7, ensures that the
total amount of food waste fed into the anaerobic digestion reactor
does not exceed the total amount of food waste that is available.
Concurrently, inequality constraint g2 (see Eq. 8) ensures that the
total flow of food waste into the anaerobic digestion reactor amounts
to at least 87.5% of the total available amount. Inequality constraints
g3 and g4 (see Equations 9 and 10) limit the flow rates into the
anaerobic digestion reactor to a maximum of 25% of the digestate
(liquid) volume in the reactor, this to avoid wash-out, and inequality
constraint g5 (see Eq. 11) ensures that the input flow rate of food
waste into the anaerobic digestion reactor is higher during the final
stage of the process than during the start-up phase. Finally,
regarding the composting process, inequality equation g6 (see Eq.
12) assures that the two switching time stamps (i.e., the time stamps
for changing the oxygen flow through the composting cell) are at
least 2 days apart. The minimum of 2 days is chosen for simplifying
solving the kinetic model of the composting process.

The optimisation problem and the decision variable space are
defined in the MATLAB environment. The tDOM-II
optimisation algorithm, developed by De Buck et al. (2021), is
run from the MATLAB environment as well. The communication
between MATLAB (both optimisation and simulation platform)
and Aspen Plus (simulation platform) is handled by the INPROP

FIGURE 8
Surrogate models of the total energy consumption (A) and generated profit (B) of the modelled steam refining process.
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communication platform, developed by Muñoz López et al.
(2018).

3.3.2 Optimisation results
The tDOM-II algorithm’s trade-off parameters allows for

optimising the problem defined in Eq. 4 whilst simultaneously
taking a minimum trade-off into account. Δr defines the
minimally required difference between two solutions with regard
to objective J1, whereas Δt defines the minimally required difference
between two solutions with regard to objective J2. In the context of
this contribution, Δr = 5% and Δt = 2.5%.

Figure 9 displays the obtained Pareto front. The objective costs
of the selected solutions, and this for each separate objective cost
term as defined in Equations (5) and (6), are summarised in Table 2,
whereas Table 3 summarises the different controls of the selected
solutions.

From Figure 9 it can already be clearly seen that the obtained
Pareto front significantly outperforms the reference point. Three
points of interest have been indicated on the Pareto front: the anchor
points A and B and the selected trade-off point C. Whereas A is the
individual minimiser of objective J1, and B the individual minimiser
of objective J2, the trade-off point C combines both objectives in a

more balanced manner. In general, DMs tend to select points located
in the so-called knee-area(s) of the Pareto front as they display the
best trade-offs between both objectives (Hashem et al., 2017; De
Buck et al., 2021). The trade-off point C displays a 20.50% decrease
in the total energy that is consumed and a 39.69% increase in profits
made compared to the reference point. When only regarding one
objective, a decrease of upto 65.02% in consumed energy and an
increase of 45.42% in profits, respectively, can be obtained.

Further analysis of the obtained results, displayed in Table 2,
gives rise to two additional main observations: i) the net energy
consumption of the steam refining reactor is negative in all of the
selected scenarios, and ii) the anaerobic digestion process is the most
profitable process of all. Firstly, when looking at the steam refining
process in more detail, the negative net energy of the steam refining
reactor means that energy is being produced/exuded. The boiler,
however, needed for turning water at ambient temperature and
pressure into saturated steam at the desired temperature, consumes
considerably more energy. One should note that the proposed
energy model in Aspen Plus does not take energy recycling into
account. Therefore, the obtained estimation of the (total) energy
consumption of the proposed process is an overestimation or
comparable to a worst-case scenario. In a real-life application,

TABLE 1 Controls of the MOOP, their meaning, lower and upper boundary, and reference values.

ID Meaning Unit Lower boundary Upper boundary References

Anaerobic digestion

ADF1 Feedstock flow 1 m3/day 0.9100 5.0000 1.0836

ADF2 Feedstock flow 2 ‖ ‖ ‖ ‖

ADt1,2 Switching point days 1 363 50

Steam Refining

TSR Temperature °C 180 240 180

tSR Time min 10 1,440 60

General

i # tanks - 3 3 3

Ammonia stripping

tAS,1 Duration time 1 days 80 120 120

tAS,2 Duration time 2 ‖ ‖ ‖ 110

tAS,3 Duration time 3 ‖ ‖ ‖ 100

AF1 Air flow 1 kg/hr 10 100 30

AF2 Air flow 2 ‖ ‖ ‖ 35

AF3 Air flow 3 ‖ ‖ ‖ 40

Composting

CFO1 Oxygen flow 1 mol/m3 1 15 2

CFO2 Oxygen flow 2 ‖ ‖ ‖ 2.5

CFO3 Oxygen flow 3 ‖ ‖ ‖ 3

Ct1,2 Switching time 1 days 3 180 33

Ct2,3 Switching time 2 ‖ 181 362 66
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however, energy recycle loops will be present. E.g., the product
streams leaving the steam refining process still contain a high
amount of thermic energy as they are at an increased
temperature. As they need to be cooled down before they can be
further processed, the extracted energy can, for instance, be
employed to (pre-)heat the water stream entering the boiler,
facilitating the steam creation process and, thus, resulting in a
diminished amount of energy that is required by the boiler.

When only considering the minimisation of the consumed
energy, Table 2 shows that the boiler only consumes 5.84 GCal/
hr, whereas in the case of maximising the profit, the boiler consumes
102.87 GCal/hr. One would expect that this would result in an
increased amount of profit made by the steam refining products.
However, the values presented in Table 2 clearly indicate the

opposite scenario with a profit made of 7,21 € and 16.39 € for
the oligosaccharides and fibres, respectively (for the processing of
1,000 kg wood waste). The controls of the steam refining process in
this scenario indicate a steam temperature of 206.32 °C and a process
time of 278.3 min. From the reaction system presented by Borrega
et al. (2011a,b) it can be clearly seen that in the case of an increased
steam temperature, combined with a high process time, the
lignocellulose of the wood waste is almost completely degradated
into products that are not desirable and cannot be sold, rendering
the process completely unprofitable. One would expect that, when
optimising for profit, this would result in a bad objective cost and
thus decreasing the solution in question’s chances of being selected
as a parent solution for (potential) subsequent generations.
However, and this is the second major observation that can be
made based on the results displayed in Table 2, while the anaerobic
digestion process is more than a thousand-fold more profitable than
the steam refining process, the negative impact of the currently
obtained controls on the steam refining process is neglible compared
to the profit that is being made by the anaerobic digestion process.
The same scenario can be seen when looking at the objective costs of
the ammonia stripping process spread over all four different
scenarios (i.e., A, B, C, and the reference point). Additionally,
while the energy price (and other fixed costs) is not taken into
account in the profit objective function J2 at this stage of the model
development, the high cost that would be paired with a similarly
high energy consumption of the BOILER does not have a negative
influence on the profit that is being made.

While all processes are decoupled from one another, it is
possible to source the controls of one unit operation from one
Pareto-optimal solution, while the controls of the other unit
operation are sourced elsewhere. As long as the entire set of
controls related to one unit operation are sourced from the same
solution, there will be no violations of the imposed (inequality)

FIGURE 9
Pareto front of the MOOP, simultaneously optimising for energy (J1) and profit (J2).

TABLE 2 Results of the MOOP defined in Equation (4), with the costs of each
separate term reported separately.

A B C References

ESR [GCal/hr] −3.8744 −70.557 −9.747 −15.980

EB [GCal/hr] 5.8427 102.874 14.333 21.776

EAD [GCal/hr] 0.0897 0.0832 0.0912 0.0909

TOT J1 [GCal/hr] 2.058 32.400 4.677 5.884

PSR, OS [€/year] 100.51 7.21 50.83 30.54

PSR, F [€/year] 289.92 16.39 117.66 86.52

PAD [€/year] 22,172.50 28,089.31 26,671.22 18,629.28

PNH3 [€/year] 1708.47 1,329.27 1,428.57 1,579.00

PCompost [€/year] 519.18 535.80 528.76 289.95

TOT J2 [€/year] 24,790.6 29,978 28,797 20,615.3
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constraints as they only consider one specific unit operation per
constraint. In the case of overlapping constraints, e.g., limiting the
total amount of energy that is consumed over all unit operations
combined, this exchange of controls of one solution to another
would not be viable as it would most likely induce constraint
violations in the combined solution. The combined solution (see
Figure 9) combines the controls of the steam refining process and the
ammonia stripping process from solution A with the remaining
controls coming from solution B. The objectives costs of the
combined solutions are 2.05 GCal/hr and 30,296 €/hr, for both
objectives respectively. Compared to the most profitable point on
the Pareto front (i.e., solution B), the significant decrease in energy
consumption is thanks to the updated controls for the steam refining
process, simultaneously resulting in a higher profit made from the
steam refining products which on its turn gives rise to a higher profit.

It is clearly visible from Figure 9 that the combined solution
outperforms all solutions on the obtained Pareto front, indicating
the obtained Pareto front has not fully converged yet. Increasing the
number of iterations and/or the number of population members
could augment the capability of the solutions to converge further.
However, due to the simulations in Aspen Plus taking a significant

amount of time (e.g., the steam refining simulation takes 9.93s on
average, while the anaerobic digestion simulation takes 59.46s on
average, measured on the system described in Section 2.1),
increasing the number of iterations and/or population members
becomes increasingly more computationally expensive. A
computationally less expensive surrogate model, based on the
Aspen Plus model, would allow for re-running the optimisation
with an increased amount of iterations and population members but
without it becoming impossibly computationally expensive (Henao
and Maravelias, 2011). The Aspen Plus model could be used as a
source for generating data in order to, subsequently, train a new,
surrogate model based on the obtained dataset. The surrogate model
can range from a response surface model (RSM) in the case of a
limited dataset, or an artificial neural network (ANN) when a larger
dataset is available (Schack et al., 2021).

3.3.3 Surrogate-based optimisation
As surrogate models require far less computational power than

the original comprehensive A+ model, a surrogate model of the
steam refining production pipeline was developed in Section 3.2. In
order to indicate the performance and effectiveness of the developed
surrogate models, the multi-objective optimisation of the steam
refining production pipeline is repeated using both the original A+
model, as well as the developed surrogate models. The optimisation
problem is simplified to the following two objectives (only the terms
corresponding to the steam refining production pipeline are
withheld):

min
x∈C

F(x) � J1 x( ), J2 x( ){ } (13)

With.

J1 x( ) � ESR x( ) + EB x( ) (14)
J2 x( ) � −1 × PSR,OS x( ) + PSR,F x( )( ) (15)

Figure 10 displays the Pareto front of the steam refining process
using the original A+ model as well as the developed surrogate
models. It can be easily seen that the solutions of both optimisations
have converged to the same Pareto front and display a similar
solution diversity. However, the Pareto set obtained using the
original A+ model contains 50 solutions, generated in
25 iterations, whereas the Pareto set obtained using the surrogate
model contains 200 solutions, generated in 50 iterations. Even
though the latter optimisation problem was generated using a
significantly larger population set and using a higher number of
iterations, it only lasted a fraction of the time needed for doing the
same optimisation using the original A+ model. On average, the
steam refining process simulation took around 15.99 ± 5.32 s to
complete while the surrogate model’s simulation time was negligible
(less than 0.5 s).

Based on the obtained results, it can be concluded that a
surrogate model can accurately replace a far more elaborate
process model. Especially when extending the usage of the
developed process models into simulation and/or optimisation
environments that are detached from the dedicated simulation
software, or do not possess over sufficient power, surrogate
models can still be used to simulate the processes that are being
considered. Nonetheless, one has to remain cautious about the fact
that the quality and performance of a surrogate model is largely

TABLE 3 The optimised controls for the selected Pareto optimal solutions, as
indicated in Figure 9.

ID Meaning Unit A B C

Anaerobic digestion

ADF1 Feedstock flow 1 m3/day 1.2710 1.1228 1.2028

ADF2 Feedstock flow 2 m3/day 1.9257 2.0591 2.2604

ADt1,2 Switching point days 289 106 123

Steam Refining

TSR Temperature °C 211.3177 206.3192 206.7520

tSR Time min 15.7489 278.2627 38.7581

General

i # tanks - 3 3 3

Ammonia stripping

tAS,1 Duration time 1 days 90 107 92

tAS,2 Duration time 2 ‖ 111 96 101

tAS,3 Duration time 3 ‖ 103 103 106

AF1 Air flow 1 kg/hr 41.9862 42.9216 42.5710

AF2 Air flow 2 ‖ 42.3846 69.1548 61.9412

AF3 Air flow 3 ‖ 35.8477 39.6579 38.2884

Composting

CFO1 Oxygen flow 1 mol/m3 5.1683 1.7321 1.9804

CFO2 Oxygen flow 2 ‖ 5.3612 6.7536 5.9611

CFO3 Oxygen flow 3 ‖ 10.9281 8.5843 9.5303

Ct1,2 Switching time 1 days 88 131 109

Ct2,3 Switching time 2 ‖ 336 341 337
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dependent on the quality of the dataset used to train it (McBride and
Sundmacher, 2019). Sufficient testing of the surrogate model and
validating its output with new sampling points should point out
shortcomings in the model’s behaviour. Moreover, employing a
surrogate model outside of the system boundaries within which it
was developed, could give rise to faulty and inaccurate simulation
results.

4 Conclusion

(small-scale) Biorefineries are powerful tools designed to
mitigate climate change, tailor to the local biorefinery product
needs, and attributing to the local waste processing capacity.
However, they need to remain economically viable enterprises
as well. Therefore, it is essential not only to be able to model (and
optimise) the biorefinery design for a mass-balance point of view,
but also from an energy consumption point of view. This
contribution provides a critical analysis of the use of white-box
models versus black-box models in the context of the multi-
objective optimisation of a small-scale biorefinery network (as
previously presented by Sbarciog et al. (2022)). Firstly, as there
were not yet (mechanistic) models available on the energy
consumption of the considered biorefinery unit operation, the
biorefinery network was re-modelled in Aspen Plus. The Aspen
Plus model allows for estimating the overall energy consumption
of the modelled biorefinery network, whilst simultaneously
estimating its generated profit using the kinetic models, sourced
from literature. However, as the obtained comprehensive
biorefinery network model was computationally expensive to
simulate, it was opted to use it as a digital twin for generating a
surrogate model of the steam refining production pipeline.
Subsequently, both models were used in the context of the
multi-objective optimisation of the studied biorefinery network.

In an initial optimisation problem, only the comprehensive model
is employed in order to optimise the entire biorefinery network.
During a second, surogate-based optimisation, the multi-objective
optimisation of the steam refining production pipeline is repeated,
and the performance of the comprehensive model was compared
to that of the surrogate model. The outcome of the multi-objective
optimisation problem using the surrogate model was at least as
satisfactory as that when using the comprehensive model.
Furthermore, the computationally inexpensive surrogate model
allowed for running the optimisation using a larger population set
and a higher number of iterations, effectively increasing the
accuracy and credibility of the obtained solution, and clearly
indicating the applicability of surrogate models in the studied
context.
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