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Heat treatment and homogenization of milk are common processing steps
intended to reduce microbial load for safe human consumption, and to avoid
creaming, respectively. Although the effects of combined pasteurization and
homogenization on free fatty acids (FFA) and lipid oxidation markers such as
hydroperoxides, and thiobarbituric acid reactive species (TBARS) have been well
characterized, their effects on primary oxidized fatty acids known as oxylipins have
not yet been determined. This study aimed to determine the effects of two heat
treatments:milk pasteurization [high-temperature short time, 72°C for 15 s (HTST)]
and sterilization [ultra-high temperature, 135°C for 3 s (UHT)] with or without
homogenization (10, 17 or 24 MPa) on FFA (%), primary (hydroperoxides and
oxylipins) and secondary oxidation compounds (TBARS). Heat treatments alone
significantly reduced most oxylipins compared with raw milk, but did not alter %
FFA, hydroperoxide, and TBARS levels. The combination of UHT and
homogenization at 24 MPa increased % FFA, hydroperoxide value, and some
oxylipins, compared to raw milk and other treatments. Overall, the
combination of heat treatment and homogenization significantly increased
oxylipin formation compared with heat treatment alone.
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1 Introduction

Thermal treatment and homogenization of milk are standard industrial processes
applied to inactivate pathogens and spoilage microorganisms and to stabilize the fat
emulsion against gravity separation. However, heat and mechanical treatments can
adversely affect the nutritional and sensorial characteristics of milk and milk products
(van Lieshout et al., 2019; Zhao et al., 2019).

Milk contains polyunsaturated fatty acids (PUFAs) which are susceptible to oxidation,
giving rise to unstable hydroperoxides, as well as hydroxy, epoxy, diol, trihydroxy, and
ketone fatty acid metabolites known as oxylipins (Dias et al., 2020). Oxylipins can break
down into secondary oxidation products, mostly volatiles, including hexanal, pentanal, and
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malonaldehyde (MDA) (Valero et al., 2001) that can affect milk’s
sensory properties, reduce milk quality, and impact shelf-life. Milk
heat treatment can affect lipid oxidation (Allen and Hamilton, 1994;
Meshref, 2008; Cappozzo et al., 2015; Ajmal et al., 2018), forming
antioxidants derived from the Maillard reaction during Ultra High
Temperature (UHT) treatment (Van Boekel and Walstra, 1995;
Calligaris et al., 2004), inactivating natural milk antioxidants (e.g.,
vitamins) (Li et al., 2019) or increasing the migration of pro-
oxidants such as copper to the milk fat globule membrane
(Mulder and Walstra, 1974). Standard methods of pasteurization,
such as batch pasteurization (63°C for at least 30 min), High-
Temperature Short Time (HTST; i.e. 72°C for at least 15 s) and
Ultra High Temperature (UHT; 135°C–150°C for 2–6 s) processes,
do not significantly increase milk lipolysis (Shipe and Senyk, 1981;
Tallini et al., 2015), but reduce to varying degrees oxylipin
concentrations (Dias et al., 2020) compared with raw milk. The
cause of oxylipin reduction observed after HTST and UHT is not
fully understood, and it may be related to the rapid turnover of
oxylipins into secondary products, which were not previously
captured.

Our group has recently demonstrated that oxylipin
measurements can be used as a sensitive tool to capture early
lipid oxidation in HTST and UHT bovine milk (Dias et al., 2020)
compared to conventional oxidation markers such as hydroperoxide
and TBARS. However, the integrated impact of industrial heat
treatments and homogenization pressures on these oxidation
markers remains to be investigated. The goal of this exploratory
study was to assess the combined effects of industrial heat treatments
(HTST and UHT) and homogenization pressures (10, 17 or 24 MPa)
on oxylipin concentrations, free fatty acids (% as oleic acid),
hydroperoxide content, and TBARS values. Our secondary
objective was to identify which of these oxidation markers would
bemore sensitive for detecting lipid oxidation attributed to heat and/
or pressure. We hypothesized that oxylipins, measured by mass-
spectrometry, would be more sensitive than conventional methods
in addressing the effects of industrial heat treatments and
homogenization on bovine milk lipid oxidation. Detecting lipid
oxidation with a sensitive method could guide the selection of
optimal processing conditions for minimizing bovine milk lipid
oxidation.

2 Material and methods

2.1 Milk source and pilot-scale treatments
(pasteurization, sterilization, and
homogenization)

Fresh raw bovine milk was obtained from the UC Davis local
dairy farm (Davis, California, United States). Raw milk was heat-
treated and homogenized at the Advanced Milk Processing
Laboratory (Davis, California, United States) using an indirect
tubular continuous pasteurizer (UHT/HTST Lab 25 EHV Hybrid
w/PLC Touchscreen Control, MicroThermics, Raleigh, NC,
United States) and an in-line two-stage homogenizer (GEA
Niro Soavi, NS 2006, Colombia, MD, United States) with
maximum working pressure of 40–50 MPa. Raw milk was
subjected to either heat treatments only (UHT or HTST) or

heat treatment (UHT or HTST) followed by homogenization
at different pressures.

Milk samples were preheated at 65°C and subsequently heated to
72°C for 15 s (High-Temperature Short Time, HTST) or to 135°C for
3 s (Ultra High Temperature, UHT). For the evaluation of the effects
of heat treatments and homogenization on lipid oxidation, heat-
treated samples were subjected to a two-stage homogenization,
operated at 0.4 MPa and at 10, 17, or 24 MPa, at 55°C. Each heat
treatment or heat treatment + homogenization was performed in
triplicate, with a fresh batch of raw milk being used for each
replicate. Raw and heat-treated samples were stored at −80°C for
4 weeks until analysis.

2.2 Hydroperoxide value determination

Lipid hydroperoxides were determined using a
spectrophotometric method according to Shanta and Decker
(Shantha and Decker, 1994), with the following modifications.
Milk (300 μL) was mixed with a 1.5 mL isooctane/isopropanol
solution (3:1, v/v) and vortexed. The mixture was centrifuged at
14,600 × g for 10 s, and 200 µL of the top layer was mixed with
2.8 mL of a methanol/n-butanol solution (2:1, v/v) and 30 µL of the
NH4SCN: Fe

2+ (1:1, v/v) obtained from the mixture of 3.94 M
NH4SCN and 0.072 M Fe+2. The tubes were vortexed and
incubated at room temperature for 20 min. Absorbance was
measured at 510 nm by spectrophotometry (Thermo Scientific,
GENESYS 10S UV-Vis, United States). The hydroperoxide
content was calculated using a standard curve of cumene
hydroperoxide (CHP) (1–6 mmol/L x10−4) and expressed as
mmol of CHP/L x10−4 of milk. Hydroperoxide quantification was
performed in triplicate.

2.3 Free fatty acid (FFA) content
determination by titration

Tomeasure FFA content, milk fat was extracted according to the
Bligh and Dyer (1959) method, with some modifications.
Approximately 100 g of milk was accurately weighed and
transferred to a separatory funnel. One hundred mL of
chloroform and 200 mL of methanol were added, and the
mixture (milk + solvent) was manually shaken for 1 min.
Subsequently, 100 mL of chloroform was added, and the mixture
was shaken for 1 min. The mixture resulted in two layers, the upper
layer being composed of methanol and water and the bottom layer
being composed of chloroform and milk lipids. The bottom layer
was separated and filtered in a filter paper with 10 mg of sodium
sulfate. After filtration, the chloroform present in the filtrate was
removed in a rotary evaporator at 2,991 × g for 18 h, at room
temperature. The lipid fraction was collected, and the FFA content
was analyzed according to the method described by Rukunudin et al.
(1998), with some modifications. Approximately 3 g of lipids were
weighed into a 150 mL Erlenmeyer flask, and 5.0 mL of ethanol
(95%) was added. Subsequently, 2 mL of phenolphthalein (1% in
95% ethanol) was added as an indicator. The mixture was titrated
with 0.013 N sodium hydroxide while shaking vigorously. Titration
was stopped immediately after the first appearance of a pink color
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which persisted for at least 30 s. FFA quantification was performed
in triplicate. The FFA content (FFA%) was calculated as percentage
of oleic acid as previously described (Rukunudin et al., 1998).

2.4 Oxylipins profiling by liquid
chromatography tandem mass
spectrometry

A targeted lipidomics platform was used to quantify total (free +
esterified) oxylipins derived from linoleic acid (LA), dihomo-
gamma-linolenic acid (DGLA), arachidonic acid (ARA), α-
linolenic acid (ALA), eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) (compounds profiled are listed in
the Supplementary Table S1). Oxylipins were analyzed, according to
Dias et al. (2020). 600 µL of milk was weighed and spiked with 10 µL
of an antioxidant solution containing 0.2 mg/mL butylated
hydroxytoluene (BHT), EDTA, and triphenylphosphine (TPP) in
water:methanol (1:1), and 10 µL of a surrogate standard solution
containing 2 µM d11-11 (12) epoxyeicosatrienoic acid (EpETrE),
d11-11,14- dihydroxyeicosatrienoic acid (DiHETrE), d4-6-keto-
prostaglandin F1 α (PGF1α), d4-9-hydroxyoctadecadienoic acid
(HODE), d4-leukotriene B4 (LTB4), d4-prostaglandin E 2
(PGE2), d4-thromboxane B2 (TXB2), d6-20- hydroxy
arachidonic acid (HETE) and d8-5-HETE (Cayman Chemical,
Ann Arbor, MI, United States).

Samples were hydrolyzed by adding 600 µL of 0.25 M sodium
carbonate solution in methanol/water (1:1 v/v) and heating for
30 min at 60°C. Subsequently, samples were cooled at room
temperature and acidified with 75 µL of acetic acid. The pH was
confirmed in a representative sample to be between 4 and 6 using
Litmus paper. Ultrapure water (4,725 µL) was added and the
samples were centrifuged for 10 min at 388 × g. The supernatant
was loaded onto Oasis HLB solid phase extraction (SPE) columns
(60 mg, 3 cm cartridges; Waters, Milford, MA, United States), pre-
washed with one volume of ethyl acetate and two volumes of
methanol and conditioned with two volumes of SPE buffer
containing 0.1% acetic acid and 5% methanol in ultrapure water
(Wu et al., 2016; Richardson et al., 2017). The columns were washed
with two volumes of SPE buffer and dried under vacuum for 20 min.
Oxylipins were eluted from the column with 0.5 mL methanol
followed by 1.5 mL of ethyl acetate. Samples were dried under
nitrogen and reconstituted in 100 µL methanol. Reconstituted
samples were filtered using centrifugal filter tubes (UltraFree-MC
VV Centrifugal Filter; 0.1 µm; EMD Millipore, Bedford, MA,
United States) and transferred to LC-MS/MS vials.

Oxylipins were analyzed on a 1290 Infinity ultra-high-
pressure-liquid chromatography (UHPLC) coupled to a
6460 QqQ MS/MS with electrospray ionization (ESI) via Jet
Stream Technology (Agilent Technologies, Santa Clara, CA,
United States). Oxylipins were separated using a ZORBAX
Eclipse Plus C18 column (ID: 2.1 mm; length: 150 mm;
particle size; 1.8 µm; Agilent Technologies, Santa Clara, CA,
United States). The mobile phase A consisted of 0.1% acetic
acid in ultrapure water and the mobile phase B of acetonitrile:
methanol (80: 15) with 0.1% acetic acid. The following gradient
program was used: Mobile phase B was increased from 35% to
40% between 0 and 3 min, to 48% from 3 to 4 min, to 60% from

4 to 10 min, to 70% from 10 to 20 min, and to 85% from 20 to
24 min. Mobile phase B was held at 85% from 24 to 24.5 min,
increased to 99% from 24.5 to 24.6 min, held at 99% for 1.4 min,
decreased to 35% from 26 to 26.1 min and held at 35% for 28 min.
The mobile phase flow was maintained at 0.3 mL/min from 0 to
3 min, reduced to 0.25 mL/min between 3 and 24.6 min,
increased to 0.35 mL/min from 24.6 to 27.3 min and then
reduced to 0.3 mL/min at 28 min. The injection volume was
10 µL per sample.

Oxylipins were analyzed in negative electrospray ionization
(ESI) mode. The drying gas temperature and flow rates were
300°C and 10 L/min, respectively. The sheath gas temperature
and flow rates were 350°C and 11 L/min, respectively. The
nebulizer pressure was 35 psi. Dynamic multiple reaction
monitoring (MRM) was used to capture oxylipins using the
precursor and product ions masses and fragmentor and collision
energy values summarized in Supplementary Table S2.

2.5 Thiobarbituric acid reactive substance
analysis

Thiobarbituric acid reactive substances (TBARS) were used
to test the formation of malondialdehyde and other aldehydes,
which are secondary products of fatty acid oxidation. This
oxidative product reacts with thiobarbituric acid and creates a
reddish/pink color, which can be read spectrophotometrically as
described by Vyncke (1970) and Sørensen and Jørgensen (1996),
with the following modifications. Milk (10 g) was homogenized
with 15 mL of a homogenizing solution (7.5% trichloroacetic
acid, 0.1% Propyl 3,4,5-Trihydroxy-benzoate, and 0.1%
Ethylenediaminetetraacetic acid disodium salt) in a vortex for
30 s. The mixture was filtered in a 12.5-mm qualitative filter
paper, and 5 mL of the filtrate was mixed with 5 mL of a 0.02 M 2-
thiobarbituric acid (TBA) aqueous solution. Samples were
incubated in a water bath at 95°C for 40 min and then cooled
down in cold water. The absorbance was measured at 532 and
600 nm by spectrophotometry (Thermo Scientific, GENESYS 10S
UV-Vis, United States). A blank consisting of 5 mL of the same
homogenizing solution plus 5 mL of TBA solution was used as the
reference control. The results were calculated based on the
standard curve of 1,1,3,3-tetraethoxypropane (TEP;
approximately 97%) and expressed as mg of malonaldehyde
(MDA)/kg milk. TBARS measurements were performed in
triplicate.

2.6 Statistical analysis

Statistical analyses were performed using GENSTAT 18th
(International, 2018). A two-way ANOVA was used to determine
the effects of heat treatments (HTST, UHT) and homogenization
pressures (10, 17, or 24 MPa) on FFA, hydroperoxide, oxylipins and
TBARS values in bovine milk. Post-hoc multiple comparison
adjusted p-values were performed using the TUKEY method
(Haynes, 2013). A significance level of p < 0.05 was used.
Transformation to a natural logarithm was applied to oxylipins
data to reduce skewness.
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3 Results

3.1 Effects of heat treatment and
homogenization pressure on free fatty acid
content (% FFA)

The analysis of FFA content, using acid titration, showed that
pasteurization and sterilization alone did not alter % FFA at 10, 17,
or 24 MPa (p-value>0.1) (Table 1). Homogenization at 24 MPa and
at 55°C temperature significantly increased % FFA in HTST
(0.67% ± 0.1%) and UHT (0.65% ± 0.1%) milk compared to raw
milk (0.39% ± 0.03%) (p-value<0.001) (Table 1).

3.2 Effects of heat treatment and
homogenization pressure on hydroperoxide
and thiobarbituric acid reactive substances
(TBARs)

After the UHT treatment, the hydroperoxide content increased
with increasing homogenization pressure (24 MPa, 0.50 ±
0.06 mmol/L × 10−3), while in the HTST treatment, a variable
behavior was observed, remaining constant at 10 and 17 MPa
and decreasing at 24 MPa (0.28 ± 0.05 mmol/L × 10−3),
compared to raw milk (0.34 ± 0.03 mmol/L × 10−3) (Table 1).

There were no significant changes in TBARS values following
heat treatment.

3.3 Oxylipins

Significant effects of heat and homogenization pressures on log-
transformed oxylipin concentrations are reported in Table 2.
Corresponding means and standard deviations as well as raw data
of all oxylipins detected are reported in Supplementary Tables S2, S3,

respectively. Statistical analysis of the log-transformed data showed that
HTST and UHT resulted in a significant reduction of nine [9 HODE,
13-HODE, 15(S)-HETrE, 11 (12)-EpETrE, 8 (9)-EpETrE, 11,12-
DiHETrE, 8,9-DiHETrE, 5-HEPE, 17-HDoHE] out of seventeen
oxylipins detected, compared with raw milk. However, the
homogenization pressures evaluated did not alter the majority of
detected oxylipins, except for ARA-derived [11 (12)-EpETrE, 8 (9)-
EpETrE, 11,12-DiHETrE, 8,9-DiHETrE, 6-keto-PGF1α], LA-derived
[9-HODE, 13-HODE) andDHA-derived (17-hydroxydocosahexaenoic
acid (HDoHE)] oxylipins, which significantly increased at higher
homogenization pressures, irrespective of the upstream heat
treatment employed (Table 2).

4 Discussion

The main finding of this preliminary study is that compared to raw
milk, HTST and UHT, alone, significantly decreased the concentration
of oxylipins derived from LA, ARA, and DHA, whereas the combined
impact of UHT and homogenization at 24 mPa significantly increased
the concentration of FFAs, hydroperoxide, and the oxylipins 15(S)
HETrE and 5-HEPE, compared to non-homogenized milk. These
findings suggest that oxylipins, especially, 15(S) HETrE and 5-
HEPE, can be used, in combination with % markers, to elucidate
the effects of industrial heat treatments and homogenization pressures
on bovine milk lipid oxidation.

In agreement with previous studies (Allen and Hamilton, 1994;
Meshref, 2008; Cappozzo et al., 2015; Ajmal et al., 2018; Dias et al.,
2020), pasteurization and thermal treatments had no significant
effects on % FFAs and hydroperoxide compared to raw milk. FFAs
are a product of lipolysis, which can be catalyzed by milk natural
lipases or by thermoresistant microbial lipases when milk is stored
(Deeth and Fitz-Gerald, 2006). Heat treatment can inactivate the
milk native lipoprotein lipase (LPL; EC 3.1.1.34) (Deeth and Fitz-
Gerald, 2006) and cause whey proteins to denature and interact with

TABLE 1 Effect of heat treatments and homogenization pressures on bovine milk free fatty acid content (%FFA as oleic acid), hydroperoxide content (mmol/L ×
10−3) and TBARS concentration (mg MDA/kg), mean ± standard deviation.

Pressure (MPa)a p-value

0 10 17 24 SED Raw × T × P Heat Pressure T × P

FFAs (% as oleic acid)

Raw milka 0.39 ± 0.03cd 0.07 0.1 0.1 <0.001 0.6

HTST 0.30 ± 0.06d 0.40 ± 0.11cd 0.40 ± 0.07cd 0.67 ± 0.10b

UHT 0.42 ± 0.10cd 0.51 ± 0.16bc 0.44 ± 0.10cd 0.65 ± 0.11b

Hydroperoxide (mmol/L × 10−3)

Raw milka 0.34 ± 0.03cd 0.02 0.1 0.8 0.9 <0.001
HTST 0.38 ± 0.04cd 0.44 ± 0.02bc 0.44 ± 0.07bc 0.28 ± 0.05d

UHT 0.37 ± 0.05cd 0.33 ± 0.01d 0.34 ± 0.03cd 0.50 ± 0.06b

TBARS (mg MDA/kg)

Raw milka 0.23 ± 0.07b 0.03 0.02 0.001 0.3 0.5

HTST 0.21 ± 0.008b 0.20 ± 0.01ab 0.19 ± 0.004bc 0.22 ± 0.005b

UHT 0.15 ± 0.02bc 0.11 ± 0.07c 0.16 ± 0.02bc 0.16 ± 0.01bc

aValues are means and pooled SEDs (standard errors of differences of means), n = 3 for each treatment and pressure combination. Means within each lipid marker that do not share a common

letter are significantly different, p< 0.05.
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TABLE 2 Significant effects of heat treatments (HTST, and UHT) and homogenization pressures (10, 17 or 24 MPa) on the log-transformed concentration of
metabolites derived from arachidonic acid (C20:4; ARA), linoleic acid (C18:2; LA), docosahexanoic acid (C22:6; DHA), dihomo-γ-linoleic acid (C20:3; DGLA) and
eicosapentaenoic acid (C20:5; EPA) in milk.

Pressurea p-value

0 10 17 24 SED Raw × T × P Heat Pressure T × P

LA 9 HODEb

Raw milk 2.68c 0.27 <0.001 0.01 0.04 0.1

HTST 1.03ef 1.86ad 1.51def 1.65de

UHT 0.84f 1.03ef 1.54def 1.12ef

13-HODEb

Raw milk 3.65c 0.30 <0.001 0.03 0.1 0.2

HTST 1.49e 2.35d 2.03de 2.30de

UHT 1.62de 1.61de 1.73de 1.81de

DGLA 15(S)-HETrEb

Raw milk 2.11f 0.21 <0.001 0.4 <0.001 0.4

HTST 1.71f 3.70de 4.14cd 4.18cd

UHT 1.87f 3.46e 4.39c 4.27c

ARA 11 (12)-EpETrEb

Raw milk 3.85c 0.22 <0.001 0.3 0.01 0.2

HTST 2.45f 3.19d 3.06de 2.98def

UHT 2.57ef 2.67def 3.06de 2.90def

8 (9)-EpETrEb

Raw milk 1.90c 0.18 <0.001 0.4 <0.001 0.04

HTST 0.58f 1.39d 1.28d 1.06de

UHT 0.74ef 0.84ef 1.42d 1.03de

11,12-DiHETrEb

Raw milk 4.75c 0.21 <0.001 <0.001 <0.001 0.03

HTST 2.48g 3.63d 3.49de 3.48de

UHT 2.45g 2.61fg 3.06ef 3.04ef

8,9-DiHETrEb

Raw milk 3.17c 0.19 <0.001 0.005 <0.001 0.07

HTST 1.08f 2.07d 1.98b 1.99d

UHT 1.09f 1.32ef 1.78d 1.70de

6-keto-PGF1αb

Raw milk 4.52c 0.18 <0.001 <0.001 0.001 0.006

HTST 2.69f 3.69d 3.43de 3.47d

UHT 2.71f 2.69f 3.02ef 2.93f

EPA 5-HEPEb

Raw milk 1.07e 0.22 <0.001 0.9 <0.001 0.2

HTST 0.61e 2.19cd 2.37c 2.44c

UHT 0.85e 1.80d 2.50c 2.51c

(Continued on following page)
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the milk fat globule membrane components, which may protect the
triacylglycerol core from lipolysis and oxidation (Ye et al., 2004). On
note, the initial FFA content in raw milk is higher than generally
described in the literature (National Food Safety Standard Infant
Formula, 2018) and may have affected the concentration of some
oxidation products. High levels of %FFA at baseline compared to
other studies may be due to milk handling and herd genetic
background (Wiking et al., 2019).

An increase in % FFAs, was observed in samples that were heat-
treated and homogenized at 24 MPa. Homogenization causes
significant compositional changes by disrupting milk fat globules
and causing losses of original membrane components (such as
phospholipids, and proteins) (Kim and Jimenez-Flores, 1995;
Corredig and Dalgleish, 1996; Corredig and Dalgleish, 1997).
These modifications result in reduced fat globule size and
increased surface area, which might increase their susceptibility
to lipolysis and oxidation (Kim et al., 2020). Some studies reported
that homogenized milk is less susceptible to oxidation than rawmilk
because, after homogenization, casein micelles adsorb onto the new
milk fat droplets where they act as antioxidants (Dunkley et al., 1962;
Lee et al., 2015). This is consistent with studies showing that
increased milk homogenization pressures (30–90 MPa) increased
protein load on the milk fat globule surface (Cano-Ruiz and Richter,
1997). On the other hand, it has been reported that most of the
intrinsic milk lipoprotein lipase is associated with micellar casein
(Anderson, 1982), which may promote lipolysis in milk fat globules
containing adsorbed caseins in non-heat treated milk (Sundheim
and Bengtsson-Olivecrona, 1987). Here we showed that UHT-
treated samples homogenized at 24 MPa had an increase in the
hydroperoxide value and in 15(S)- hydroxyeicosatrienoic acids
(HETrE) and 5-hydroxyeicosapentaenoic acid (HEPE) oxylipins
compared to raw milk and other treatments. The higher
concentration of % FFAs, hydroperoxides, and some oxylipins,
but not TBARS, in UHT samples homogenized at 24 MPa reflect
lipolysis (Shipe and Senyk, 1981) and lipid oxidation at these
temperature and pressure conditions.

To the best of our knowledge, this is the first study to
demonstrate the integrated effect of heat treatments and
homogenization pressures on oxylipin concentrations in
bovine milk. We showed that the oxylipins derived from ARA,

LA, and DHA, were lower in heat-treated samples compared to
raw milk, which supports our previous study showing that heat
treatments (HTST and UHT) reduced oxylipins compared to raw
milk (Dias et al., 2020). The cause of reduced oxylipin
concentrations for HTST and UHT milk remains unclear and
further mechanistic studies are needed to identify the factors
(enzymatic activity, auto-oxidation, and or heat) that mediate the
production and degradation of oxylipins. It is possible that the
high temperatures involved in UHT and HTST results in rapid
oxylipin degradation into secondary volatiles not measured in
this study.

Homogenizing HTST and UHT milk increased the
concentration of several oxylipins [11,12-DiHETrE, 8,9-DiHETrE,
15(S)-HETrE, 5-HEPE] compared to heated and non-homogenized
samples. Other oxylipins [8 (9)-EpETrE, 6-keto-PGF1α, 9-HODE,
13-HODE, 17-HDoHE] only increased in homogenized HTST
samples compared to non-homogenized samples. These results
support our observations that homogenization, in combination
with HTST and UHT heat treatments, may expose milk fat
globules to pro-oxidant compounds such as copper (Foley and
King, 1977) and increase exposure of milk PUFAs to oxygen or
decrease the concentration of heat-labile anti-oxidant compounds
(e.g., vitamins) (Li et al., 2019). It should be pointed out that many of
the oxylipins that increased after homogenization are enzymatically
made, suggesting enhanced accessibility of oxygenase enzymes to
their fatty acid substrates following homogenization.

In conclusion, UHT followed by homogenization increased
%FFA, hydroperoxide content, and oxylipins, whereas
temperature alone reduced oxylipins without altering other
markers of oxidation. The combination of heat treatments
(HTST and UHT) and homogenization at 24 MPa increased
% FFAs, whereas both heat treatment and homogenization at all
pressures (10–24 MPa) increased oxylipin concentrations
compared to raw milk. Oxylipin measurements seem to be
more sensitive to temperature and pressure changes than
other classic markers of lipid oxidation. Future studies
investigating the production of secondary volatile products of
oxylipin degradation and the progression of these changes
during storage in relation to microbial stability and sensory
attributes may better inform on the long-term impact of

TABLE 2 (Continued) Significant effects of heat treatments (HTST, and UHT) and homogenization pressures (10, 17 or 24 MPa) on the log-transformed
concentration of metabolites derived from arachidonic acid (C20:4; ARA), linoleic acid (C18:2; LA), docosahexanoic acid (C22:6; DHA), dihomo-γ-linoleic acid (C20:
3; DGLA) and eicosapentaenoic acid (C20:5; EPA) in milk.

Pressurea p-value

0 10 17 24 SED Raw × T × P Heat Pressure T × P

DHA 17-HDoHEb

Raw milk 3.55c 0.20 <0.001 0.001 0.009 0.03

HTST 1.96f 2.82d 2.43de 2.43de

UHT 1.86f 1.94f 2.28ef 2.14ef

EpETrE, epoxyeicosatrienoic acid; DiHETrE, dihydroxyeicosatrienoic acids; PGF1α, keto-prostaglandin F1 alpha, HODE, hydroxyoctadecadienoic acid; HDoHE, hydroxydocosahexaenoic

acid, HETrE, hydroxyeicosatrienoic acids; HEPE, hydroxyeicosapentaenoic acid.
aValues are means and pooled SEDs, n = 3 for each treatment and pressure combination. Means within each oxylipin that do not share a common letter differ, p < 0.05.
bA natural logarithm transformation of the raw data was required to achieve the model assumptions of normality and homoscedasticity. For means and standard deviation after back

transformation, see Supplementary Table S1.
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industrial heat treatment and homogenization on milk shelf-
life.
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