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The sensory perception of food is a complex phenomenon involving the

integration of different stimuli (aroma, taste, trigeminal sensations, texture

and visual). Flavor compounds activate odorant, taste and trigeminal

chemoreceptors, generating a depolarization of the sensory neurons and

then the consciousness of food flavor perception. Recent studies are

increasingly highlighting the importance of perireceptor events, which

include all the molecular events surrounding the receptors, in the

modulation of flavor perception. These events affect the quantity and quality

of flavor compounds in the environment of chemoreceptors. They include the

metabolization of flavor compounds by enzymes present in biological fluids

(saliva andmucus) and the oronasal epithelia and noncovalent interactions with

binding proteins. Perireceptor mechanisms have been extensively studied in

insects and mammals, demonstrating the importance of the entailed processes

in the termination of the chemical signal. In humans, research is in full swing.

Here, we reviewed the perireceptor mechanisms recently reported in vitro, in

biological fluids and in cells and in vivo in humans. These studies indicate that

perireceptor mechanisms likely have an important contribution to flavor

perception. This mini-review focuses on recent pioneering studies that are

paving the way for this new research area. It also suggests that new approaches

taking into account the real conditions of food consumption will be required in

the future to accurately address this question.
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Introduction

Food flavor is one of the most important food attributes involved in the acceptance or

rejection of a food. It corresponds to three modalities, namely, aroma, taste and trigeminal

perceptions. Flavor compounds are chemicals belonging to different chemical families

that activate chemosensory receptors in the oral and nasal cavities. These receptors

include olfactory and trigeminal receptors (OR and TR, respectively) in the nasal and oral

cavities and gustatory receptors (GR) in the oral cavity (Patapoutian et al., 2009; Su et al.,
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2009; Yarmolinsky et al., 2009). Before receptor binding, flavor

compounds are released in saliva, where they can interact with

numerous salivary proteins, including enzymes (Canon et al.,

2018). Aroma compounds reach the olfactory receptors directly

via the orthonasal pathway or via the retronasal pathway after

being released in the gaseous phase in the oral cavity during food

oral processing (Ruijschop et al., 2009; Ployon et al., 2017). In the

nasal cavity, they diffuse into the olfactory mucus, which

contains peripheral proteins that can interact with them, in

the vicinity of olfactory receptors (Heydel et al., 2013). These

so-called “perireceptor events” have been mainly studied in the

field of olfaction. Numerous studies have pointed out that

molecular mechanisms occurring near the OR modulate the

quality and quantity of odorants that bind to the OR,

modulating the termination of the chemical signal (Heydel

et al., 2013, 2019; Thiebaud et al., 2013). Recent studies in

humans have also shown that molecular and enzymatic

mechanisms targeting flavor compounds take place in the oral

cavity as soon as food enters the mouth, impacting not only the

retro-olfaction but also the taste and trigeminal perceptions of

flavor (Schwartz et al., 2021b; Canon et al., 2021). These

molecular mechanisms, which are related to host physiology,

are thought to play an important role in flavor perception.

Peripheral mechanisms impacting flavor compounds can be

separated into two types, whether they rely on catalysis or

interaction without catalysis (Heydel et al., 2013; Canon et al.,

2018). First, the noncatalytic scavenging of flavor compounds by

perireceptor proteins modifies the concentrations of the free

flavor compounds in the biological fluid (saliva or nasal mucus).

This can impact the amount of flavor compounds available to

interact with chemosensory receptors, either positively (e.g.,

proteins that facilitate the transport of a hydrophobic

compound to its receptor) or negatively (e.g., proteins that

scavenge an odorant so that it is unavailable for its receptor),

depending on the affinity of the perireceptor protein for the

flavor compounds. Second, interactions with xenobiotic

metabolizing enzymes (XME) present in fluids and epithelia

lead to the production of flavor metabolites, consequently

decreasing the quantity of flavor compounds in the vicinity of

receptors (Munoz-Gonzalez et al., 2021a). Additionally, it affects

FIGURE 1
Flavor compounds subject to perireceptor events occurring in the oral and nasal cavities and involving human proteins and microorganisms.
Abbreviations are as follows: GST, glutathione transferase; LCN, lipocalin; OBP, odorant-binding protein; PRP, proline-rich protein.
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quality by generating metabolites, which can activate additional

chemoreceptors depending on their structure (Ijichi et al., 2019).

These two mechanisms are believed to modulate the

chemosensory response (Figure 1).

In the present paper, we highlight the current research being

carried out on human peripheral mechanisms of flavor

perception.

Peripheral mechanisms impacting aroma
molecules in the nasal cavity

Peripheral mechanisms have been characterized in the nasal

cavity, showing the ability of some proteins to interact with

odorant (or aroma) compounds. Odorant-binding proteins

(OBPs) represent the main group of these proteins. Their

structure is characterized by a hydrophobic cavity, named the

“calyx”, allowing the binding of aroma compounds and the

transport of these hydrophobic compounds up to their

respective olfactory receptors through the hydrophilic

olfactory mucus (Pelosi and Knoll, 2022). OBP2A, found in

the olfactory mucus of humans (Lacazette, 2000), is able to

bind a large variety of odorant compounds. Very recently, a

research team pointed to a polymorphism in OBP2A gene

expression correlated with physiological variations in olfactory

performance (Sollai et al., 2019, 2022).

Concerning metabolization events, studies to date have

pointed to the role of nasal XME (also called OME for

odorant-metabolizing enzymes) in the protection of the

olfactory neuroepithelium as well as in the biotransformation

of odorants. XME are present in the olfactory epithelium and the

nasal mucus (Kornbausch et al., 2022). They are classed as phase I

(activation of the odorant mainly through oxidation), phase II

(functionalization through transfer of polar groups such as

glutathione or UDP-glucuronic acid, not necessarily

consecutive of phase I) and phase III (excretion of the

metabolite out of the epithelium to the mucus when the

previous phase occurs within the cell) enzymes. Phase I XMEs

include cytochrome P450, flavin monooxygenases, epoxide

hydrolases, aldehyde dehydrogenase, and carboxyl esterase

(Heydel et al., 2013; Thiebaud et al., 2013). Glutathione

transferases (Schwartz et al., 2020a) and uridine diphosphate

glucuronate transferases (UGTs) (Leclerc et al., 2002; Neiers

et al., 2021) are conjugation phase II enzymes, and multidrug

resistance-associated proteins (MDRs) are phase III transporters

(Kudo et al., 2010; Thiebaud et al., 2011).

In rodents, approaches using electroolfactometry or

behavioral studies have shown the importance of metabolic

events for signal termination (Robert-Hazotte et al., 2019;

Neiers et al., 2021), while studies in humans linking nasal

metabolism and odorant perception are just emerging. It has

been shown that COVID-19-associated loss of smell is related to

the UGT2A1/UGT2A2 locus (Shelton et al., 2022). This confirms

the importance of UGT present in the olfactory epithelium in

humans for odorant perception. Accordingly, Ijichi and

coworkers demonstrated in vivo metabolic activities in the

nasal cavity, such as methylation, ester hydrolysis and

aldehyde reduction, depending on the odorant substrates, and

showed that the odorant metabolites significantly affected odor

perception (Ijichi et al., 2019). Furthermore, the conversion of

odorants by nasal metabolism was found to be lower in patients

with olfactory dysfunctions, suggesting the importance of

odorant enzymatic conversion in odorant perception (Ijichi

et al., 2022). Competition between two odorant molecules for

one XME, such as the dicarbonyl-xylulose reductase (DCXR),

results in a competitive metabolism impacting the olfactory

process (Robert-Hazotte et al., 2022).

Aroma molecules interactions with saliva
and oral mucosa

Saliva and oral mucosa both contain various proteins

contributing to perireceptor events (Denny et al., 2008;

Sivadasan et al., 2015; Canon et al., 2018; Schwartz et al.,

2021b). Aroma can bind to salivary proteins such as mucin

and alpha-amylase via hydrophobic effects (Pages-Helary et al.,

2014), thus modulating the amount of aroma compounds

released in the mouth and available to activate the OR.

Aroma persistence corresponds to the prolonged release of

aroma from the mouth (Muñoz-González et al., 2019). It is

driven by the adsorption of aroma compounds onto the thin layer

of salivary proteins covering the oral mucosa (Ployon et al., 2020;

Munoz-Gonzalez et al., 2021a), which is called the mucosal

pellicle (Cabiddu et al., 2020). It was suggested that aroma

compounds interact with the mucosal pellicle proteins via

hydrophobic effects due to their hydrophobic properties

(Aybeke et al., 2019) before being released progressively,

resulting in aroma persistence (Table 1).

Conversion of aroma compounds into metabolites by oral

XMEs occurs in both saliva (Buettner, 2002b, 2002a; Bader

et al., 2018a; Munoz-Gonzalez et al., 2018) and the oral

mucosa (Giebultowicz et al., 2009; Mallery et al., 2011;

Fabrini et al., 2014; Ployon et al., 2020). Ex vivo or in vivo

studies reported various reactions occurring within seconds,

such as thiol methylation, aldehyde/ketone reduction or ester

hydrolysis (Munoz-Gonzalez et al., 2018, 2019; Ijichi et al.,

2019). In addition, Muñoz-Gonzàlez et al. demonstrated that

salivary aldehyde reduction was enhanced by nicotinamide

adenine dinucleotide (NADH) (Munoz-Gonzalez et al., 2018).

This suggests the implication of salivary NAD(P)H-

dependent enzymes such as aldehyde dehydrogenase

(Giebultowicz et al., 2009), in accordance with similar

results obtained on olfactory cleft mucus (Ijichi et al.,

2022). The metabolization of aldehydes was also observed

using an in vitro model of oral mucosa (Ployon et al., 2020).
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From a sensory point of view, it has been shown that the newly

created metabolites can modulate the activation of olfactory

receptors and therefore their perception, thus suggesting that

the metabolites are perceived as part of the odor quality of

substrates present in food (Ijichi et al., 2019). It has also been

demonstrated that the intensity of metabolized compounds

decreases more quickly than that of nonmetabolized

compounds (Munoz-Gonzalez et al., 2021a).

Salivary antioxidant capacity (SAC) appears to be an

important feature influencing aroma compound metabolism

(Munoz-Gonzalez et al., 2018, 2019) and aroma release

(Munoz-Gonzalez et al., 2021b). The SAC can be defined as

the sum of the antioxidant species, including small chemicals

but also antioxidant proteins and cofactors. SAC can be

imbalanced by pathological states such as obesity, leading

to considerable interindividual variability (Schwartz et al.,

2020b). Obese people have a higher antioxidant capacity,

which leads to a higher reducing power of saliva and a

lower aroma release (Piombino et al., 2014). Food can also

modify the SAC by carrying oxidative or antioxidative

molecules, but further studies are needed to better

understand the level of involvement of SAC in flavor

perception.

Taste compounds and salivary proteins

For aroma compounds, most of the tastant molecules are

released from food during chewing. They are solubilized in saliva

and reach the taste receptors located on the tongue surface.

Additionally, saliva plays numerous roles, including mucosa

protection, lubrication and initiation of digestion (Dawes

et al., 2015). Among the 3000 salivary proteins identified in

human saliva (Denny et al., 2008; Sivadasan et al., 2015), some

are involved in taste perception (Fábián et al., 2015). Different

studies have demonstrated a link between the salivary proteome

and taste perception, mainly by analyzing the composition of

salivary proteins with regard to individual taste sensitivity

(Dsamou et al., 2012; Mounayar et al., 2013; Bader et al.,

2018b; Stolle et al., 2018). The molecular links between these

proteins and taste perception have been established in only a few

cases and could involve direct (e.g., transport or metabolization

TABLE 1 Olfactory, gustatory and trigeminal perireceptor proteins involved in the modulation of flavor perception in human. Abbreviations are as
follows: CA6, carbonic anhydrase 6; DCXR, dicarbonyl-xylulose reductase; GST, glutathione transferase; LCN1, lipocalin 1; OBP2A, odorant-
binding protein 2A; PRP, proline-rich protein; UGT, UDP-glucuronosyl transferase.

Modality Perireceptor
protein

Molecular mechanism Relationship with perception Reference

Aroma DCXR Dicarbonyl compounds
reduction

Nasal competitive metabolism affects the olfactory
process

Robert-Hazotte et al. (2022)

Esterases Ester hydrolysis Cross-adaptation studies and cellular tests on receptors
showed that nasal metabolism modifies the perception of
odorants

Munoz-Gonzalez et al. (2018); Ijichi
et al. (2019), Ijichi et al. (2022)

Methyl-transferases Thiol methylation

NADH-dependent
oxidoreductases

Aldehyde reduction

GSTs alpha 1 and pi 1 Aroma compounds binding,
glutathione transfer

Putative role in the odorant signal termination Schwartz et al. (2020a)

Mucins and alpha
amylase

Aroma compounds binding Salivary proteins bind to aroma compounds thus
modulating aroma persistence

Pages-Helary et al. (2014);
Munoz-Gonzalez et al. (2021a)

OBP2A Aroma compounds binding Polymorphism in the OBP2A gene leads to an enhanced
odor perception

Sollai et al. (2022)

UGT Uridine diphosphate transfer Polymorphism in the UGT2A locus is linked to the
COVID19-associated loss of smell

Shelton et al. (2022)

Taste Alpha amylase Saliva buffering Correlations between salivary alpha amylase activity and
sour/sweet taste perception

Aji et al. (2019); Zhang et al. (2022)

GSTs alpha 1 and pi 1 Bitter compounds binding
and glutathione transfer

GSTA1 salivary concentration is decreased in agueusic/
dysgueusic people

Schwartz et al. (2022)

Gustin (CA6) CO2 hydration, ester
hydrolysis

Relationships between polymorphism in CAVI gene and
fungiform papillae density

Barbarossa et al. (2015)

LCN1 Fatty acids and
monoglycerides binding

Putative role of transport of fatty acids to the taste
receptors

Gilbertson, (1998)

Trigeminal Basic PRP Interaction with tannins Putative impact on the sensibility to astringency sensation Soares et al. (2011), Soares et al.
(2012)

Cystatins and histatins
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of the tastants) or indirect (e.g., modulating the taste bud density)

pathways.

Some enzymes have a demonstrated role in specific taste

modalities, such as alpha-amylase, which is highly associated

with sweet perception (Rodrigues et al., 2017; Aji et al., 2019). In

an acidic environment, salivary alpha-amylase activity is also

positively correlated with salivary buffering capacity, which is

responsible for a lower intensity of sour perception (Zhang et al.,

2022). Similarly, carbonic anhydrase 6 (gustin) is involved in

salivary buffering capacity and is related to gustatory and

olfactory disorders when expressed at low levels in human

parotid saliva (Henkin et al., 1999). A correlation between

gustin polymorphism and fungiform papillae density was

established, indicating that gustin probably influences taste

perception (Barbarossa et al., 2015).

Some enzymes able to metabolize odorants are also involved

in tastant metabolism. Indeed, a recent study revealed the ability

of two salivary glutathione transferase isoforms (GSTA1 and

GSTP1) to metabolize bitter compounds such as isothiocyanates

(Schwartz et al., 2022). Interestingly, the salivary enzymatic

content can be modulated by the diet. For example, GST

salivary activity is increased by a diet rich in broccoli or

coffee (Sreerama et al., 1995). Additionally, in a diet rich in

bitter compounds, salivary proteins reduce bitter sensitivity and

then increase the acceptability of the diet for consumers (Martin

et al., 2019). Interestingly, it was shown that the SAC, which

modulates the concentration of oxidoreductant cofactors, also

modulates taste perception (Walliczek-Dworschak et al., 2017;

Zhu et al., 2021).

To date, the lipocalin LCN1 is the only protein proposed to

play a transporter role toward tastant molecules. This protein was

proposed to solubilize free fatty acids and monoglycerides to

allow their detection by taste receptors in the aqueous

environment of the oral cavity (Gilbertson, 1998), but this

hypothesis needs further verification.

Trigeminal compounds and salivary
proteins

Trigeminal sensation corresponds to tactile

(somatosensation), proprioceptive and nociceptive afferences

to the face and mouth, which are mediated by the trigeminal

nerve. Many of the transduction channels that convert thermal,

mechanical or chemical stimuli into electrical activity are

transient receptor potential (TRP) channels. They are

expressed by sensory neurons embedded in the oral mucosae,

but some of them are also expressed by keratinocytes, which may

release signal molecules acting on the sensory neurons in

response to noxious thermal stimuli (Patapoutian et al., 2009).

A similar mechanism could also occur in the perception of

astringency (Canon et al., 2021), in parallel with the activation

of mechanoreceptors following the aggregation of the mucosal

pellicle (Ployon et al., 2018). Regarding TRP channels, some

appear as polymodal transducers, as they can be activated by

stimuli of different natures. For instance, TRPV1 is activated by

capsaicin and heat, TRPM8 is activated by cold and menthol, and

TRPA1 is activated by a variety of noxious stimuli, including cold

temperatures, pungent natural compounds and environmental

irritants (Patapoutian et al., 2009).

The activation of these different receptors is modulated by

salivary composition. For instance, it has been reported that basic

proline-rich proteins (bPRPs), which are able to bind and

scavenge tannins (Canon et al., 2011, 2013, 2015), protect the

mucosal pellicle from aggregation (Ployon et al., 2018) and

increase liking of astringent solution in rats (Glendinning,

1992). Other families of salivary proteins, such as histatins

and cystatins, have been reported to interact with and

aggregate tannins (Soares et al., 2011, 2012); thus, salivary

composition is likely to be linked with astringency sensibility.

Structurally unrelated cysteine-modifying agents, such as

cinnamaldehyde, isothiocyanates or allicin, activate TRPA1 via

covalent modification of cysteine residues (Hinman et al., 2006;

Macpherson et al., 2007). Some of these compounds, in particular

isothiocyanates, are metabolized by GSTs (Schwartz et al., 2022),

suggesting a possible impact on the activation of TRPA1.

Moreover, activation of mechanoreceptors depends on the

lubrification of the oral cavity, which depends on saliva and

its composition (Bongaerts et al., 2007; Yakubov et al., 2015).

In return, the activation of trigeminal receptors may lead to

changes in the composition and flow of saliva, affecting its

properties. Indeed, mechanical stimulation during food

chewing is known to modify salivary flow and composition

(Engelen and Van Der Bilt, 2008). The consumption of

capsaicin-rich foods, which activate TRPV1, stimulates the

secretion of saliva and nasal mucus, increasing the removal of

capsaicin (Bessac and Jordt, 2008; Brooks, 2011).

TRPA1 deficiency leads to decreased MUC5AC secretion at

the pulmonary level (Caceres et al., 2009). Similar

mechanisms could occur in the oral cavity, impacting MUC5B

secretion. Salivatory responses vary greatly between individuals,

affecting responses to astringent stimuli and thus influencing the

overall acceptability of polyphenol-rich foods (Dinnella et al.,

2009, 2011).

Nasal and oral microbiota and their impact
on flavor

The role of the oral and nasal microbiota and their

relationships with chemoperception represents an increasingly

studied topic of research. The bacterial diversity of the nasal

microbiota differs during life stages from childhood to

adulthood. A cross-sectional study focusing on this transition

shows that puberty has a major impact on the composition of the

nasal microbiota. Significant differences are present in the nasal
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microbiota diversity, showing that Proteobacteria and Firmicutes

are predominant in prepubertal children, while Actinobacteria

are predominant in adults (Oh et al., 2012). Biswas and

coworkers studied the association between olfactory

dysfunction and nasal bacterial communities. No significant

differences were observed in bacterial diversity among the

three cohorts; however, the relative numbers of

Corynebacterium spp. and Streptococcus spp. were significantly

different in people with olfactory loss (Biswas et al., 2020).

Butyrate-producing Faecalibacterium or Porphyromonas have

been strongly associated with reduced olfactory function

(Koskinen et al., 2018).

The oral cavity is a niche for over 700 microbial species,

including bacteria, fungi and viruses (Lamont et al., 2018). This

oral microbiota was shown to modulate both taste and aroma

perception through several recently reviewed mechanisms

(Schwartz et al., 2021a). The production and processing of

tongue biofilm metabolites play an important role in taste

modulation. This can be explained by two potential

mechanisms of perireceptor modulation: first, bacteria can

prevent access of taste molecules to taste receptors; second,

bacterial metabolism produces compounds that can impact

taste receptor activation and taste sensitivity (Fluitman et al.,

2021; Leung and Covasa, 2021). Oral bacteria consuming sugars

and amino acids reduce the availability of these compounds

around taste buds (Gardner et al., 2020). Conversely, bacteria

such as Veillonella, Lactobacillus and Actinomyces synthesize

organic acids and short-chain fatty acids, thus increasing their

concentration within the saliva (Takahashi, 2015). Feng and

coworkers found that increased proportions of Actinomyces

and Firmicutes in saliva were associated with reduced taste

sensitivity, while increased taste sensitivity was the result of

higher proportions of Bacteroides on the tongue membrane

(Feng et al., 2018).

Oral microorganisms have been shown to metabolize precursor

compounds present in foods to generate aroma molecules in the

mouth. Glycoside conjugates are metabolized by bacteria such as

Prevotella andVeillonella species associated with increased glycoside

hydrolysis (Parker et al., 2020). This reaction leads to the release of

aroma compounds such as terpenes, aromatic derivatives or alcohols

(Mayr et al., 2014; Munoz-Gonzalez et al., 2014). Cysteine

conjugates are metabolized to their corresponding thiols by C-S

lyases of oral anaerobes such as Fusobacterium nucleatum

(Starkenmann et al., 2008a; Neiers et al., 2022). Thiol release

participates in the flavor of some vegetables and fruits

(Starkenmann et al., 2008b) but also in the typicity of Sauvignon

white wine (Tominaga et al., 1998). Furthermore, the oral

microbiota was shown to be related to scarce olfactory

performance and neophobia (Valentino et al., 2022).

As the microbiota composition seems to be associated with

the physiopathological state of the individual, these states are also

linked to olfactogustative modifications. The investigation of

microbiota and their linkages with chemoperception is a

challenging task, and more studies are needed to clarify these

relationships.

Conclusion

Perireceptor events occurring in the mouth and nose appear

to be very diverse based on the growing literature on the topic.

They encompass various molecular events related to host

physiology and health status. In the future, several challenges

will be addressed, and a deeper understanding of these events in

link with flavor perception will be attained. These challenges

include the study of perireceptor events as close as possible to the

real conditions of food consumption using in vivo studies and the

integration of the different types of perireceptor events to

consider crossmodal mechanisms. In this regard, special

emphasis must be placed on the dynamics of perception and

the different molecular partners. This will shed light on the

metabolic images of flavor compounds. These partners include

compounds from the human oral/nasal sphere but probably also

molecules and microorganisms from the food, adding additional

variables to this complex network of interactions that modulates

receptor activation and in fine flavor perception.
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