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Cost-effective techniques are usually recommended in the dissemination and

adoption of postharvest processing technologies of food products. Due to

limited value addition practices for cowpea leaf, the Fruits and Vegetables for All

Seasons Project undertook a study to bridge the gap in the seasonal availability

of the vegetable in the arid and semi-arid lands (ASALs) of Kenya through the

production of cowpea leaf soup mix. However, the adoption of these

techniques has an economic perspective that guides decision-making. This

study utilized a two-stage linear programming methodology using NutriSurvey

and the analytic hierarchy process in a seven-step hierarchy for the production

of a cowpea leaf soup mix of an optimal nutrition and sensory quality. The

optimal inclusion level of cowpea leaves into the soup mix was 49%. With an R2

of 61.36%, consistency, taste, and mouthfeel were the greatest determinants of

the acceptability of cowpea leaf soup mixes. The incorporation of blanching in

solar drying and sun drying were the least costly options with priority vectors of

0.08 and 0.09 (CR < 0.1) respectively, whereas, in the use of mechanized

processing techniques such as oven drying, priority vectors of 0.10–0.19 had

higher maximum benefits than the local processing technique of sun-drying

that had a priority vector of 0.08 (CR < 0.1). The benefit-cost ratio was maximal

without extrusion, with the solar-drying pathway having the highest benefit-

cost ratio of 1.5. The study found that resource-intensive pathways yielded

maximum benefits in the retention of quality. However, with the exclusion of

extrusion, the benefit-cost ratio of the processes improved.
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1 Introduction

Cost-effective strategies have proven the most successful in

attaining food and nutrition security among vulnerable

populations (Bizikova et al., 2017; Pearson-Stuttard et al., 2018).

Due to sub-optimal nutrition, low-income households have

disproportionately higher incidences of nutrition-related health

burdens (Mozaffarian et al., 2018). Diet diversification and food

fortification programs are some of the recommended nutrition

interventions being undertaken in resource-constrained sub-

Saharan African (SSA) countries. Ongoing effort promoting such

techniques is due to their cost effectiveness. Additionally, five case

scenarios are recommended when addressing vulnerability to food

and nutrition insecurity: (1) increase food production; (2) reduce on-

farm losses; (3) achieve optimal yields; (4) reduce postharvest losses;

(5) reduce alternative uses of food such as in-production of animal

feed and biofuels (Denkenberger and Pearce, 2016). The

recommended case scenarios differ in adaptability due to their cost

implications. Moreover, the ever-increasing global demand for food

has further increased the demand for appropriate interventions that

would deliver food of the right quality and quantity (Amit et al., 2017).

Value addition techniques are co-opted in food systems to

address postharvest losses and improve quality and, thus, the

acceptability of produce (Njoroge et al., 2016). Economic

evaluation of these techniques can guide decision-making

towards the adoption of initiatives aimed at addressing the

existent challenges while minimizing costs (WHO, 2011).

Through the Choosing Interventions that are Cost-Effective

(CHOICE) project, the World Health Organization promotes

the utilization of initiatives with maximum outcomes per unit

cost (WHO, FAO, 2006). The processing of cowpea leaves can

utilize multiple pathways with varied levels of nutrient retention

and cost-implications (Ddungu et al., 2015; Okello et al., 2015;

Owade et al., 2020); there is, however, a need to economically

evaluate the recommended pathways to realize the targeted

benefits. Analytic hierarchy process (AHP) is a multi-criteria

decision analysis (MCDA) used by decision-makers, from small-

scale processors to policy-makers, in solving complex decisions

and problems (Babalola, 2020). MCDA incorporates competing

goals and outputs that are important to decision-making: in the

processing of cowpea leaves, optimal nutritional quality vis-à-vis

processing costs are taken into consideration. Vaidya and Kumar

(2006) document that, in selecting the best processing pathway

for powdered milk, a hierarchy development that considers the

weight of vectors in quantitative terms is the best method. This

tool presents a prioritization approach that best guides the

optimal economic choice. The current study deployed the

AHP decision-making approach in documenting the best

pathway to address the challenges of limited value-addition of

cowpea leaves. This study focuses on cowpea leaf soup mixes, an

output generated from value-addition studies undertaken by the

Fruits and Vegetables for All Seasons Project (FruVaSe) at the

FIGURE 1
Conceptual framework of the study.
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University of Nairobi, Kenya. It provides a case for evaluating the

of costs and benefits for decision-making in food processing

initiatives for neglected crops.

2 Material and methods

2.1 Conceptual framework

The conceptual framework of the study is as summarized in

Figure 1. A two-stage methodology of nutrient and cost

optimization was conducted. The input variables for nutrient

optimization were the zinc, iron, and beta carotene composition

of raw ingredient cowpea leaves, coriander leaves, tomato, onion,

garlic, salt and oil, with the response variable being the consumer

acceptability of the product. The second stage entailed the

processing of the optimized ratios of ingredients using

different techniques and evaluating a combination of criteria

to make a benefit-cost decision for the production of cowpea leaf

soup mix.

2.2 Optimization of formulations for
cowpea leaves soup mixes

The ingredient formulations of cowpea leaf soup mixes were

generated using NutriSurvey software (NutriSurvey, 2007). Seven

different formulations of cowpea leaf soup mixes were generated

with a targeted nutrient composition (fresh weight) of 0.5 mg/

100 g beta-carotene, 4 mg/100 g iron, and 2 mg/100 g zinc in

order to meet the minimum set threshold for product

fortification (Johnson et al., 2004; Low and Jaarsveld, 2008).

These levels meet the recommended dietary allowance (RDA) of

various segments of the population as the product is targeted at

general household consumption.

Sensory analysis of the cooked formulations was performed

in order to establish the most optimal product formulation based

on consumer acceptability. An untrained sensory panel of

32 respondents from Kilifi County, Kenya were consumers of

cowpea leaf products. Ethical review of the study was conducted

by the institutional (University of Nairobi) review board. The

FIGURE 3
Case-scenarios for the processing of cowpea leaf soup mix.

FIGURE 2
The step-wise analytical hierarchy process. Adapted from
Saaty and Vargas (2012).
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panellists were aged between 20 and 50 years, with females

comprising 43.75% and males 56.25%. The formulated soup

mixes were first mixed with cold water (ratio of 1:9,

respectively) and stirred to form a consistent paste before

heating it to the boil for the extruded mix, whereas the non-

extruded mixes were boiled for a further five minutes. Each of the

seven different formulations of the soup mix was served hot to

the panellists in a counter-current sequence for each successive

panellist. A nine-point hedonic scale, ranging from 1 ‘dislike

extremely’ to 9 ‘like extremely’was used to assess the attributes of

each formulation; the attributes were colour, appearance,

mouthfeel, texture/consistency, aroma and overall

acceptability. Sensory evaluation was done in a well-lit room,

with about 30 ml of soup served hot in a white dish. Once each

panellist had sampled one formulation, they cleansed their palate

with water before proceeding to the next sampling.

2.3 Analytical hierarchy process

The AHP was undertaken in the seven-step hierarchy

recommended by Saaty and Vargas (2012) as shown in Figure 2.

The decision-making hierarchy has its basis on relative weights that

analyse alternatives (pathways) using pairwise comparison to

generate the best-case scenario for cost minimization and

maximization of benefits (Babalola, 2020). The priority alternative

(pathway/vector) was determined based on the combined relative

weights of all criteria and options (Eq. 1).

AW � λmaxW (1)

where A is the comparison matrix, W is the priority vector and

λmax is the principal eigenvalue.

Each and every decision-making criterion is subjected to

evaluation based on consistency ratio (CR, shown in Equation 2

with computation of consistency index as shown in Equation 3)

and thus avoids reliance on a single decision.

CR � CI

RI
(2)

CI � λmax − n

n − 1
(3)

where CI is the consistency index, n is the size of the comparison

matrix, and RI is the random consistency index for the nth row

generated by random pairwise comparison for a criterion.

Choosing alternative pathways for
processing of cowpea leaf soup mix

The most optimal ingredient ratio was adopted for use in

the case scenarios for the production of cowpea leaf soup

mixes using different process flows. The case scenarios were

adopted from a scoping study conducted by Owade et al.

(2020) coupled with nutrient retention patterns established

by the authors (Owade J, 2021, unpublished data). Seven

different scenarios were selected for evaluation in the

processing of cowpea leaf soup mix (Figure 3). Optimal

fermentation was achieved as per Owade et al. (2021). The

initial benefits and costs of each pathway were calculated

before being computed into one hierarchy.

Step 1: Definition and determination of the goal

TABLE 1 Description of cost components.

Cost component Description

Raw materials Costs calculated from dried cowpea leaf $0.3, Starch $1, Dried coriander $10, Dried onions $25, Dried Garlic $33, Salt $0.3, Tomato
$40 and Sugar $1.25 per kg, oil $1.5 per litre and packaging material $0.03

Labour Daily wage rate of $15

Water Calculated at $0.64 per m3

Energy Calculated at $0.15 per kilowatt per hour

Fixed costs Extruder (Emerson Industrial Automation, United Kingdom) at $2000, blender (Krups, Germany) $200, oven drier (Innotech,
Australia) at $500, electric cooker (GE Consumer and Industrial, United States) at $660, and solar drier at $2,000 with an
assumption of estimated life of 26 years for machinery as per Erumban (2008)

Daily production rate of cowpea leaf for soup mix was set at 10 kg except for sun drying, which was 5 kg.

TABLE 2 Saaty’s numeric scoring scale.

Numeric intensity Saaty’s pairwise comparison
scale

9 Extremely favoured

8 Very strongly to extremely

7 Very strongly favoured

6 Strongly to very strongly

5 Strongly

4 Moderately to strongly

3 Moderately favoured

2 Equally to moderately

1 Equally favoured

Adapted from Saaty (1987).
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This study’s ultimate aim was to achieve the minimum

cost in processing cowpea leaf soup mix while maximizing the

nutrient retention and consumer acceptability of the product.

Higher retention of nutrients due to lower in-process losses

during the processing of the cowpea leaves and higher

consumer acceptability were used to define the most

optimal best practice in the production of cowpea leaf

soup mixes.

Step 2: Identification and classification of criterion and

alternative/pathways

The identified pathways for processing of cowpea leaves were

used to inform the objectives of the hierarchy setting. From the

seven different pathways identified based on nutrient retention

trends (blanching and oven-drying combined with extrusion;

blanching and oven drying; blanching and solar-drying

combined with extrusion; blanching and solar drying;

fermenting and oven-drying combined with extrusion;

fermenting and oven-drying; and blanching and sun-drying),

a cost analysis was performed for the costs of energy, water,

labour, raw material and fixed assets in United States Dollars

(USD)—see Figure 4. The derivative benefits were classified into

TABLE 3 Random indices for calculating consistency ratio.

n 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59

Adapted from Lin et al. (2013).

FIGURE 5
Hierarchy structure of benefits analysis.

FIGURE 4
Hierarchy structure for cost analysis.
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beta-carotene, iron and zinc content, time saved, and overall

consumer acceptability (Figure 5), which were obtained from a

study by the authors (Owade J, 2021, unpublished data).

The cost of production of the soup mix was calculated as

shown in Equation 4.

Total production cost � Variable costs + Fixed costs (4)

The cost analysis of the cowpea leaf soup mixes subjected to

various processing techniques was performed by calculating the

total variable costs as described by Katanga and Haruna (2015),

Equation 5—Table 1. The variable costs incorporated the cost of

raw materials, energy and water used and packaging.

Total variable costs � cost of all inputs (ingredients)
used in production (5)

In calculating the fixed costs of the products, the

consumption of fixed capital approach was used as shown in

Equation 6 (FAO, 2016).

f(x) � p(x) − p1(x) � D � 1
T

(6)

where f(x) is the fixed cost of an asset for the production of a unit

of product, p(x) − p1(x) denotes the change in the price of a

TABLE 6 Loading of individual sensory attributes of formulated cowpea leaf soup mixes on the seven principal components.

Sensory attributes PC1 PC2 PC3 PC4 PC5 PC6 PC7

Colour 0.28 0.26 0.17 0.40 0.25 0.78 0.02

Consistency 0.39 0.76 0.25 -0.33 0.08 -0.31 0.01

Taste 0.44 -0.11 -0.51 0.29 0.40 -0.30 0.44

Mouthfeel 0.43 -0.16 -0.33 -0.14 0.09 0.04 -0.81

Aroma 0.33 -0.43 0.72 0.26 0.12 -0.30 -0.08

Long lasting taste 0.36 -0.36 0.06 -0.69 -0.06 0.34 0.37

Overall acceptability 0.39 0.05 -0.10 0.29 -0.86 -0.01 0.09

PC-principal Component, the major principal components that were distinctively classified PC1-textural, PC2-aesthetic, PC3-aroma, PC6-colour.

TABLE 5 Sensory profile of optimized formulation of cowpea leaf soup mixes.

Formulation Sensory attributes

Colour Consistency Taste Mouthfeel Aroma Long-lasting taste Overall
acceptability

F1 5.4 ± 1.2ab 5.9 ± 1.2a 5.3 ± 1.7ab 4.9 ± 1.5abc 5.1 ± 1.6a 4.7 ± 1.3a 5.3 ± 1.5a

F2 5.5 ± 0.9ab 5.3 ± 1.7ab 5.3 ± 1.7ab 5.1 ± 1.5ab 5.1 ± 1.5a 4.8 ± 1.5a 5.2 ± 1.4a

F3 5.5 ± 1.1ab 5.2 ± 1.2ab 5.1 ± 1.3abc 5.0 ± 1.1abc 5.0 ± 1.3a 4.6 ± 1.5a 4.9 ± 1.4ab

F4 5.9 ± 0.9a 5.8 ± 1.2a 5.5 ± 1.4a 5.4 ± 1.5a 5.3 ± 1.5a 5.1 ± 1.5a 5.4 ± 1.6a

F5 5.1 ± 1.4ab 4.7 ± 1.7bc 4.0 ± 1.9c 4.3 ± 1.8bc 5.0 ± 1.9a 4.4 ± 1.8a 4.4 ± 1.6ab

F6 5.2 ± 1.3ab 4.6 ± 1.6bc 4.5 ± 1.7abc 4.4 ± 1.8abc 5.1 ± 1.3a 4.3 ± 1.7a 4.3 ± 1.4ab

F7 4.6 ± 1.9b 3.6 ± 2.2c 4.2 ± 1.9bc 3.9 ± 1.8c 4.7 ± 1.7a 4.4 ± 1.3a 4.1 ± 1.9c

HSD 0.89 1.12 1.16 1.1 1.1 1.0 1.1

%CV 23.3 31.0 33.1 32.7 29.1 30.7 31.5

p-value 0.003 <0.001 <0.001 <0.001 0.81 0.226 <0.001

Values (Mean ± SD) with different letters in the superscript along a column are statistically different at p < 0.05.

TABLE 4 Formulation of cowpea leaf soup mixes.

Ingredient Formulations (% ingredients)

F1 F2 F3 F4 F5 F6 F7

Corn starch 22.5 22 17 27 12 7 2

Cowpea leaves 53.5 55 60 49 65 70 75

Tomato 7 7 7 7 7 7 7

Onions 2 2 2 2 2 2 2

Vegetable oil 4 4 4 4 4 4 4

Coriander 6 6 6 6 6 6 6

Salt 3 2 2 3 2 2 2

Garlic 2 2 2 2 2 2 2

F-formulation.
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product in a given period of production (in this case, the

transformation was done to daily production), D is

depreciation and T is the product life.

Step 3: Pairwise comparison

In ranking the attributes, Saaty’s nine-point rating scale

(Table 2) and the concept of ideal alternative recommended

by García et al. (2010) were used in the current study in order to

overcome the challenges of reliance on the qualitative aspects

only. The quantitative ratios were generated for each individual

benefit whereas the comparative ranking of the components of

the cost was done qualitatively. In ranking the benefits of the

products, the quantitative scale established in a study by Petrescu

et al. (2020) on processed food products was used whereas the

costs were quantitatively ranked on a nine-point scale based on

their proportion to the overall production costs.

Step 4: Calculation of vector priorities

The vector priorities were calculated using the mean of

normalized values approach (Ishizaka and Lusti, 2006).

TABLE 7 Pairwise comparison of benefits of pathways.

Options Iron content Beta carotene
content

Zinc content Consumer
acceptability

Time saved Priority vector

Iron content 1.00 0.71 1.00 0.65 1.06 0.17

Beta carotene content 1.40 1.00 1.40 0.91 1.48 0.24

Zinc content 1.00 0.71 1.00 0.65 1.06 0.17

Consumer acceptability 1.54 1.10 1.54 1.00 1.32 0.25

Time saved 0.94 0.67 0.94 0.76 1.00 0.17

λmax = 5.00, CI = -0.001, CR = -0.0.001.

FIGURE 6
Principal component analysis plot of sensory attributes of formulated cowpea leaf soup mixes. Dim1 and Dim 2 were the first and second
principal components classified as textural and aesthetic qualities. Contrib-is the contribution of the variable to the two principal components. The
location of the variable closer to the margin of the circle is indicative of good representation of the variable by the two principal components.
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Summation of all ratios for the pathways was done as shown

in Eq. 7 to compute vector priorities j.

∑n

i�1
p1

pj
� p1

pj
+ p2

pj
+ ... + pn

pj
(7)

where p is the ratio (qualitative or quantitative) of a benefit or

cost, i is an alternative ranging from 1 to n and pj is the

cumulative mean of the ratios.

The values were Normalization as shown in Equation 8.

p1
pj∑n

i�1pi
pj

� p1

pj
.

pj∑n
i�1p1

� pi∑n
i�1p1

(8)

The priority vector for i was therefore determined as shown

in Equation 9.

pi∑n
i�1pi

� n.pi∑n
i�1pi

.
1
n
� ⎡⎢⎢⎣ p1∑n

i�1pi
+ ... + pi∑n

i�1pi

⎤⎥⎥⎦.1
n

(9)

Step 5: Calculation of consistency ratio

The consistency ratio is generated by dividing the consistency

index by the random indices (Table 3).

Step 6: Acceptance of consistency ratio

Consistency was defined by CR of less than 0.1 (<10%) as

posited by Saaty (Saaty, 1989; Vargas, 1990). If an alternative A

has CR greater than 0.1, it is an indication that the matrix falls

beyond the tolerance levels and that the ratio scale needs to be

checked.

Step 7: Decision making

A benefit-cost ratio was obtained with the maximum being

the best pathway for production and the least being the worst case

pathway (Ramlan and Qiang, 2014). Sensitivity analysis of the

optimal solution was undertaken through variation of the ratios

based on the standard deviations of the metrics.

2.4 Statistical analysis

The sensory evaluation data was subjected to analysis using

the Agricolae, Caret, Pls and TidyVerse Packages of the R

language for computing software (R Core Team, 2019). The

sensory data was first subjected to analysis of variance (ANOVA)

testing with the panellists as the fixed factor and the samples as

the experimental factor to evaluate the mean differences in the

scores of the sensory attributes. Means that were statistically

different (p < 0.05) were separated using Tukey’s honest

significant difference (HSD) test. Principle component analysis

was used to generate orthogonal principal components, reduce

multi-collinearity in the generated independent variables, and

TABLE 8 Pairwise comparison for alternatives for each benefit.

Options Project Priority

P1 P2 P3 P4 P5 P6 P7

Iron content (λmax = 7, CI = -0.0, CR = -0.0.00)

P1 1.00 0.59 0.85 0.76 0.49 1.30 0.92 0.11

P2 1.71 1.00 1.46 1.29 0.83 2.23 1.57 0.19

P3 1.17 0.69 1.00 0.89 0.57 1.53 1.08 0.13

P4 1.32 0.77 1.13 1.00 0.65 1.72 1.21 0.15

P5 2.05 1.20 1.74 1.55 1.00 2.67 1.88 0.22

P6 0.77 0.45 0.65 0.58 0.37 1.00 0.70 0.08

P7 1.09 0.64 0.93 0.83 0.53 1.42 1.00 0.12

Beta-carotene content (λmax = 7, CI = -0.0, CR = -0.0.00)

P1 1.00 1.71 3.56 4.49 5.86 5.50 3.21 0.36

P2 0.58 1.00 2.08 2.63 3.43 3.22 1.88 0.21

P3 0.28 0.48 1.00 1.26 1.65 1.54 0.90 0.10

P4 0.22 0.38 0.79 1.00 1.30 1.22 0.71 0.08

P5 0.17 0.29 0.61 0.77 1.00 0.94 0.55 0.06

P6 0.18 0.31 0.65 0.82 1.07 1.00 0.58 0.07

P7 0.31 0.53 1.11 1.40 1.83 1.71 1.00 0.11

Zinc content (λmax = 7, CI = -0.0, CR = -0.0.00)

P1 1.00 0.69 1.02 1.13 1.23 9.09 1.65 0.17

P2 1.46 1.00 1.49 1.65 1.79 13.26 2.40 0.25

P3 0.98 0.67 1.00 1.10 1.20 8.90 1.61 0.17

P4 0.89 0.61 0.91 1.00 1.09 8.06 1.46 0.15

P5 0.81 0.56 0.83 0.92 1.00 7.41 1.34 0.14

P6 0.11 0.08 0.11 0.12 0.14 1.00 0.18 0.02

P7 0.61 0.42 0.62 0.68 0.74 5.52 1.00 0.10

Consumer acceptability (λmax = 7, CI = -0.0, CR = -0.0.00)

P1 1.00 0.83 0.90 0.91 0.95 0.81 1.13 0.16

P2 1.21 1.00 1.10 1.11 1.15 0.98 1.37 0.13

P3 1.11 0.91 1.00 1.01 1.05 0.90 1.25 0.16

P4 1.09 0.90 0.99 1.00 1.04 0.89 1.24 0.13

P5 1.05 0.87 0.95 0.96 1.00 0.85 1.19 0.16

P6 1.23 1.02 1.11 1.13 1.17 1.00 1.40 0.13

P7 0.88 0.73 0.80 0.81 0.84 0.72 1.00 0.13

Time-saved (λmax = 7, CI = -0.0, CR = -0.0.00)

P1 1.00 1.25 1.00 1.25 1.00 1.25 1.25 0.16

P2 0.80 1.00 0.80 1.00 0.80 1.00 1.00 0.13

P3 1.00 1.25 1.00 1.25 1.00 1.25 1.25 0.16

P4 0.80 1.00 0.80 1.00 0.80 1.00 1.00 0.13

P5 1.00 1.25 1.00 1.25 1.00 1.25 1.25 0.16

P6 0.80 1.00 0.80 1.00 0.80 1.00 1.00 0.13

P7 0.80 1.00 0.80 1.00 0.80 1.00 1.00 0.13

P1-blanching and oven-drying combine with extrusion; P2-blanching and oven drying

only; P3-blanching and solar-drying combined with extrusion; P4-blanching and solar

drying only; P5-fermenting and oven-drying combined with extrusion; P6-fermenting

and oven-drying only; and P7-blanching and sun-drying only.
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establish the linear model predicting the acceptability of the

product. The data was first divided into training (80%) and test

(20%) datasets using the Caret package. The training dataset was

utilised in generating the principal component regression linear

model and the validation of the model done on the test dataset.

Microsoft Office Excel 2013 was used to compute the

pairwise comparisons, consistency ratios, priority vectors and

the benefit-cost ratios for the AHP.Weighted means were used in

the ranking of the benefits and costs, whereas the ratio was used

to determine the best benefit-cost computation.

3 Results

3.1 Optimal ingredient formulation of
cowpea leaf soup mixes

Seven different formulations of cowpea leaf soup mix were

obtained from the nutrient composition optimization study

(Table 4). The colour, consistency, taste, mouthfeel and

overall acceptability significantly (p < 0.01) differed among

the seven different formulations (Table 5). Incorporating

cowpea leaf at a proportion of 49% produced the most

optimal product. Six principal components explained variation

in the sensory attributes. All six sensory parameters had a

positive correlation with the overall acceptability of the

formulations (Figure 6). Consistency, taste, mouthfeel and

overall acceptability had the highest loading in the first

principal component (textural properties), as shown in

Table 6. The generated linear model explained 57.88% of the

variation in the overall acceptability. The first principal

component explained 57.36% of the variance in the overall

acceptability and a beta-coefficient of 1.59 (Figure 7). Thereby

consistency, taste and mouthfeel were the greatest determinants

of product acceptability. Validation of the model on the test

dataset showed that it accounted for 61.36% of the variation in

the acceptability of the soup mixes, with the root mean square

error equalling to 0.91.

3.2 Optimization of cost of production of
cowpea leaves soup mixes

3.2.1 Pairwise comparison matrices
The pairwise comparisonmatrix of the benefits showed that time

saved, consumer acceptability and beta carotene content were the

most preferred criteria in ranking the benefits with a consistency

ratio <0.1 (Table 7). In terms of consumer acceptability and ease of

preparation, the pathways showednomajor differences in preference.

The benefit of high iron, zinc and beta-carotene was maximized in

oven-drying techniques (CR < 0.1), see Table 8. The benefits were

maximized in blanched oven-drying techniques Table 9.

TABLE 9 Synthesis of benefits for prioritization of pathways.

Alternatives Iron
content

Beta carotene
content

Zinc
content

Consumer
acceptability

Time
saved

Overall
priority

Idealized
priorities

P1 0.02 0.09 0.03 0.03 0.03 0.19 1.00

P2 0.03 0.05 0.04 0.04 0.02 0.19 0.96

P3 0.02 0.02 0.03 0.04 0.03 0.14 0.71

P4 0.02 0.02 0.03 0.04 0.02 0.13 0.66

P5 0.04 0.01 0.02 0.03 -0.03 0.08 0.43

P6 0.01 0.02 0.00 0.04 0.02 0.10 0.49

P7 0.02 0.03 0.02 0.03 0.02 0.12 0.60

P1-blanching and oven-drying combine with extrusion; P2-blanching and oven drying only; P3-blanching and solar-drying combined with extrusion; P4-blanching and solar drying only;

P5-fermenting and oven-drying combined with extrusion; P6-fermenting and oven-drying only; and P7-blanching and sun-drying only.

TABLE 10 Pairwise matrix for costs of alternatives.

Options Energy Water Raw material Labour Fixed costs Priority vector

Energy 1.00 2.00 2.00 2.00 0.11 0.19

Water 0.50 1.00 0.25 0.33 0.26 0.05

Raw material 0.50 4.00 1.00 9.00 9.00 0.41

Labour 0.50 3.00 0.11 1.00 0.28 0.08

Fixed costs 9.00 3.82 0.11 3.60 1.00 0.28

λmax = 5.00, CI = -0.00, CR = -0.00.
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As the objective of the cost analysis was to rank the pathways

based on their costliness, the ranking rated the pathways from the

most to the least costly. The raw material was the most costly

component in the processing of the soup mixes (Table 10). The

comparison matrix for the cost components had a CR of <0.1;
thus, the scales used were consistent (Table 11). The pathway that

combined extrusion, fermentation and oven-drying was the most

costly (Table 12), with the least costly being to combine

blanching and solar drying. Sun and solar drying without

extrusion had less than half the costs incurred by the pathway

that combined extrusion, fermentation and oven drying

(Figure 8).

3.2.2 Benefit-cost analysis
The pathway of blanched solar drying was the most cost-

efficient, with a benefit-cost ratio of (1.55); the pathway

combining fermentation, oven-drying and extrusion was

the least cost-efficient with a benefit-cost ratio of 0.4

(Figure 8).

3.2.3 Sensitivity analysis
Sensitivity analysis was undertaken by deviating the mean of an

attribute of the costs by its specific standard deviation. In the first

case, the deviation of means above the overall mean was done by

adding the standard deviation whereas, for those below, the standard

deviation was subtracted in order to attain the highest possible

variation for the benefit-cost ratio. In the second scenario, the

means that were above the overall mean had the standard

deviation subtracted from them, whereas those below the

standard deviation were added in order to obtain the least

possible deviation in the benefit-cost ratio. Scenario A showed an

increase in the benefit-cost ratio whereas. in Scenario B, the artisanal

techniques showed an increase in the benefit-cost ratio (Figure 9).

The pairwise comparison in the two case scenarios attained a CR

of <0.1.

4 Discussion

4.1 Optimization of ingredient
formulations

The current findings showed that the optimal level of

inclusion of cowpea leaf in the soup mix was 49%, with higher

levels reducing consumer acceptability. This is explained by

the reduction in consistency which is induced in the product

by the addition of starch, a thickening agent (Alcázar-Alay

and Meireles, 2015). Starch has an inherent thickening

property that improves the product acceptability of soups

with increasing proportion (Dhiman et al., 2017); however,

this trend has an optimal point beyond which the product

acceptability declines (Bothma et al., 2020). In the

development of food preferences, textural properties is one

TABLE 11 Pairwise comparison matrix of the alternatives for each cost
component.

Options Project Priority

P1 P2 P3 P4 P5 P6 P7

Cost of raw material (λmax = 7.00, CI = -0.00, CR = -0.0.00)

P1 1.00 1.08 0.86 1.08 0.68 1.16 1.22 0.14

P2 0.92 1.00 0.79 1.00 0.63 1.07 1.12 0.13

P3 1.17 1.27 1.00 1.27 0.79 1.35 1.42 0.16

P4 0.92 1.00 0.79 1.00 0.63 1.07 1.12 0.13

P5 1.47 1.60 1.26 1.60 1.00 1.71 1.79 0.21

P6 0.86 0.94 0.74 0.94 0.59 1.00 1.05 0.12

P7 0.82 0.89 0.70 0.89 0.56 0.95 1.00 0.11

Cost of energy (λmax = 7.07, CI = -0.01, CR = -0.0.01)

P1 1.00 1.12 2.56 3.53 1.00 1.12 3.53 0.21

P2 0.89 1.00 2.28 3.15 0.89 1.00 3.15 0.19

P3 0.39 0.44 1.00 1.38 0.39 0.44 1.38 0.08

P4 0.28 0.32 0.73 1.00 0.28 0.32 1.00 0.06

P5 1.00 1.12 2.56 3.53 1.00 1.12 3.53 0.21

P6 0.89 1.00 2.28 3.15 0.89 1.00 3.15 0.19

P7 0.28 0.32 0.73 1.00 0.28 0.32 1.00 0.06

Cost of water (λmax = 7.07, CI = -0.008, CR = -0.0.011)

P1 1.00 1.32 0.96 1.33 1.14 1.11 1.00 0.16

P2 0.76 1.00 0.77 1.00 0.66 1.15 1.12 0.13

P3 1.04 1.30 1.00 1.38 1.18 1.16 1.05 0.16

P4 0.75 1.00 0.72 1.00 0.86 0.84 0.76 0.12

P5 0.88 1.52 0.84 1.17 1.00 1.75 1.70 0.17

P6 0.90 0.87 0.86 1.19 0.57 1.00 0.90 0.12

P7 1.00 0.89 0.96 1.32 0.59 1.11 1.00 0.14

Cost of labour (λmax = 7.06, CI = -0.009, CR = -0.0.007)

P1 1.00 1.67 1.00 1.67 0.83 1.00 0.83 0.15

P2 0.60 1.00 0.57 1.00 0.65 0.44 0.34 0.08

P3 1.00 1.76 1.00 1.76 1.15 0.77 0.59 0.15

P4 0.60 1.00 0.57 1.00 0.50 0.60 0.50 0.09

P5 1.20 1.53 0.87 2.00 1.00 1.20 1.00 0.17

P6 1.00 2.28 1.30 1.67 0.83 1.00 0.77 0.16

P7 1.20 2.96 1.68 2.00 1.00 1.30 1.00 0.20

Cost of fixed assets (λmax = 7.27, CI = -0.045, CR = -0.0.033)

P1 1.00 2.47 0.69 1.17 1.00 2.47 3.91 0.19

P2 0.40 1.00 0.28 0.48 0.40 1.00 1.58 0.08

P3 1.45 3.57 1.00 1.70 1.45 3.57 5.65 0.27

P4 0.85 2.10 0.59 1.00 0.85 2.10 3.33 0.16

P5 1.00 2.47 0.69 1.17 1.00 2.47 3.91 0.19

P6 0.40 1.00 0.28 0.48 0.40 1.00 1.58 0.08

P7 0.26 0.63 0.18 0.30 0.26 0.63 1.00 0.05

P1-blanching and oven-drying combine with extrusion; P2-blanching and oven drying

only; P3-blanching and solar-drying combined with extrusion; P4-blanching and solar

drying only; P5-fermenting and oven-drying combined with extrusion; P6-fermenting

and oven-drying only; and P7-blanching and sun-drying only.
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of the factors with significant influence (Jeltem et al., 2015).

Similarly, the present study established that consistency and

mouthfeel—textural properties—influenced the overall

consumer acceptability of the soup mixes. Whereas the

optimization of the product focused on ameliorating the

nutritional quality, the determination of the optimal

ingredient formulation level was guided by the

acceptability of the product. Optimization studies have

been undertaken to balance the functional and sensory

properties of the soup to avoid detrimental quality

attributes such as limited nutrient availability due to

unbalanced ingredients (Manhivi et al., 2020). In mapping

the sensory attributes to the consumer acceptability of the

soup mixes, this study found that all six attributes were

contributors to their acceptance. This implies that the

functional properties were subject to the incorporation of

cowpea leaf in the soup mixes. The Kenyan and Tanzanian

Standards for the soups permit the inclusion of vegetables

beyond >40% only if the dominant raw material is stated in

the product’s labelling (KEBS, 2012; TBS, 2020).

FIGURE 8
Benefit-cost ratio of pathways for processing cowpea leaf soup mixes. P1-blanching and oven-drying combine with extrusion; P2-blanching
and oven drying only; P3-blanching and solar-drying combined with extrusion; P4-blanching and solar drying only; P5-fermenting and oven-drying
combined with extrusion; P6-fermenting and oven-drying only; P7-blanching and sun-drying only.

FIGURE 7
Explained variance of acceptability of cowpea leaf soup mixes by the predictors (principal components). R2 proportion of variance in the
dependent variable explained.
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4.2 Minimization approach for the cost of
production

The current study undertook a separate evaluation of costs and

benefits prior to combining the weights to evaluate the least cost and

maximum benefits, as performed in a similar study by Babalola

(2020). However, in that study, the concept of the ideal alternative

that improves the accuracy of the values was less explored; thus, the

consistency ratios obtained for the pairwise matrices were higher

(>0.06) than those obtained in our study. The nine-point scaling

suffers the demerit of less accuracy of the pairwisematrices due to the

use of the qualitative components in the generation of the scales

FIGURE 9
Sensitivity analysis of changes to the benefit-cost ratio. Scenario A, values above the average mean were increased by addition of standard
deviation whereas those below the standard deviation were subtracted. In Scenario B, the values above the mean were reduced by subtracting the
mean whereas those below the standard deviation were added. P1-blanching and oven-drying combine with extrusion; P2-blanching and oven
drying only; P3-blanching and solar-drying combined with extrusion; P4-blanching and solar drying only; P5-fermenting and oven-drying
combined with extrusion; P6-fermenting and oven-drying only; and P7-blanching and sun-drying only.

TABLE 12 Synthesis of the costs for prioritization.

Alternatives Energy Water Raw material Labour Fixed costs Overall priority Idealized priorities

P1 0.13 0.02 0.01 0.02 0.01 0.19 0.96

P2 0.12 0.02 0.01 0.01 0.01 0.16 0.79

P3 0.05 0.02 0.01 0.02 0.02 0.12 0.60

P4 0.04 0.02 0.01 0.01 0.01 0.08 0.41

P5 0.13 0.02 0.01 0.02 0.01 0.20 1.00

P6 0.12 0.02 0.01 0.02 0.01 0.16 0.82

P7 0.04 0.02 0.01 0.02 0.00 0.09 0.44

P1-blanching and oven-drying combine with extrusion; P2-blanching and oven drying only; P3-blanching and solar-drying combined with extrusion; P4-blanching and solar drying only;

P5-fermenting and oven-drying combined with extrusion; P6-fermenting and oven-drying only; and P7-blanching and sun-drying only.
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(Benítez et al., 2011). Babalola (2020) established that the least cost

pathways did not necessarily attract maximum benefits. Similarly, in

the present study, the least cost option was local processing to yield

the soupmixes; however, themaximumbenefits were realizable using

the pathway combining the extrusion, oven-drying and blanching

pathways. The benefits were derived as increased consumer

acceptability, iron, zinc and beta-carotene contents and ease of

preparation whereas, on the other hand, the cost analysis

identified which of the seven pathways processing cowpea leaf

soup mix was the least cost option.

The incorporation of highly mechanized processing

techniques of solar and oven drying improved the benefits

derived from the processed product, although it attracted

increasing costs too. The emergence of solar-drying, a

technique that incorporates the use of renewable energy as

the pathway with the maximum cost-benefit ratio, is

explained by the minimal variable costs that come with it

compared to oven-drying and sun-drying, such as sun-drying

attracting higher labour costs and low retention of beta-

carotene due to photo-oxidation (Çiftçioğlu et al., 2020;

Ndawula et al., 2004). The major demerit of the low-cost

artisanal techniques is the low retention of nutrients.

Whereas some of the assumptions made in this study may

vary from product to product, especially on the ranking of

costs and benefits as revealed by the sensitivity analysis, the

study justifies the need for a shift from artisanal food

processing techniques to mechanized ones, especially for

initiatives that seek to address micronutrient deficiencies

in the vulnerable communities. Additionally, in this study,

the criteria for both cost and benefits were limited to five

within the recommended maximum of seven (Russo and

Camanho, 2015); however, in instances where additional

criteria would be identified, the final cost-benefit ratio

would fluctuate. The need for this limitation was to

improve the accuracy of the pairwise comparison matrices

that were generated (Ishizaka, 2012). In cases of more than

seven levels, Hanine et al. (2016) introduced sub-criteria by

creating extra hierarchies in the steps while minimizing the

probability of increasing the error in the calculation of

weights through a pairwise comparison matrix.

5 Conclusion

The two stage-optimization study achieved the minimal

production costs necessary to process cowpea leaf soup mixes

rich in micronutrients, which are major limiting nutrients in the

diet of most communities in arid and semi-arid lands. Whereas

the processing techniques with little demand for mechanization

would seem more feasible for adoption among resource-

constrained communities, this study proves that mechanized

techniques have higher value for money invested than

artisanal techniques. Additionally, the study establishes that

the low-cost processing pathways provide minimal benefits

and thus provide limited advantage in terms of product

quality amelioration. It is therefore recommended that a shift

from artisanal processing is necessary to realization the

maximum benefits from the derived product. In instances

where interest would be on health outcomes, including the

reduction of micronutrient deficiencies, this study would

recommend cost-effectiveness analysis. The approach explored

in this study is recommended in evidence-based decision-making

about disseminating the processing technologies for cowpea leaf

soup mixes and other initiatives in SSAs dealing with orphaned

and neglected crops such as the ALVs.
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