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Introduction: Overexploitation of sharks and the destruction of their habitat has

led to severe population declines and the need for conservation andmanagement

actions. E�ective conservation management requires knowledge of the size

at which a shark matures and an understanding of their breeding season,

fundamental information to maintain appropriate population levels.

Methods: Here we used reproductive endocrinology, estrogen and androgen

steroids, in combination with rare direct observations of mating, visual monitoring

of reproductive status such as gestation and mating scars, as well as parentage

analysis, to assess reproductive biology in male and female Chondrichthyans from

the wild.

Results and discussion: Lengths at sexual maturity of female and male blacktip

reef sharks corresponded closely with plasma 17β-estradiol, testosterone and

11-ketotestosterone measures respectively, but we found considerable variation

in androgen levels for mature males. Size at sexual maturity of male and

female blacktip reef shark deduced from direct or indirect evidence (mating

scars or parentage assignment respectively, corresponded closely with plasma

17β-estradiol, testosterone and 11-ketotestosterone measures respectively, but

we found considerable variation in androgen levels for mature males. Females

attained sexual maturity from around 121 to 123 cm and males from 104 to

111 cm. The mating season extends from September to February but female

17β-estradiol levels are elevated 1 month prior to mating. Endocrinology has

brought additional important information to the reproductive biology and ecology

of blacktip reef sharks.

KEYWORDS

non-lethal assessment, shark reproduction, size at sexual maturity, breeding season,

estrogen and androgen steroid hormones, mating, parentage analysis, life history traits

Introduction

Over the last few decades, many shark species have experienced severe population
declines due to overexploitation and habitat destruction (1–4), enhancing the need for
conservation and management actions (1, 5). Although the magnitude of population
declines varies between species and regions, the k-selected life history traits of most
shark species: slow growth, long life-span, late sexual maturity, long gestation and low
fecundity, render them highly vulnerable to exploitation and explain slow recovery rates
observed. Effective conservation efforts rely on our knowledge of shark life history strategies,
particularly reproductive biology and ecology, as ensuring that species have the capacity
to reproduce is fundamental to maintain appropriate population levels (6, 7). Therefore,
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understanding reproductive parameters, including the size
at which an animal matures and temporal patterns in
reproduction (breeding season), are essential if species are to
be managed appropriately.

Shark reproduction has been investigated using both dead
animals (8, 9) and non-lethal methods (10–12). Lethal methods
include dissections to infer the maturation status of reproductive
organs, determine size at maturity and estimate the breeding
season. The use of non-lethal methods to determine breeding
season is increasing including either rare direct observations
of mating (13–15), visual monitoring of reproductive status
such as gestation stages or mating scars (16–19), or endoscopy
and ultrasonography (20–22). In addition, endocrinology can
determine both breeding season and size at maturity (23–28). Of
all these non-lethal methods, reproductive endocrinology, which
measures the concentrations of hormones that act as either triggers
or regulators of all aspects of reproduction, may be the most
accurate and reliable to assess the reproductive biology and ecology
in male and female elasmobranchs (29). The use of male and
female steroid hormones to study reproduction has been on the rise
in elasmobranchs under captive or semi-captive conditions (30–
32), in wild individuals but using reproductive organ dissections
from dead animals to validate plasma-based results (33–36), or in
the wild using completely non-lethal methods with the release of
sharks at sea after blood sampling and using other complementary
methods to validate plasma-based results of maturity (28, 37, 38).

In female elasmobranchs, the ovary produces three main
gonadal steroids: 17β-estradiol (E2), testosterone (T) and
progesterone (P4) (39). 17β-Estradiol is the major female
reproductive hormone, primarily linked to both hepatic
vitellogenin synthesis, leading to the growth and maturation
of ovarian follicles, and reproductive tract development [e.g.,
(23, 26, 29, 40, 41)]. Concentrations of T closely track fluctuations
in circulating E2 during ovulatory cycles in female elasmobranchs
(23, 33), serving as a precursor for E2 synthesis to facilitate
vitellogenesis (42). Plasma levels of P4 neither distinguish juvenile
from adult female oviparous draftboard sharks, Cephaloscyllium
laticeps (10), nor correlate with other reproductive parameters in
oviparous winter skates, Leucoraja ocellata (34). While P4 plays
a more significant role in the reproductive cycle of viviparous
species being elevated for a short period at the beginning of
pregnancy (24, 27, 43), P4 correlates with E2 in the viviparous
Atlantic Sharpnose Shark Rhizoprionodon terraenovae (44) and
E2 is still the more important hormone, at higher concentrations
than P4 and for longer periods (27, 45). Therefore, in this study
we concentrated solely on E2 in females in our viviparous model
species.

In male elasmobranchs, testosterone (T) seems to be the
primary androgen steroid (24, 46). Testosterone plays a major role
in the regulation of testis development (47, 48), particularly in
regulating the final stages of the development and maturation of
spermatocysts and stimulation of the development of secondary sex
characteristics (24, 33, 34, 36). Male elasmobranchs also produce
E2 and P4, although their role in male reproduction is less clear
and as T and P4 levels, as well as T and E2 levels, show positive
correlations, likely due to P4 being a precursor for T (25, 36),
we only concentrated on T. 11-ketotestosterone (11KT) is the
main androgen in teleost fishes (49) and has been reported in

the bonnethead shark, Sphyrna tiburo (24) and in the dogfish
Scyliorhinus canicula (46), yet very few studies have studied the
role of 11KT in elasmobranch sexual maturity and their breeding
season. Our study aims to use steroid hormones collected from
completely non-lethal methods to describe the size at sexual
maturity and the breeding season for both female andmale blacktip
reef sharks. We will measure E2 in females and 11KT, in addition to
T in males, to examine their roles in determining sexual maturity
and the breeding season for blacktip reef sharks.

The blacktip reef shark Carcharhinus melanopterus is a
widespread reef-associated shark species of the Indo-Pacific (50)
classified as Vulnerable by the IUCN Red list (2020) and shows
highly variable life history traits (i.e., growth rate, size at birth,
and male size at maturity) and reproductive periods across its
range (51). This species is viviparous, has an annual reproductive
cycle (16) and females show reproductive philopatry, returning
to the same nursery every year to give birth to a litter of 2–3
neonate sharks (52). Mating activity is difficult to observe and
mainly consists of rare mating observations (15) as well as indirect
evidence of recent mating attempts via observations of freshmating
scars (19). While size at sexual maturity of male blacktip reef
sharks has been inferred from external claspers (51), size at sexual
maturity of females has only been determined previously using
dead animals (53). In French Polynesia, sharks have been protected
since 2006 in what is currently the largest shark sanctuary in the
world (54), and lethal methods for examining shark life histories
are therefore prohibited which has encouraged the development of
non-lethal approaches to study their biology and behavior (18, 52,
55, 56). To further our understanding of the population dynamics
of blacktip reef sharks throughout French Polynesia, we used non-
lethal methodologies to accurately determine their size at maturity,
breeding season, gestation and parturition.

In this study, we aim to determine (i) annual reproductive
biology i.e., the breeding season and parturition from visual
identification (clasper calcification, mating scars, gestation,
umbilical scars) as well as hormone levels; (ii) the abiotic
parameters, photoperiod and sea surface water temperature, that
influence both the breeding season and hormone levels; (iii) the
total length at maturity of females based on mating scars, gestation,
parentage analyses and plasma E2 measures and confirm the total
length at maturity for males using plasma steroid levels; and (iv)
the efficacy of steroid hormones as a non-lethal method to estimate
sexual maturity and breeding season in blacktip reef sharks.

Materials and methods

Capture and non-lethal sampling methods

A total of 268 Carcharhinus melanopterus were caught around
Moorea (17◦ 30′ S; 149◦ 50′ W) in French Polynesia between 2008
and 2011. Adults and subadult sharks were caught from a fishing
line on a boat inside and outside the lagoon on a monthly basis
(51). Newborn sharks were caught from the shore with gillnets
(50m long, 1.5m high, 6 cm mesh) positioned perpendicular
to the shoreline in nursery areas (52). The total length of the
268 blacktip reef sharks was measured and ranged from 48 to
157 cm. Individuals were sexed when possible (clasper calcification
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in males; see Size at sexual maturity below; (51)), photographed
and fin-clipped for genetic parentage analysis and all individuals
were released back to the sea within 5–10min after capture with
no mortality. Ethical approval for the study was granted from
The Animal Ethics Committee, Center National de la Recherche
Scientifique (Permit Number: 006725). This study was conducted
under the authority of the Direction de environment de Polynésie
française (DIREN) under the convention 5129/MCE/ENV.

The 268 individuals (146 males and 122 females) included all
size ranges. Among these 268 individuals, blood samples were
taken from 135 individuals (78 males and 57 females with total
length ranging from 54 to 153 cm; see “Blood sampling and
reproductive endocrinological parameters” below). In addition to
these captures, other non-lethal sampling methods were carried
out. In 2005 and 2007 on a sporadic basis and regularly between
2008 and 2010, we carried out underwater surveys (∼200 dives)
dedicated to monitoring the presence of sharks along the Northern
reef of Moorea using photo-identification (55). During these
surveys additional information on blacktip reef sharks was also
collected including photographs of mating scars on females (19)
and gestation monitoring by identifying individuals and following
their abdomen growth. All morphological measures on captured
sharks were taken to the nearest centimeter.

Abiotic measurements

Average monthly water temperature was determined from daily
temperature monitoring of Moorea’s reef using bottom-mounted
thermistors over the same time period as shark captures between
2008 and 2010 by CRIOBE SNO (https://observatoire.criobe.pf). A
continuous time series of water temperature data, measured using
underwater temperature data loggers (Onset Optic StowAway)
located on fixed stations in the backreef, the barrier reef and the
outer slope at Tiahura at 1, 2, and 25m depth, respectively. These
loggers have recorded the temperature every hour since 1998 with
an accuracy of 0.01◦C. Daily temperatures were average across the
three stations.

Photoperiod was calculated on a daily basis as the difference
in time (hours) between sunrise and sunset from 2008 to
2010 data provided from the United States Naval Observatory
Astronomical Applications Department (http://aa.usno.navy.mil/
data/docs/MoonFraction.php).

Size at sexual maturity

Chondrichthyan males typically have external paired claspers
(i.e., copulatory appendages), which are extensions of the posterior
bases of the pelvic fins. Sexually immature individuals have
short, soft and smooth claspers, which during maturation, exhibit
accelerated growth and calcification (57). As such, sexual maturity
status of males can be reliably and non-invasively determined
externally using clasper elongation and degree of calcification (31,
51, 58, 59).

However, this is not possible in females as they lack any
external organs representative of maturity. Therefore, we used two

non-invasive methods to determine sexual maturity of captured
female sharks: parentage analysis and steroid hormone levels. As
blacktip reef sharks do not disperse far from their parental island
(52), parentage analysis of juvenile blacktip reef sharks can be used
to determine the smallest size at which adult blacktip reef sharks
can be a parent i.e., were sexually mature (confirm for male and
determine for females). We captured, measured and genotyped
250 blacktip reef sharks as part of a parallel study (52) between
2008 and 2010. Sharks were divided into three categories according
to their size: juveniles (<70 cm, the smallest ones being newborn
sharks showing apparent umbilical scars (19), “subadults” (70 <

TL<110 cm) and “adults” (>110 cm) according to the average size
at maturity known for this species (51, 60). Of the 250 captured
sharks, 61 were juveniles captured in their nursery areas and 189
were subadult/adults. Juveniles were then assigned to a subadult
or adult pair when possible and the smallest subadult or adult that
was assigned as a parent was used to determine the minimum total
length at sexual maturity. Steroid hormone levels were also used
to corroborate our genetic findings and determine sexual maturity
of females not identified as parents. From our global population
survey, parentage analysis assigned 43 of the 61 genotyped juveniles
to at least one parent or a pair of parents among the 189 genotyped
subadult or adult sharks around the island. From these 43 juveniles,
19 (44.2%) were assigned only to a female, 18 (41.8%) only to
a male and 6 (14.0%) to a pair of parents (52). Furthermore,
using individuals captured in the same year as paternity/maternity
assignment, as well as steroid hormone levels of reproductively
active male and female sharks, we determined minimum total
length at sexual maturity.

Blood sampling and reproductive
endocrinological parameters

Blood was immediately sampled from 135 individuals (78males
and 57 females) within 3–5min of the original disturbance (capture
on fishing line or gillnet). Aminimum of 250µl of blood was drawn
laterally from the caudal vein using a heparinized 15 gauge needle
and 10ml plastic disposable syringe. Syringes were kept on ice on
the boat until processing (<60min). Individual blood samples were
transferred to eppendorfs and centrifuged (Sigma Centrifuge 1–
14; http://www.sigma-zentrifugen.de/) at 10,000 g for 5min. The
supernatant, a yellow plasma layer, was collected and stored at
−20◦C until analysis.

Plasma 11-ketotestosterone (11KT) and testosterone (T) were
measured from 78 males and 17β estradiol (E2) from 57
females using EIA kits (11KT EIA Kit, No. 582751; T EIA
Kit, No. 582701; E2 EIA Kit, No. 582251; Cayman Chemicals,
SPI BIO; www.spibio.com) and a Beckman Coulter AD 340
Spectrophotometer at 405 nm as described in Mills et al. (61)
after validation with parallel displacement of serially diluted
plasma to the standard curve and determination of intra- and
inter-assay variabilities (see Supplementary material). The 11KT
kit has already been previously validated for this species (61),
the kits for T and E2 were used after validation with parallel
displacement of serially diluted plasma to the standard curve (see
Supplementary Table 1, Supplementary Figures 1, 2).
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Data analysis

To determine the abiotic parameters corresponding to annual
reproductive activity, we carried out correlations between the
number of mating observations and abiotic factors (temperature
and day length). We also tested the correlations between steroid
hormone concentration in adult sharks (males > 110 cm TL
and females >120 cm TL as determined by the smallest mother
assigned from parentage analysis, see below) and abiotic factors.
We compared hormone concentrations between mature and
immature and between the breeding and non-breeding seasons. To
determine the role of steroid hormones in size at sexual maturity,
we first plotted hormone concentrations against total length of
sharks. We then generated maturity ogives from steroid hormone
concentration values above which individuals were considered
mature, and determined the length at which 50% of the individuals
were mature (L50). Size at maturity based on hormone data (L50)
was then compared to the size at maturity determined from clasper
calcification for males (L50) and minimum size at which a female
was assigned to a newborn shark from parentage analysis (i.e.,
minimum size at sexual maturity). The size at which a female was
found to be a genetic parent might be some months after reaching
sexual maturity and hence our measures might overestimate the
minimum size at sexual maturity especially when compared with
the L50 provided by E2 data, therefore we acknowledge that these
estimates may not always be directly comparable. However, the
range in TL between the minimum size of mature individuals
and the maximum size of immature individuals is generally
narrow and comparing these estimates can still be valuable to
confirm an approximate size at maturity. To determine the role
of steroid hormones in the reproductive biology in blacktip reef
sharks we used a Kruskal-Wallis test to compare steroid hormone
concentrations (11KT and T for males and E2 for females) of
mature individuals between months. Pairwise comparison post-hoc

tests were used to assess specific month to month variations in
hormone concentrations.

Results

Of the 146 male sharks caught, sexual maturity was determined
for 94 males. The 122 females required parentage analysis and
steroid hormone levels to determine their sexual maturation status.
From underwater surveys conducted around the island, 41 females
were determined to be reproductively active based on mating scars
and gestation status, of which 18 were caught and measured which
provided data on length at sexual maturity.

Breeding season

Based on a rare direct observation of mating on the 27th
December 2009 (Figure 1A) and indirect evidence of mating
inferred from 33 cases of fresh mating scars reported in years 2005,
2007, 2008, 2009, 2010, and 2013 (Figure 1B), and the absence
of mating scars between March and October, we determined that
the mating period for C. melanopterus occurs between October
and February, peaking from December to February (Figure 1C).

Parturition was also inferred from gestation monitoring and date
at capture of smallest newborn sharks with visible open umbilical
scars and occurs between September and January (Figure 1C).

Correlations between abiotic factors and
both the breeding season and
endocrinology

The initiation of the mating period corresponds with increasing
day length and increasing temperature, although mating period
shows a better fit with photoperiod (Figure 1C). The frequency of
mating scars was positively correlated with photoperiod (Pearson
correlation coefficient r = 0.755, df = 10, p < 0.005) and with
temperature although it was not significant (Pearson correlation
coefficient r = 0.454, df = 10, p = 0.138). All hormone
levels showed positive correlations with photoperiod but varied
correlations with sea temperature (graphs of correlations are
available in Supplementary Figure 3), although these correlations
need to be considered with caution due to relatively small sample
size. There was a positive correlation between plasma 11KT
concentrations and photoperiod (r = 0.621, df = 53, p < 0.001)
and a negative correlation with temperature (r = −0.294, df =
53, p = 0.029). Similarly, there was a positive correlation between
plasma T concentrations and photoperiod (r = 0.579, df = 51, p
< 0.001), but no correlation with temperature (r = −0.130, df =
51, p = 0.351). There was a positive correlation between plasma E2
concentrations in females and photoperiod (r= 0.601, df= 37, p<

0.001) and a negative correlation with temperature (r =−0.524, df
= 37, p < 0.001).

Size at sexual maturity

Based on parentage analysis we were able to assign 25 males
as sires of the 61 juvenile blacktip reef sharks sampled. Thirteen
of these males were captured and measured during the previous
mating season and the smallest male to father a pup was 114 cm TL
(mean ± SE = 123.23 ± 1.58 cm TL, for the 13 males; Figure 1D).
Using parentage analysis we were also able to assign 19 females as
mothers of the 61 juveniles. Seven of these females were captured
and measured during the months preceding giving birth and the
smallest reproductively mature female was 121 cm TL (mean ± SE
= 134.71± 3.50 cm TL, for seven females; Figure 1D).

Breeding season, size at sexual maturity,
and reproductive endocrinology

In order to accurately determine the role of hormones in
estimating size at sexual maturity, we did not include hormone
measures taken outside of the mating season (March to September
inclusive) in analyses, as values of mature individuals were
significantly lower outside compared to inside the breeding season
(t-test: 11KT, t = 3.88, N = 59, p < 0.0026; T, t = 2.87, N = 59,
p = 0.0177), but we show all values in the figures. Furthermore,
although concentrations for 11KT were not significantly different
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FIGURE 1

Reproductive season in blacktip reef sharks, Carcharhinus melanopterus. (A) A rare observation of C. melanopterus reproduction photographed on

the fore reef of Tiputa pass in Rangiroa (French Polynesia) on the 27th December 2009; (B) An example of a female C. melanopterus with fresh

mating scars photographed on the 10th November 2013 in Moorea (French Polynesia); (C) Monthly frequency of mating events inferred from fresh

mating scars on females (black bars, with associated number of animals with mating scars indicated at the bottom of the bar) and mean monthly

(95% CI) water temperature (red line and shading) and photoperiod (blue line and shading) in Moorea. The months corresponding to the breeding

season and parturition are summarized with a green and purple horizontal, respectively. Parturition was inferred from gestation monitoring and date

at capture of smallest newborn sharks with visible open umbilical scars (19, 52) and confirmed by Debaere et al. (62); (D) Distributions of total length

of reproductively active male and female sharks based on parentage analyses (based on individuals assigned a newborn shark for which we had

measurements during the previous mating season). Photo credits: (A) Yves Lefèbvre, (B) Johann Mourier.

between mature and immature males outside the mating season (t-
test: t= 2.22,N = 56, p= 0.0541) concentrations were significantly
different for T (t-test: t = 3.48, N = 57, p = 0.0015). For males
during the mating season, there were significant differences in
11KT and T concentrations with sizes related to sexual maturity
based on clasper calcification, i.e., between mature (>110 cm TL)
and immature (<110 cm TL) males (t-test: 11KT, t = 7.23, N
= 39, p < 0.0001; T, t = 3.72, N = 35, p = 0.0047). However,
the relationship between 11KT and T levels with TL showed
considerable variation for similar-sized males around the size at
which males reach sexual maturity, suggesting that not all males
may be sexually active for a given TL. Levels of 11KT began to
increase from a TL of 90 cm (Figure 2A) and T concentrations from
a TL of 104 cm (Figure 2B), which corresponds to the beginning of
clasper calcification.

We then created maturity ogives based on steroid hormones
by inferring the proportion of individuals that had concentrations

above a certain value as a function of TL. Maturity ogives
generated from 11KT predicted that sexual maturity of 50% of
males occurred at 95 cm, 99 cm and 104 cm TL for concentrations
over 1,000, 1,500, and 2,000 pg.ml−1, respectively. Therefore,
the 11KT concentration thresholds that returned a 50% maturity
prediction closest to that generated using calcified claspers (i.e.,
50% maturity at 111 cm TL) was 2,000 pg.ml−1 at 104 cm
TL (Figure 3A). Maturity ogives generated from T predicted
that sexual maturity of 50% of males occurred at 100, 115,
and 114 cm TL for concentrations over 1,000, 1,500, and
2,000 pg.ml−1, respectively. Therefore, the T concentration
thresholds that returned a 50% maturity prediction closest to
that generated using calcified claspers (i.e., maturity at 111 cm
TL) was 2,000 pg.ml−1 at 114 cm TL or 1,500 pg.ml−1 at
115 cm TL (Figure 3B). We also adopted the same approach
using the data from inside and outside the breeding season, but
maturity ogives were less reliable and tended to overestimate
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FIGURE 2

Steroid hormone concentrations of Carcharhinus melanopterus during the mating season (October-February) and outside as a function of total

length (TL) for (A) 11KT in males, (B) T in males, and (C) E2 in females. Vertical dashed lines indicate size at sexual maturity inferred from calcified

claspers (A, B) and parentage analyses (C).

size at maturity compared to external maturity indicators
(Supplementary Figure 4), supporting our choice to investigate size
at maturity during the breeding season.

There was a clear shift in female E2 levels with size, with
hormone levels strongly increasing for female sharks larger than
120 cm, although there were only limited samples at larger sizes
(Figure 2C). Size at sexual maturity based on E2 (∼120 cm)
corresponds well with size at sexual maturity based on parentage
analyses in this study (121 cm) as well as with the appearance of
mating scars. In a similar manner as for males, during the mating
season there was a significant difference in E2 concentrations
between mature and immature females (t-test: t = 9.73, N =

32, p = 0.009) but not outside of the mating season (t-test: t =
−0.24, N = 42, p = 0.8186), corroborating our decision to only
analyze samples taken during the breeding season. In addition, E2
concentrations were significantly higher for mature females during
the mating season than outside this period (t-test: t = 8.06,N = 39,
p= 0.0098).

Maturity ogives generated from E2 predicted that sexual
maturity of 50% of females occurred at 113 cm and 123 cm
TL for concentrations over 50 and 100 pg.ml−1, respectively.
Therefore, the E2 concentration threshold that returned female
50% maturity prediction closest to that generated using the
smallest female assigned as mother of a sampled offspring
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FIGURE 3

Maturity ogives based on morphological, parentage and steroid hormone analyses for male and female blacktip reef sharks during the mating season

(October-February). (A) Maturity ogives of males based on 11KT concentrations (in black the maturity ogive based on proportion of calcified

claspers). (B) Maturity ogives of males based on T concentrations (in black the maturity ogive based on proportion of calcified claspers). (C) Maturity

ogives of females based on E2 concentrations (the black vertical line corresponds to the smallest TL of females assigned as parents using parentage

analyses). The dotted lines correspond to the TL at which 50% of males and females are sexually mature.

using parentage analysis (i.e., maturity at 121 cm TL) was 100
pg.ml−1 at 123 cm TL (Figure 3C). However, the smallest female
assigned as a mother might have become sexually mature prior
to mating and may overestimate the smallest size at maturity
and E2 threshold. Therefore, female 50% maturity likely occurs

between 113 and 123 cm TL at concentrations of E2 between
50 and 100 pg.ml−1. We also recognize that the sample size of
mature females was small and our results need to be taken with
caution. Similarly, maturity ogives were less reliable and tended
to overestimate size at maturity compared to external maturity
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indicators using the data from inside and outside the breeding
season (Supplementary Figure 4).

In order to accurately determine the role of hormones in
the reproductive biology of blacktip reef sharks, only those
measures taken from sexually mature males and females were
subsequently analyzed over the year. Hormone concentrations
showed significant seasonal variation in mature male sharks
(Kruskal-Wallis test: 11KT: χ

2
= 32.2, N = 59, p < 0.0001; T:

χ
2
= 26.8, N = 57, p = 0.0015; Figure 4). 11KT concentrations

in males were highest in October compared to the rest of the
year but the difference was only significant compared to April and
May (Dunn test: p < 0.01 after Bonferroni correction; Figure 4A).
Testosterone concentrations in mature males were also highest in
October compared to the rest of the year but the difference was only
significant compared to May (Dunn test: p < 0.01 after Bonferroni
correction; Figure 4B).

Mature females also showed seasonal variation in E2
concentrations (Kruskal-Wallis test: E2: χ

2
= 19.1, N = 39,

p = 0.0079) with E2 concentrations in mature females highest
in October compared to the rest of the year but the difference
was only significant compared to April (Dunn test: p < 0.01 after
Bonferroni correction; Figure 4C). Our results also highlight that
levels of E2 began increasing before the start of the reproductive
season from September, but remained high to the end of the
mating season.

Discussion

This study tests the use of various non-lethal methodologies
to obtain reproductive information, breeding season and sexual
maturity, of a common reef shark, the blacktip reef shark,
Carcharhinus melanopterus. Length at sexual maturity of female
blacktip reef sharks was deduced from mating scars, gestation
and parentage assignment and these corresponded closely with
plasma E2 measures. Total length at maturity for males previously
determined from external claspers, was also confirmed using
plasma steroid levels, T and 11KT, but we found variation in
androgen levels. The breeding season was deduced from both
direct and indirect evidence of mating activity such as mating
scars, gestation, umbilical scars or parentage assignment, and these
corresponded well with concentrations of estrogen and androgen
steroid hormones, in females and males, respectively. We also
identified photoperiod as the abiotic parameter that regulates
steroid hormone levels, driving the start of the mating period.
We discuss our findings in light of size at maturity for male
and female blacktip reef sharks and their reproductive cycle and
breeding season.

The influence of abiotic factors

Abiotic factors expressed here as temperature and photoperiod
seem to influence steroid hormone concentrations and mating
activity in blacktip reef sharks in agreement with the endocrine
regulation of spermatogenesis in the catshark, S. canicula (63).
Day length had the most obvious influence as it was positively
correlated with male and female steroid hormones and with the

number of mating scars on females and the progressive switch of
male blacktip reef sharks to an active breeding condition, although
our findings are contrary to Mull et al. (64). As daylength increases,
plasma concentrations of T and 11KT increase suggesting that
photoperiod is the mechanistic driver of androgen hormones, that
initiate the start of breeding. Thus, the onset of spermatogenic
activity in male C. melanopterus after September is likely triggered
by the environmental cue daylength, resulting in the production of
androgens and other steroid hormones.

The present data indicate that plasma 11KT and E2
concentrations are negatively correlated with ambient water
temperature. In epaulet sharks Hemiscyllium ocellatum that
show a clear unimodal annual cycle, seasonal changes in plasma
androgen concentrations were negatively correlated with water
temperature (26) and a weak negative correlation with E2 was also
found. Positive and negative correlations between temperature
and E2 were reported in female Australian sharpnose sharks
Rhizoprionodon taylori (65) and zebra shark Stegostoma fasciatum

(66), respectively. Such differences between studies could be in part
due to differences in data analyses, or by non-linear relationships
between sex steroids and temperature when considering the
whole range of seawater temperatures (67). While we still need
to understand the mechanism by which temperature regulates
steroid hormones, it is likely an important factor in elasmobranch
reproductive biology and will need further investigation.

Size at sexual maturity

To infer female sexual maturity, several non-lethal approaches
have been proposed and employed. The presence or absence of
hymen has been used to assess maturity in females, although this
method demonstrated some limitations and bias (68). Internal
reproductive structures and sexual stages, especially pregnancy,
can be examined using ultrasonography but requires specialized
equipment and reproductive status is not always easy to determine
(22, 28). Finally, reproductive hormones may be used as indicators
of maturation status. All studies on elasmobranchs to date suggest
that a single or a combination of plasma steroid hormones can
provide accurate indicators of maturational status and size at
maturity can be subsequently inferred (10, 27, 31, 41, 45, 69). In this
study, we first used the results of a parentage analysis previously
conducted on this population in Moorea (52) to determine that
the smallest size of a female assigned as a mother was 121 cm
TL, providing us with an indicator of size at maturity for females,
although this TL might overestimate the smallest size at maturity.
We then showed that the smallest mature females determined from
the presence of mating scars and concentrations of plasma E2
above 100 pg.ml−1 were∼123 cmTL, corresponding closely, within
2 cm, to the smallest size determined from parentage analysis
(Figures 1C, 3C). Differences in size at sexual maturity between
morphological and hormonal maturity have previously been
reported in elasmobranchs, where hormonal pathways associated
with sexual maturity have been shown to lag behind morphological
maturity in the bonnethead shark (70), the winter skate (71), and
the thorny skate Amblyraja radiata (72). The size at maturity of
female blacktip reef sharks also varies between locations, ranging
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FIGURE 4

Monthly variation (mean ± SE) of reproductive hormones in mature and immature male (A, B) and female (C) blacktip reef sharks. Light gray areas

indicate the mating period. 11KT, 11-ketotestosterone; T, testosterone; E2, 17β-estradiol.

from 110 cm TL in Aldabra in Indian Ocean (73) to 130–135 cm TL
in northern-Australia (53) both determined using lethal methods
and between 121 and 123 cm TL in French Polynesia using non-
lethal methods (this study). Such disparities in size at maturity may
be due to differences in latitude between sampled areas, which has
previously been observed in bonnethead sharks (74) and may be
adaptive responses to different environmental conditions (75).

The smallest male with calcified claspers previously measured
was 111 cm TL and the largest immature male was 114 cm TL
(51), and this estimation was confirmed in this study using both
parentage analysis, as the size of the smallest male known to father
a sampled pup was 114 cm (Figure 1D) and endocrine analyses, as

concentrations of both 11KT and T levels increased from ∼104 cm
(Figures 1A, B, 4B). Our results also agree with the size at maturity
of male blacktip reef sharks estimated at 105 cm TL using lethal
methods in northern-Australia, but see caveats outlined above
for regional differences (53). However, considerable variation in
androgen levels were found in mature males, indicating that steroid
hormone measures in addition to clasper calcification criteria are
necessary to accurately determine size at maturity in male sharks.

Maturity ogives suggested sizes at maturity slightly lower than
those indicated from calcified claspers for males and parentage
analyses for females, which indicates that some males or females
in the population could mature more precociously than most of
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the population as displayed by higher hormone concentrations at
lower TLs. In addition, the smallest male with calcified claspers and
the smallest female assigned as a mother with parentage analysis
might reflect the average size at maturity for the population but
might underestimate the smallest size at maturity.

The observed variation in androgen levels of mature male
blacktip reef sharks is likely due to differences in male hierarchical
status, abundance or competition between males. Elasmobranch
reproductive behavior involves aggressive social interactions
among males and females, and the formation of social groups
is complex and involves courtship behaviors (13–15, 76–78).
Androgen steroids initiate, promote, and sustain behavioral aspects
of sexual conflicts including swimming speed in elasmobranchs,
and androgen levels are dependent on hierarchical status in sand
tiger sharks, Carcharias taurus (32). We therefore propose that
a similar hierarchical status exists within blacktip reef shark
male social groups, especially in fluctuating densities enhancing
competition between males, and would explain the large variation
in androgen levels for males of similar size (120–135 cm). High T
and 11KT values may indicate dominant males, and relatively lower
T and 11KT values indicating subordinate males which, despite
being sexually mature, have suppressed androgens in a similar
manner to that shown in teleost fish [e.g., (79, 80)]. While there is
no direct evidence of dominance hierarchy in blacktip reef sharks,
observations from captive males in public aquariums provide some
evidence of a hierarchy between males with leaders and followers
(Mourier, unpublished data). It is also possible that a proportion of
males in the population could be reproductively inactive during one
season, skipping a reproductive season as already shown in females
from certain shark populations [e.g., (18)].

Breeding season

The concentrations of E2 in female blacktip reef sharks were
highest from September to February corresponding to 1 month
prior, and during, the mating season determined from the presence
of mating scars. The patterns of E2 levels in female elasmobranchs
in the current study parallel those found in other adult female
viviparous elasmobranch species in which significantly higher
values were found in pre-ovulatory and mating females, and lowest
levels during early pregnancy. Elevated E2 levels during the pre-
ovulatory period were found in the Atlantic sharpnose shark
Rhizoprionodon terraenovae (44), the Atlantic stingray, Dasyatis
sabina (40), the bonnethead shark, Sphyrna tiburo (23), and
the little skate, Raja erinacea (30). Circulating E2 concentrations
generally peak during the period of follicular development in
viviparous elasmobranchs and have roles in regulating synthesis of
the yolk protein precursor, vitellogenin Vtg (81), in stimulating the
uptake of vitellogenin by the elasmobranch oocyte [(82); review in
Callard et al. (83)] and in follicular growth leading to ovulation (29).
Elevated E2 concentrations during ovulation in viviparous sharks
have also been linked with the passage of the fertilized egg to the
uterus (23, 33, 40, 84).

The elevated concentrations of E2 in female sharks in
September, which corresponds to 1 month prior to the mating
season, agree with post-ovulatory rises in E2 concentrations that

have also been observed during mid to late pregnancy in females of
other seasonally breeding elasmobranchs, such as the bonnethead
shark and the Atlantic stingray (23, 33, 40). Since follicular
development for the subsequent reproductive cycle does not begin
until after parturition in these species, increased levels of E2 may
reflect another possible role of this hormone in gestation and
parturition. Indeed, elevated E2 during late pregnancy in several
shark species has been found to prepare the uterus for parturition,
by increasing levels of the hormone relaxin, that enlarges the
cervix to allow embryo passage during parturition (85, 86). In
agreement, in our study, the clear rise in E2 concentrations from
September corresponds to the period of parturition. As the blacktip
reef shark has a 1-year reproductive cycle, breeding every year, it
is not surprising that E2 concentrations were high in all sexually
mature females during the mating season, as opposed to other
species that do not reproduce every year and have contrasting E2
concentrations (28).

Concentrations of T and 11KT were also elevated in male
blacktip reef sharks from October and February corresponding
to the mating season. In male elasmobranchs, testis development
and seasonal spermatogenesis are both regulated by androgens
(81). T levels are often elevated during the middle to late stages
of spermatogenesis, which is coincident with the presence of
mature spermatocysts in the testes (25, 26, 33–35, 40). The
T levels measured in this study, agree with previous findings
and suggest that T correlates with gonadal recrudescence, final
sperm maturation, and the onset of copulatory activity in blacktip
reef sharks (81). 11KT is thought to be the main androgen
in teleost fishes but its function in male elasmobranchs is
less clear. Circulating 11KT has been found to contribute to
testicular development in some elasmobranchs (24, 46, 64) and
elevated levels in blacktip reef sharks during the mating season
would agree with these previous findings. In studies where both
T and 11KT were examined, the patterns of both androgens
were very similar (24, 46), which we can confirm in this
study. However, although 11KT levels were lower outside of
the mating season, they did not decrease to levels as low as T,
whose levels closely followed the mating season and remained
at relatively lower levels for the rest of the year. Our study
shows that T levels alone would be an appropriate non-lethal
method for determining the breeding season in male blacktip
reef sharks.

A non-lethal method for breeding season
or reproductive events and maturity
assessment in sharks

In the current study, we report on the successful use of non-
lethal methods to determine sexual maturity and breeding season
in blacktip reef sharks. Measurement of plasma steroid hormones
provided a helpful method to classify both male and female
sharks as juveniles or adults and also contributed in determining
the seasonality of reproduction, in particular the mating season,
without killing any animal. Results from steroid hormone levels
were confirmed by other external information such as contribution
to birthing events assigned from parentage analyses or fresh
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mating scars in females or calcified claspers in males. However,
female E2 concentrations were more informative to assess sexual
maturity than 11KT and T concentrations in males, the latter
showing high variation between mature individuals. In addition,
our study also suggests that assessment of size at maturity may
be more reliable using hormone concentrations measured during
the breeding season (at least for the blacktip reef shark). Such
an approach needs to be conducted in conjunction with other
non-lethal acquired information such as clasper calcification or
observations of mating scars.
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