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Everything is eventually eaten by something else; for most organisms, the crowning

achievement of their existence is to reproduce before that happens, and (if they are lucky)

perhaps have already died relatively peacefully before the eating commences. The

interaction between species that are trying to consume and avoid consumption

represents a fundamental force in evolution, as the outcome of that interaction shapes

the genetic reproductive success of both parties. Ethologists broadly study these

interactions under the umbrella of foraging and antipredator behaviors, depending on

which party is the focus of the study; but natural selection makes no taxonomic

distinctions, and so the processes of herbivory and parasitism would be additional

examples of this consumptive species interaction that is shaped over evolutionary time.

Nevertheless, for researchers who focus on the expression of behavioral phenotypes in

animals, those behaviors related to finding food and avoiding becoming food often play a

central role in developing an integrative understanding of an ecological community as a

whole (Werner and Peacor, 2003; Nakazawa, 2017; Schmitz, 2017).

Because species interactions related to consumption structure natural communities, in

many ways the challenges facing this field are a reflection of the broader challenges facing

all of us who attempt to understand the evolution of behavior in natural systems. These

challenges are numerous, and so by necessity I will narrow my focus to two in particular:

(1) the need to understand the impact of unprecedented environmental changes induced by

human development; and (2) the decline of descriptive and observational scientific research

focused on organisms and the expression of their behavior in nature (i.e., the decline of

natural history). Although these challenges are indeed grand, I believe the technological

revolution currently underway in computational power and monitoring devices can go a

long way in addressing both.
Species interactions and environmental change

Humans are having an impact on the environment that many consider to be on par

with the handful of past geological events that led to mass extinction and a fundamental

reordering of biodiversity across the globe (Waters et al., 2016). Because humans are

releasing massive amounts of carbon dioxide into the atmosphere, which is also increasing

the acidity of oceans, the resultant impact is truly global, affecting all species and
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ecosystems (Warren et al., 2011; Grimm et al., 2013; Spalding and

Hull, 2021). Ethologists (and other types of evolutionary biologists)

fully recognize that most species now exist within an environment

that is undergoing rapid change (Guiden et al., 2019). Sih et al. (Sih

et al., 2011) coined the term HIREC (human-induced rapid

environmental changes) to characterize this problem and

emphasize its prominence in animal behavior research. No

biological discipline can afford to ignore HIREC, but ethology is

on the front line of this battle. Perhaps the most fundamental

question regarding our ability to predict or protect the future of a

species is behavioral: is its behavior flexible enough to cope with

change? The plasticity of behavior is what will allow a species to

persist (or even thrive) in the face HIREC (Wong and Candolin,

2015; Beever et al., 2017).

Much of the research on behavioral plasticity and HIREC

focuses on individual species responding directly to an impact,

but ethologists focusing on foraging and antipredator behaviors

must also consider the problem from a community perspective:

environmental changes that directly impact one species also pull on

the linkages that species has to others in the community, and

therefore will have a series of rippling effects that move through the

whole ecosystem (Nagelkerken and Munday, 2016). Ecologists

cannot afford to ignore the behavioral details that mediate those

responses, as the extent and type of behavioral variability will

determine how natural populations respond (Creel et al., 2019).

Studies of behaviorally-mediated trophic cascade at the landscape

scale often rely on broad patterns of species distributions and

demographics, without adequate characterization how processes

and patterns are linked (Peacor et al., 2022); others have also called

for the increased use of emerging monitoring technologies to better

understand risk-sensitive behaviors (Prugh et al., 2019).

One of the most devastating forms of HIREC related to the

ethology of predation is the introduction of species into novel

habitats (Bellard et al., 2016). Invasive predators can disrupt entire

ecosystems when native species lack appropriate antipredator

behaviors (Cox and Lima, 2006; Sih et al., 2010). Prominent

examples include the invasion of Guam by brown treesnakes

(Anton et al., 2020), the spread of lionfish in the Caribbean

(Anton et al., 2020), and the damage done by rats introduced to

oceanic islands across the globe (Harper and Bunbury, 2015).

Predicting the impact of invasive predators, or the timescale at

which impacted species may adjust to the invasion, requires a

detailed understanding of the expression and development of

antipredator behaviors (Carthey and Blumstein, 2018), work that

has a long tradition within the field of ethology (Tinbergen et al.,

1967; Curio, 1976).

On the other side of the predator-prey relationship, the ethology

of foraging or hunting is similarly prominent in the biodiversity

crisis. A recent meta-analysis of the proximate causes of species

declines and extinctions in response to climate change found that

altered species interactions associated with decreased ability to find

food was the single most frequently cited mechanism underlying

species declines (Cahill et al., 2013). Plasticity in foraging or feeding

behaviors may be crucial for adapting to changing biotic and abiotic

conditions (Tuomainen and Candolin, 2011). Recent prominent
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examples include the unexpected flexibility in forage use that

allowed a population of pikas (Ochotomys princeps) to persist well

outside their typical climatic niche (Varner and Dearing, 2014), the

shift in foraging mode that permitted peacock groupers

(Cephalopholis argus) to persist in the face of habitat degradation,

and a switch to foraging in near-shore benthic habitats by black

guillemots (Cepphus grylle mandtii) coping with decreased sea ice

(Divoky et al., 2021).
The decline of ethological research in
nature

A second crisis of a different nature has the potential to greatly

exacerbate the first. Research focused on organisms in nature is in

decline. For decades, natural historians have been sounding the

alarm regarding the increasing difficulty in funding basic descriptive

research (Wilcove and Eisner, 2000; Greene, 2005; Tewksbury et al.,

2014). The rise of molecular and genetic tools in biology has

revolutionized our understanding of biological systems, but has

also resulted in a reductionism that increasingly prioritizes the

testing of hypotheses far above the accumulation of quantitative

observations (Farris, 2020; Yanai and Lercher, 2020). Natural

history is a somewhat loosely defined field, but most practitioners

consider it to be primarily descriptive; natural historians try to

accumulate detailed and quantitative data on natural systems, often

while trying to minimize pre-conceived notions about how those

systems should work (Herman, 2002; Schmidly, 2005; Barrows

et al., 2016). Although such observations are a fundamental

component of the scientific process, they are too frequently not

treated as such by reviewers and editors of scientific papers. Perhaps

one of the most common general types of feedback given in the peer

review process is to adopt a hypothesis-testing framework, even

when the work in question may be explicitly descriptive, as if the

data, discussions, and conclusions would not be meaningful if they

were uncovered as part of the process of observing and quantifying

natural systems without a preconceived hypothesis in mind.

Of course, hypothesis testing and laboratory studies will always

occupy a central place in scientific research, as testing hypotheses is

universally regarded as the crux of the scientific method. But

experimental work cannot substitute for the descriptive studies,

opportunistic observations, and detailed accounts of natural history

that lay the foundation for testable questions (Tewksbury et al., 2014;

Betts et al., 2021). Both descriptive and experimental studies are

necessary and complementary components of discovery.

Observations of organisms in their natural environment provide

the raw material that can be refined into hypotheses and tested.

Not investing in such research is the equivalent of a mining company

ignoring the need to find new deposits and just focusing on refining

what they have already discovered—an obviously unsustainable plan.
Next generation natural history

Like most major challenges in science, these issues cannot be

solved by any single approach, but instead must be addressed by
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bringing to bear a series of complementary, interacting solutions.

For one prominent part of the solution, I would point to the

emergence of a number of new technologies that have many field

biologists fundamentally rethinking the nature of natural history

research (Krishtalka and Humphrey, 2000; Peay, 2014; Bakker et al.,

2020; Tosa et al., 2021). Experienced natural historians have always

used whatever useful tools may be at hand to aid in the process of

observing details of nature (binoculars, cameras, notepads,

thermometers, etc.). In recent years, the list of tools and their

complexity has grown, and practitioners of ethology now have a

powerful array of advanced technological devices that can help

them record details of an organism and its environment in ways

that previous generations could only dream of (Couzin and Heins,

2023). Tosa et al. (Tosa et al., 2021) refer to this as “Next Generation

Natural History” (NGNH) and provide a detailed summary of how

such approaches are revolutionizing our understanding of

organisms and nature.

Many NGNH approaches are directly applicable to the

quantification of behavior, and are likely to be on the front lines

of future efforts to understand the details of foraging and

antipredator behaviors (Gomez-Marin et al., 2014). Perhaps one

of the most promising is the increasing use of animal-borne

biologgers to quantify the moment-to-moment details of a

behavior, even when an animal is not under direct observation

(Brown et al., 2013). Accelerometery loggers as small as 2 grams can

store hundreds of values per second, every second, for days at a

time. If a large database of validation observations can be

accumulated, machine learning models can often determine, with

high levels of accuracy, which behavior corresponds to a given

acceleration pattern, thereby allowing researchers to accumulate a

detailed record of naturalistic behaviors across a variety of

individuals and situations (Wang, 2019). This technique could

provide unparalleled insight into predatory behaviors, since one

of the major limitations in quantifying such behaviors in free

ranging animals is that, for many predators, these interactions

occur rarely and unpredictably (Viviant et al., 2009; Hanscom

et al., 2023). Accelerometry is similarly useful for quantifying

rates and types of antipredator behaviors in free ranging animals

(Zenone et al., 2020), an approach that will likely be able to inform

more dynamic and realistic “landscape of fear”models for balancing

risk and reward in natural environments (Palmer et al., 2022).

Accelerometry represents just one part of a biologging revolution;

sensor devices can include gyroscopes, thermometers, heart or

breath rate loggers, depth loggers, and different options for

location sensing, memory, and data retrieval (Jeantet et al., 2020;

Williams et al., 2020; Papastamatiou et al., 2022; Wild et al., 2023).

Another NGNH approach that is likely to transform ethology is

the expanding use of image-based tracking (Dell et al., 2014;

Weinstein, 2018). A number of software programs are available

that allow researchers to use machine learning programs to

automatically identify and track the detailed movements of

hundreds or thousands of individual animals or their component

parts from digitized video recordings of behavior (Crall et al., 2015;

Mathis et al., 2018; Graving et al., 2019; Walter and Couzin, 2021).
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These approaches have been employed to identify individual

animals within large social groups (Ferreira et al., 2020) or

categorize species across millions of images (Steenweg et al., 2017;

Ahumada et al., 2020). As with many NGNH techniques, these tools

do not necessarily do something that was impossible before, but

they make it possible to bring massive datasets to bear on questions

that previously required weeks or years of effort (Kellenberger

et al., 2021).

These examples are not meant to be comprehensive, just

illustrative. Additional advances in animal monitoring, tracking,

and observation are detailed in a number of other review papers

(Peters et al., 2014; Valletta et al., 2017; Farley et al., 2018; Lahoz-

Monfort and Magrath, 2021; Tosa et al., 2021; Tuia et al., 2022;

Couzin and Heins, 2023). The power of big data accumulated via

NGNH represents not just a revitalization of the field of natural

history, but also rebalances the emphasis in scientific research

between quantitative descriptive research and hypothesis testing.

Many NGNH studies are explicitly descriptive, representing not

the test of preconceived hypotheses based on past observation,

but instead the detailed documentation of how animals interact

with their environment. Such studies are vital, as they provide

inspiration and fodder for the formulation and testing of key

hypotheses. NGNH also represents a primary tool in the arsenal

of researchers conducting HIREC studies. Do you suspect that

increasing temperatures may be facilitating the spread of an

invasive predator and driving the extinction of numerous

native species (Hellman et al., 2008)? Accumulating large

datasets via animal-borne biologging on how individuals of

those species interact (i.e., how their feeding and antipredator

behaviors play out under different thermal regimes), could be a

key tool for determining if temperature is associated with

movement or interaction rates, laying the groundwork for

focused experimental tests.

Although it is undoubtedly the case that future research on the

ethology of predator-prey interactions will continue to be difficult to

fund, and that the very subjects we seek to study will become even

more imperiled, our research community can embrace the powerful

techniques stemming from the explosion of computational power

and our increasing ability to manufacture smaller and more

affordable monitoring devices. We should use these developments

to inspire and train young students with a love of the natural world

and a desire to preserve it. In this way, ethological research can

provide some of the most salient solutions to the biodiversity crisis.
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