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Carleton University, Ottawa, ON, Canada
Due to its unforgiving nature, predation pressure exerts strong selection pressure

on the behaviour of prey animals. As a result, prey are forced to balance the

conflicting demands of successfully detecting and avoiding predators and the

need to engage in other fitness-related activities such as foraging, mating and

social behaviour. Here, we provide an overview of the role that individual

predator avoidance decisions plays in constraining behavioural phenotypes

and how past experience with risks shapes current (and future) trade-offs,

physiological and life history investments. Critically, access to reliable risk

assessment information allows prey to respond to spatially and temporally

variable predation risks. Uncertainty of predation risks is expected to limit the

ability of prey to make short- and longer-term adjustments responses to

predation threats, potentially increasing the indirect costs of predation. We

describe a ‘landscape of information’ in which prey rely on publicly available

risk assessment information to reduce the uncertainty of predation risks

associated with variable threats and the potential impact of natural and

anthropogenic environmental factors which may limit information availability.

Despite a long tradition of research into the antipredator trade-offs made by prey

animals, there remain a number of important unanswered questions.

KEYWORDS

predator-prey interactions, behavioural decision making, anthropogenic stressor, risk
assessment cues, ecological uncertainty
Introduction

Predation is a pervasive and unforgiving selection pressure on prey populations. A large

and diverse body of research has explored the impacts of predation on the life history (e.g.

Chivers et al., 1999), morphology (e.g. Brönmark and Pettersson, 1994; Chivers et al., 2008;

Brönmark et al., 2011), physiology (e.g. Cooke et al., 2003) and behaviour (e.g. Lima and

Dill, 1990) of prey on both ecological and evolutionary time scales. Predators can exert
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adverse effects on their prey either directly by killing them or

indirectly by instilling ‘fear’ in them (Zanette et al., 2011; Zanette

and Clinchy, 2019; Allen et al., 2022), which induces behavioural,

physiological and neurobiological costs on individuals attempting

to avoid predation (Zanette and Clinchy, 2019). Of the multitude of

possible responses to the fear of predation, behaviour is by far the

most plastic and offers prey individuals an immediate response to

acute predation threats (Lima and Dill, 1990; Sih et al., 2000).

Antipredator behavioural responses to perceived acute predation

threats (i.e. fear of predation) include increased vigilance, grouping

behaviour, avoidance (through camouflage, reduced activity,

seeking refuge or fleeing, for example), deterrence behaviour and

aggressive defence (e.g. Lima and Dill, 1990; Dugatkin and Godin,

1992; Godin, 1997; Krause and Ruxton, 2002; Ruxton et al., 2004).

The potential fitness benefits to an individual expressing one or

more of these antipredator behaviours is increased survivorship and

reproductive success (Figure 1), but at the potential fitness-related

costs of expended energy and lost behavioural opportunities such as

foraging, mating, parental care and territorial defence (Figure 1).

Vice versa, engaging in any of the latter competing behavioural

activities may increase an individual’s susceptibility to predation

(e.g. Godin and Smith, 1988; Magnhagen, 1991; Jakobsson et al.,

1995; Krause and Godin, 1996). Hence, individual prey are faced

with trade-offs between such benefits and costs when ‘deciding’ on

whether, when and how to respond to a perceived acute threat of

predation (e.g. Lima and Dill, 1990). The optimal or adaptive

decision, the one that maximises the individual prey’s fitness,

depends on a number of factors including the magnitude of the

perceived predation threat, the expected payoff of the antipredator

response adopted, the prey’s vulnerability to predation, its current

condition, its ‘personality’ and constraints imposed by correlated

behaviours (Lima and Dill, 1990; Godin, 1997; Sih and Bell, 2008;

Jones and Godin, 2010).
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Critically, the costs associated with antipredator behavioural

decisions are asymmetric. Failing to respond to an ecologically

relevant predation threat may result in death, whereas responding

to an irrelevant threat result in wasted time and energy expended

and lost opportunities to engage in other fitness-related activities

(Figure 1). For example, prey that engage in antipredator

behaviours in response to predation risk may have fewer

opportunities to forage (e.g. Fraser and Gilliam, 1987; Lima and

Dill, 1990), mate (Lima and Dill, 1990; Magnhagen, 1991; Sih,

1994), or engage in social behaviour (Kim et al., 2011) (Figure 1).

The cumulation of such lost-opportunity costs over time are non-

negligible and may lead to adverse non-consumptive effects (NCE)

of the fear of predation on individual prey, such as reduced food

intake, growth and fecundity, and resulting population-level

impacts (Preisser et al., 2005; Preisser and Bolnick, 2008).

Interestingly, Preisser et al. (2005) estimate that the impacts of

NCEs on prey population dynamics can far exceed the consumptive

effects due to the costs associated with predator-avoidance trade-

offs (see also Zanette and Clinchy, 2019; Allen et al., 2022).

In recent years, the focus of individual behavioural responses to

predation risk has shifted from the aforementioned discrete

behavioural trade-offs to how past experiences with ambient

predation shapes the individual prey’s ‘perception’ of risk. For

example, Lima and Bednekoff, (1999) predation risk allocation

hypothesis predicts that that prey exposed to frequent predation

risks will respond less intensely to future acute predation threats

and forage at higher rates during rare safe periods than those

exposed to infrequent risks (e.g. Ferrari et al., 2009). Likewise, Clark

(1994) proposed the asset protection model which posits that the

behavioural decisions made by prey depend on their past success at

accruing fitness. For example, Reinhardt and Healey (1999) found

that faster growing coho salmon (Oncorhynchus kisutch) fry took

longer to resume foraging following a predator exposure than did
FIGURE 1

Conceptualisation of the functional categories of behaviour (blue boxes) that can interact with each other (bidirectional arrows) and be traded-off
against the benefits associated with antipredator behaviour (yellow box). The accumulation of these trade-offs will impact individual survival and
reproduction (green boxes), ultimately determining an individual’s lifetime fitness (orange box). Such trade-offs are expected to be influenced by (i)
the spatial and temporal variation in predation risk (Landscape of Fear) and (ii) in risk assessment information (Landscape of Information) and its
potential loss due to anthropogenic environmental changes.
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slower growing conspecifics. Similarly, gravid female Trinidadian

guppies (Poecilia reticulata) exhibited stronger antipredator

responses to a standardised predation cue compared to virgin

conspecifics (Katwaroo-Andersen et al., 2016). In both these

cases, individuals with higher ‘accrued fitness’ exhibited more risk

averse tactics than those with lower ‘accrued fitness’. Effectively, an

individual’s past experiences shapes the value of potential future

trade-offs associated with responding to its perception of the

ambient fear of predation.

The concept of the “Landscape of Fear” (LoF) predicts the

impacts of spatial and temporal variation in the risks of predation

on individual fitness, the population dynamics of prey (and

predator), and the resulting community dynamics (e.g. Zanette

et al., 2011; Zanette and Clinchy, 2019; Allen et al., 2022). Recent

models have extended the LoF paradigm to highlight the spatial

patterns of risk (Gaynor et al., 2019). In effect, these models predict

that the presence of predation risks can dramatically alter the

behaviour, physiology and life history of prey, leading to

decreased recruitment and population growth. Because predation

risk varies in space and time, its adverse impacts on prey

populations will also vary over a ‘landscape of fear’. LoF models

generally posit that, as the energetic costs associated with detecting

and avoiding predators increases, prey fecundity and survival

decreases (Zanette and Clinchy, 2019). Moreover, the impacts of

these effects are expected to vary according to the temporal-spatial

variability in risks (Gaynor et al., 2019).

Here, we propose that the spatial and temporal variation in

predation risks in nature, inherent in the Landscape of Fear models

(Gaynor et al., 2019; Zanette and Clinchy, 2019), can be reframed

conceptually as a “Landscape of Information” about the fear of

predation (Figure 2). This reframing emphasises the importance of

understanding the types of ecological information, and their

spatiotemporal variation, that predict the ambient risk of

predation, how individual prey gain and assess such information,

and how they use acquired information to make appropriate

antipredator behavioural decisions. Additionally, we highlight the

multiple interacting effects and complexity associated with

predicting the responses of prey to predation and identify several

critical areas of future study.
Frontiers in Ethology 03
Landscape of information about the
fear of predation
The ability of prey to make context-appropriate behavioural

decisions assumes the availability of reliable and honest indicators

of local predation risks in order to avoid ecologically relevant

threats and ignore ecologically irrelevant information (Brown

et al., 2011; Brown et al., 2013). Individuals can obtain

information about various aspects of their environment either

directly via direct sampling (personal information) or indirectly

by acquiring inadvertent social information from others (Danchin

et al., 2004; Dall et al., 2005). The acquisition of personal

information is considered more costly, but more accurate and

reliable, than cheaper and potentially less reliable social

information (Kendal et al., 2005; Feyten et al., 2021). Prey

animals have a suite of publicly available information cues and

social information cues (Brown et al., 2011; Weissburg et al., 2014)

that can predict their ambient predation risk. However, these cues

involve multiple sensory modalities which may differ in reliability

and detectability (Brown et al., 2011; Weissburg et al., 2014),

potentially giving rise to variability in the quantity and(or) quality

of risk assessment. This variation in information could give rise to a

‘Landscape of Information’ (Figure 2).

Such a ‘Landscape of Information’ can best be represented by

spatiotemporal variation in the individual prey’s level of certainty

versus uncertainty of the local risk of mortality to predation versus

safety (Luttbeg et al., 2020; Crane et al. in review). The concept of

ecological uncertainty of risks is broadly defined as ambiguity

regarding the risk of predation associated with a specific

microhabitat owing to incomplete or unreliable information (Dall

et al., 2005; Munoz and Blumstein, 2012; Feyten and Brown, 2018).

At the same time, prey can also be exposed to uncertainty of

rewards associated with occupying a specific microhabitat (Feyten

et al., 2021; Brusseau et al. in press; Brown et al., 2022). Generally

speaking, as prey are increasingly uncertain about local risks, the

relative costs associated with failing to recognise a threat

disproportionately increase, leading to an overestimation of acute

threats (Johnson et al., 2013). While ‘uncertainty’ is a complex and
FIGURE 2

Conceptualisation of the proposed Landscape of Information concept. Spatially and temporally variable predation risks lead to ecological uncertainty
within local habitats. Prey can reduce the costs of uncertainty by increasing their use of personal and(or) social information about their ambient risk
of predation (risk assessment cues; green box) and respond with appropriate antipredator behaviour (yellow box). However, the availability of this
information is dictated by the interacting effects of natural and anthropogenic factors (blue box) that may limit the quantity and(or) quality of
information, thus increasing ecological uncertainty (see text for details).
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poorly understood concept (Crane et al. in review), it does highlight

the need for prey to acquire additional information regarding risks

and (or) rewards in order to make appropriate adaptive behavioural

decisions. For example, Brusseau et al. (in press) have recently

shown that Trinidadian guppies engage in increased predator

inspection behaviour (i.e. information gathering, Dugatkin and

Godin, 1992; Fishman, 1999) in sites along rivers disturbed by

human recreation relative to undisturbed sites. Certain human

activities (Candolin and Rahman, 2023) likely increase

uncertainty regarding the identity of potential predation risks and

potential rewards (i.e. novel foraging opportunities). This

uncertainty is argued to lead to increased information gathering

among prey.
Factors driving availability of
ecological information

Given the critical importance of the availability of risk

assessment cues, there are at least two general categories of

environmental factors that can influence the behavioural

decision-making process within prey populations. First, variability

in naturally occurring factors, such as microhabitat structural

complexity, current velocity, water depth, and ambient light

might shape the quantity and/or quality of information available

to prey and the resulting perception of predation risk. For example,

young-of-the-year Atlantic salmon defend smaller foraging

territories and exhibit reduced reaction distances towards

standardised predation threats (i.e. reduced perceived predation

risk) in complex versus more homogeneous habitats (Venter et al.,

2008). Likewise, fathead minnows (Pimephales promelas) show

lower levels of baseline predator vigilance in structured

microhabitats than in barren ones (Crane et al., 2020). However,

the effects of habitat complexity may differ. Trinidadian guppies, for

example, exhibit higher levels of perceived predation risk in highly

structured microhabitats (Feyten, 2023), likely due to limitations of

visual risk assessment. Another environmental factor is ambient

light levels, resulting from either diel cycles or shading. Australian

house geckos (Gehyra dubia) show higher activity and foraging

rates on bright (i.e. high moon brightness) nights than on darker

nights (Norberg and Schwarzkopf, 2022). Conversely, brown-

headed cowbirds (Molothus ater) are impaired in their ability to

detect predators in full sunlight compared with shaded patches,

presumably due to increased glare (Fernández-Juricic et al., 2012).

Additionally, prey may be capable of compensating for reduced

information via one sensory modality by increasing their reliance

on other modalities. Juvenile Atlantic salmon (Salmo salar), for

example, exhibit stronger responses to conspecific alarm cues at

night (low visual information) than during daylight (high visual

information; Leduc et al., 2010). Within aquatic ecosystems, water

depth and current velocity can also influence information

availability and resulting behavioural trade-offs. For example,

Hazlett et al. (2009) demonstrated that the ability of crayfish

(Orconectes virilis) to detect and respond to predator odours is

negatively related to current velocity, resulting in reduced foraging

activity and increased time spend immobile. Similarly, juvenile
Frontiers in Ethology 04
chub (Leuciscus cephalus) shift from fast moving riffles to slower

moving stream sections following the presentation of a simulated

avian predator (Allouche and Gaudin, 2003). This shift in habitat

results in reduced foraging opportunities and growth (Allouche and

Gaudin, 2003).

Second, in addition to natural variation in environmental

factors, multiple researchers have examined the impact of

anthropogenic disturbances on the quantity and/or reliability of

ecological information. Presumably, any anthropogenic factor that

alters the availability of information will impair the ability of prey to

make reliable behavioural decisions (Leduc et al., 2013; Candolin,

2019; Candolin and Rahman, 2023), potentially leading to increased

uncertainty. However, these studies have often focussed on

variation within in a single environmental stressor (Hale et al.,

2017; O’Brien et al., 2019). For example, Leduc et al. (2009)

demonstrated that juvenile Atlantic salmon do not respond to

reliable indicators of predation risk under weakly acidic stream

conditions (i.e. impacts of acid rain), leading to increased predation

mortality (Elvidge and Brown, 2014). Similarly, increased water

turbidity limits the ability of fathead minnows to generalise the

learned recognition of novel predators (Chivers et al., 2013). More

important, however, are the likely interacting effects of multiple

environmental stressors on information availability. While any

number of anthropogenic factors (e.g. pollutants, turbidity,

habitat degradation; Candolin and Rahman, 2023) may alter

predation risk assessment information and individual behavioural

decisions, such as antipredator responses, foraging patterns, habitat

choices and (or) mating decisions, relatively few studies have

examined the interacting effects of multiple stressors. Moreover,

anthropogenic stressors may (co) vary independently, making it

increasingly difficult to predict their impacts on behavioural

decisions. While community ecologists have long recognised the

potential for complex interactions among multiple stressors (e.g.

Benedetti-Cecchi, 2003; Benedetti-Cecchi et al., 2006; Koussorpolis

and Wacker, 2015; Norberg and Schwarzkopf, 2022), few studies

have taken such an approach to individual behaviour (e.g. Brodin

et al., 2014).
Discussion

In this brief perspective article, we have proposed that the

“Landscape of Fear” paradigm can be reframed as a “Landscape of

Information” paradigm, emphasising the importance of

understanding the types of ecological information, and their

spatiotemporal variation, that predict the ambient risk of

predation, how individual prey gain and assess such information,

and how they use acquired information to make appropriate

antipredator behavioural decisions. We have additionally

attempted to highlight that behavioural trade-offs are complex

and dependent on a variety of interacting factors. There are a

number of critical research questions and challenges that remain.

First, future studies need to examine the links between

individual predator avoidance trade-offs under a wide range of

conditions (e.g. variable predation risk, different life history stages,

variable information availability), so as to forge empirical links with
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https://doi.org/10.3389/fetho.2023.1238167
https://www.frontiersin.org/journals/ethology
https://www.frontiersin.org


Brown and Godin 10.3389/fetho.2023.1238167
the predictions of population and community models. Many ‘top-

down’ approaches underestimate the importance of behavioural

decision making in prey animals. It is apparent from the Non-

consumptive Effects of Predation (NCE) and Landscape of Fear

models that the behaviour of individual prey has considerable

impact on population viability and community structure.

However, the potential impact of day-to-day variation in the

behavioural decisions of individual animals on higher-order

processes (at the population and community levels) remains

poorly understood.

Models of the NCE assume that prey that are forced to balance

predator avoidance versus foraging (for example) might have less

energy available for other fitness-related activities (e.g. courtship)

(Figure 1). Indeed, individual behavioural decisions likely have

highly complex (and poorly understood) interacting affects

among a suite of functional behaviours. If we aim to scale models

from individual behaviour to long-term fitness (i.e. a bottom-up

approach), much needed empirical data are required.

Second, behavioural decisions are known to be highly plastic

(see above) and, as we have argued here, influenced by variability

in factors such as uncertainty, information availability, and the

form and intensity of predation pressure. Integrating this

variance into models of population and/or community

dynamics is a critical step in fine tuning future models. This is

particularly important in the use of such models to address

practical issues in conservation and management. As described

above, our understanding of how multiple interacting

anthropogenic stressors constrain the ability of prey to make

appropriate behavioural decisions is currently limited, which in

turn hinders our ability to make informed conservation/

management policies.

Finally, long-term behavioural observations on prey have

historically proven logistically difficult. However, new (and more

affordable) technological solutions are becoming increasingly

available to researchers, allowing them to track individual prey

or subpopulations of prey and their predators as they move in

space and over time. For example, visible implant elastomer tags,

radio frequency identification (RFID) and passive integrative

transponder (PIT) technologies are now available for even very

small bodied prey. Biomimetic robots have been employed to

manipulate, for example, behaviour and signals in small-bodied

prey fish (e.g. Heathcote et al., 2018). Radio and GPS collars are

widely used for remotely tracking and quantifying behaviour

patterns, such as foraging and mating, in ungulates (e.g. Body

et al., 2012; 2014). Likewise, inexpensive and dependable camera

traps and data loggers allow researchers to quantify the presence

of predators and a suite of environmental variables over time

(e.g. McCarthy et al., 2018). Such technologies can be employed
Frontiers in Ethology 05
to quantify longer-term impacts of behavioural trade-offs,

in situ.
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