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Annual model and crop species have been the subject of most epigenetic studies
for plants. In contrast to annuals, forest trees persist on natural landscapes and
experience environmental variation within and across seasons, years, and
decades or even centuries. Most forest trees species are undomesticated and
typically grown on variable landscapes with no irrigation or application of
agricultural chemicals. Forest trees must thus rely on their inherent ability to
alter growth and physiology to mitigate the effects of changing abiotic and biotic
stressors. Like other plants, trees have mechanisms encoded in their genomic
DNA sequence that can respond directly to stress events such as drought or heat.
Hypothetically, it would be highly advantageous to join these mechanisms with a
dynamic “memory” of past exposure to stress. It is now well established that
annual model and crop plants can establish epigenetic-based memory of stress
events that support more rapid and robust response to stress in the future. Here,
evidence is discussed for epigenetic regulation and “memory” in two fundamental
biological processes in trees, wood formation and abiotic stress response. Wood
formation is an ideal trait for epigenetic research in trees, as wood formation is
highly responsive to environmental conditions and includes multiple rapid
developmental changes as cells adopt distinct fates within complex tissues.
This is followed by a discussion of research needs that would provide the
foundation for new epigenetic applications for forestry.
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Introduction

A key challenge in forest genetics is to explain the biological basis of adaptive trait
variation that influences the ability of tree species or genotypes to persist and reproduce in
different environments and in response to environmental variation over time. Variation in
the DNA sequence among species and populations within species has generally been
assumed to be responsible for the observed phenotypic differences in developmental,
physiological and adaptive traits. But as discussed below, there is increasing evidence that
DNA sequence is insufficient to explain all of the phenotypic variation for adaptive traits in
forest trees. Epigenetic variation is likely a key component of the complex regulation of
developmental and adaptive traits in trees not explained by DNA sequence variation and is
the focus of this minreview.

Tree species are primarily outcrossing, characterized by highly heterozygous individuals
and populations with high within-population DNA sequence variation (Porth and El-
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Kassaby, 2014). Obvious phenotypic variation can be observed
across populations for adaptive traits, such as phenology traits
measured in common garden experiments (e.g., Zohner and
Renner, 2014). Explaining variation for developmental and
adaptive traits within and among tree populations using genomic
DNA sequence variation has been a primary goal of forest tree
genomics but has seen modest success (Grattapaglia, 2022). The
advent of new sequencing technologies has allowed for
comprehensive assay of DNA sequence variation yet a significant
percentage of observed phenotypic variation remains unexplained in
many tree genomic studies (Grattapaglia, 2022), a so called
“missing” heritability problem (Zuk et al., 2012). A number of
technical issues including inability to include higher order
epistatic interactions, structural variation or rare alleles into
models may explain some of the shortcoming (Matthews and
Turkheimer, 2022), but it also raises the question if additional
biological mechanisms other than DNA sequence are
contributing to phenotypic variation?

Classically, epigenetic variation referred to heritable phenotypic
variation that is not determined by genomic DNA sequence
variation (Berger et al., 2009). Since the identification of
molecular mechanisms underlying epigenetic variation, however,
this definition has broadened to also include epigenetic
phenomenon that influence development or response to the
environment within individuals regardless of heritability
(Webster and Phillips, 2024). At a molecular level, epigenetic
chemical modifications of the genome include DNA methylation,
various modifications of histones, and the action of non-coding
RNAs (Martienssen et al., 2008). DNA methylation plays multiple
roles in plants including regulation of transposable elements and
modifying expression of genes (Martienssen and Colot, 2001).
Acetylation, methylation, ubiquitination and phosphorylation of
specific histone amino acid residues can change chromatin
conformations to promote or repress gene expression in plants
(Zhao et al., 2019). For example, trimethylation of lysine 4 of
histone H3 (H3K4me3) promotes gene expression, while
trimethylation of lysine 27 of histone H3 (H3K27me3) represses
gene expression (Niu et al., 2018). At the RNA level, small RNAs
including microRNAs (miRNAs), heterochromatic small interfering
RNAs, and secondary small interfering RNAs can affect
developmental and stress responses through regulation of post
transcriptional gene silencing (PTGS), DNA methylation, and
transposon activity (Zhan and Meyers, 2023).

An increasing foundation of research points to roles for
epigenetic regulation of developmental and adaptive traits in
model angiosperm annual plants (Chang et al., 2020; Hannan-
Parker et al., 2022). For example, Arabidopsis grown for five
generations under imposed selection showed heritable changes in
phenotypes that were not attributable to changes in DNA sequence
but were associated with significant changes in DNA methylation
(Schmid et al., 2018). A survey of methylomes of over
1,000 Arabidopsis natural accessions found that methylation
contributes to adaptive trait variation in natural populations,
with methylation variation associated with environmental
response genes (Kawakatsu et al., 2016). Specific drought-
responsive genes in Arabidopsis have increased H3K4me3 and
H3K9Ac levels associated with their increased expression during
drought (Kim et al., 2012). Abscisic acid (ABA) is central to plant

drought response, and H3K4me3 modification of the NINE CIS-
EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) gene encoding
a key enzyme in ABA biosynthesis is associated with increased
expression during drought response (Ding et al., 2011).

Hypothetically, epigenetic regulation has the potential for
significant impacts on forest tree adaptive traits beyond what is
seen in annuals. For example, the ability to establish a memory of
past stress could allow individual long-lived trees to mount more
robust responses to future stress within or across growing seasons, or
even across generations. Epigenetic mechanisms provide the
molecular basis of such memory as well as for plasticity within
individual trees (Miryeganeh and Armitage, 2024; Lloyd and Lister,
2022). Across generations, demonstrating transgenerational
epigenetic inheritance is inherently difficult (Heard and
Martienssen, 2014) and convincing examples in trees with long
generation times are thus limited. In one example, grafting
experiments in Norway spruce demonstrated that the same
genotype could produce seedlings with varying phenology traits
(Yakovlev et al., 2012), which reflected differences in day length and
temperature experienced by the maternal environment during post-
meiotic megagametogenesis and seed maturation (Skrøppa et al.,
2007). Similarly, maternal environment was found to influence
resistance to a Fusarium pathogen in offspring (Vivas et al.,
2013). The molecular basis of these presumed epigenetic traits is
not known, however. Nonetheless, it is intriguing to imagine a single
tree that persists on a landscape for decades or even hundreds of
years might produce an array of epigenetically conditioned gametes
across years in response to environmental change.

What follows is a discussion of some of the technical challenges
of measuring epigenetic variation in trees, which is followed by
examples of epigenetic regulation of wood formation and adaptive
traits in trees. At the end of this review, important research questions
around epigenetics in forest trees and how they affect forest
management and conservation are presented.

Measuring epigenetic variation in trees

Forest trees are experimentally challenging for epigenetic studies
when compared to annual model or crop plants. Most forest trees
have an extended juvenile period before becoming reproductively
mature, limiting cross generational studies. Additionally most tree
species are outcrossing and highly heterozygous, making it difficult
to distinguish the relative effects of segregating DNA sequence
variation versus epigenetic variation within pedigrees or
populations. One approach for non-transgenerational studies has
been to take advantage of poplar species that can be clonally
propagated and for which genomic sequence is available. For
example, clonally propagated poplar hybrid genotypes were
exposed to contrasting environments and subsequently grown in
a common garden experiment where they were assigned to either
well-watered or drought treatments (Raj et al., 2011). Differences in
transcript abundance and DNAmethylation were noted in response
to drought for genetically identical clones sourced from contrasting
environments, suggesting an epigenetic memory of prior
environmental conditions (Raj et al., 2011).

Trees are phylogenetically diverse and include both
gymnosperm and angiosperm species separated by 300M years of
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evolution (Groover, 2005). There are striking differences between
angiosperm and gymnosperm genomes that could affect epigenetic
mechanisms. Conifer genomes are characterized by exceptional size,
genes with large introns, unique evolutionary history of repeat
sequences, and a lack of recent genome duplications events (Wan
et al., 2022). Angiosperm tree genomes are highly diverse and reflect
past whole genome duplication and hybridization events, have
frequent structural variation, and have more compact gene
structures (Benton et al., 2022). A limited number of forest trees
have complete genome sequences supporting approaches like
Chromatin Immunoprecipitation sequencing (ChIP-seq) capable
of surveying chromatin marks, most notably poplar species (Liu
et al., 2015). Differences between and within gymnosperm and
angiosperm lineages for variation in epigenetic variation and
responses is a largely unexplored area of research. Additionally,
there is a dearth of information regarding the dynamics of epigenetic
variation across difference timescales in trees, including how quickly
new epigenetic states are established, how long they persist, and
what environmental cues effectively reset or change epigenetic
states. Similarly, it remains uncertain if different types of
epigenetic marks might be more important for specific types of
environmental variation, or if different marks might be associated
with different timescales or more quickly erased marks. However, as
of 2020, a total of 83 publications addressed some aspect of
epigenetic regulation in trees, reflecting a young but growing
body of research (Amaral et al., 2020).

Next is a discussion of two examples of epigenetic regulation of
traits that are central to the understanding of forest tree biology and
evolution, that also have relevance to the management and
conservation of trees in response to environmental variation and
climate change. These brief examples are not intended to be
exhaustive reviews.

Examples of epigenetic regulation of
wood formation

Wood formation in trees is developmentally plastic and highly
responsive to environmental conditions. For example, angiosperm trees
make more numerous and small diameter vessels to resist embolism
under heat and drought conditions (Rodriguez-Zaccaro and Groover,
2019). Additionally, wood formation is developmentally dynamic, with
maintenance of dividing stem cells within the cambium balanced with
the coordinated differentiation of daughter cells into the different cell
types of wood. Multiple lines of evidence point to a significant role for
epigenetic regulation of both developmental dynamics and integration
of environmental cues during wood formation. For example, the
expression of genes encoding WOX-like transcription factors that
regulate cell division in the vascular cambium (Kucukoglu et al.,
2017) is modulated by the zinc finger protein PtrVCS2 through
hypoacetylation of H3K9, H3K14 and H3K27 marks in the
PtrWOX4 promoter (Dai et al., 2023). At a genomic scale, Chip-seq
profiling of H3K4me3 and H3k27me3 marks of wood forming tissues
in eucalyptus found a correlation between these marks and genes
involved in lignification, and could be used to predict ~50% of
variation in transcript abundance (Hussey et al., 2017). In contrast,
in genome wide surveys in poplar DNAmethylation was found to have
only marginal effects on the expression of genes and pathways

associated with wood formation (Zhang et al., 2020). However,
DNA methylation profiling data from a population of balsam poplar
was used to predict significant percentages of phenotypic variation for
wood density, soluble lignin and cell wall carbohydrate (Champigny
et al., 2020). From these studies it might be speculated that, histone-
related marks can have direct and dramatic effects on expression of
individual genes and phenotypes, while DNA methylation may
contribute to phenotypic variation that is only revealed through
more global quantitative analyses.

Roles for non-coding RNAs in wood formation are emerging from
studies cataloging small RNA expression using RNA sequencing. For
example, more than 2,000miRNAs were expressed in different stages of
wood development in poplar (Wang et al., 2021). Regulatory roles for
miRNAs in wood formation were illustrated by dramatic effects on
wood patterning and cambium function in transgenic poplar expressing
a miRNA-resistant form of the Class III HD ZIP transcription factor,
popREVOLUTA (Robischon et al., 2011).

Examples of epigenetic regulation of
drought stress response in trees

The stress hormone ABA is central to drought response in
plants, including in trees (Yu et al., 2019). Histone modifications
have been shown to play a role in ABA-mediated gene expression
and abiotic stress response phenotypes in annual plants (Shi et al.,
2024). In poplar, specific NAC transcription factor encoding genes
(PtrNAC006, PtrNAC007, and PtrNAC120) are induced by drought
and have ABA-response element (ABRE) motifs in their promoters
(Li et al., 2019). Genome wide profiling correlated H3K9ac marks in
the promoters of these NACS with their expression, which is
modified by the ABRE-binding protein PtfAREB1 that recruits
histone acetyltransferase to the NAC promoters (Li et al., 2019).
Further, downregulation of these NACs resulted in drought
hypersensitive phenotypes (Li et al., 2019).

The role of DNA methylation during drought stress response
was evaluated in poplar through RNA interference (RNAi)
downregulation of DECREASED IN DNA METHYLATION 1
(DDM1) which encodes a highly conserved chromatin
remodeling ATPase required for DNA and histone methylation
(Lee et al., 2023; Vongs et al., 1993). Downregulation of poplar
DDM1 resulted in trees that were modestly more resistant to
drought induced reduction in height growth and to air embolism
of xylem (Sow et al., 2021). The DDM1 downregulated trees also
showed changes in methylation patterns, gene expression, and
hormone levels (Sow et al., 2021), although specific mechanisms
connecting methylation changes to phenotypes remain uncertain.

Research needs and applications
for forestry

Epigenetics has the potential for multiple practical applications
in forest management (Amaral et al., 2020). If epigenetic variation
could be selected or manipulated in parallel with traditional
breeding, this could ultimately increase the gains realized for
target traits within a breeding cycle. Research is needed to
determine the causal relationships, heritability and magnitude of
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effect of specific chromatin marks on phenotypic traits to fully
evaluate the potential of integrating epigenetic approaches into tree
breeding. Additionally, the most effective methods of manipulating
epigenetic variation in trees must still be established. However,
simply understanding epigenetic effects on breeding efforts could
be useful even in the absence of understanding the underlying
mechanisms. For example, previous research found significant
differences in performance of Norway spruce seed grown from
clonally propagated parent trees at different seed orchard
locations, showing the potential for epigenetic effects on
reforestation success (Skrøppa et al., 2007). This raises the
question of whether collecting seed from orchards or wild trees
in less stressful environments could result in seedlings that are
epigenetically maladapted to more stressful outplanting
environments during reforestation.

Nursery production of tree seedlings presents the opportunity to
create useful epigenetic variation through stress priming. In general,
outplanting is a critical stage of reforestation, as seedlings have small
root systems and limited water/nutrient reserves to withstand heat
and drought. Stress priming uses controlled exposure to stress or to
chemical or hormonal surrogates and can result in more rapid and
robust response to future stress (Hilker and Schmülling, 2019).
While variations of stress priming have previously been applied to
tree nursery seedlings (e.g., “drought hardening”), in general they
have had limited effectiveness (Puértolas et al., 2024) and were not
developed in conjunction with research capable of evaluating
biological mechanisms. New genomics-based research could
examine the mechanistic response to different chemical,
hormonal or cultural stress priming treatments on relevant
epigenetic and physiological mechanisms to optimize treatments.
Effective stress priming could be applied to seedlings in nursery
settings or even through seed priming to increase resilience to
outplanting stressors.

Non-coding RNAs are attractive targets for new applications for
forestry. For example, RNA-based methods could be applied to one
of the major threats to forest, invasive pathogens and insects (e.g.,
Lovett et al., 2016). Spray Induced Gene Silencing (SIGS) uses
exogenously applied double stranded RNAs (dsRNAs) designed
to trigger RNAi-based silencing of essential genes in pathogen or
insect pests. This approach develops non-GMO biopesticides that
are highly specific to the target pest and are non-toxic to the
environment. Recent examples of effective SIGS in trees include
myrtle rust (Degnan et al., 2023), pine pith canker (Bocos-Asenjo
et al., 2025), and emerald ash borer (Rodrigues et al., 2018). SIGS
could also potentially be used to downregulate genes in trees, for
example, to more rapidly evaluate candidate genes for resistance or
susceptibility to invasive pests. Beneficial alleles of candidate genes
that are determined effective could then be selected through
molecular-guided breeding. Genes with negative effects on
phenotypes could also be downregulated through GMO-based
RNAi, or through GMO-free CRISPR based gene editing (e.g.,
Yang et al., 2023).

Epigenetics likely play roles in other fundamental aspects of tree
biology that affect developmental and adaptive traits. Hybridization and
polyploidy are important features of many angiosperm tree species, and
are known to include epigenetically-mediated interactions between
parental genomes and complex changes in gene expression in model
annuals (reviewed in Duarte-Aké et al., 2023). Gene copy number

variation and structural variation are frequent in natural poplar
populations (Pinosio et al., 2016) and have been shown to affect
various quantitative traits in experimental populations (Bastiaanse
et al., 2019). Such variation is correlated with epigenetic marks
affecting gene expression and adaptive divergence (Shi et al., 2024).
Similarly, epigenetic regulation of transposable elements can affect both
mobilization and expression of nearby genes (Weil and
Martienssen, 2008).

Moving forward, experiments capable of quantifying themagnitude
of effects of epigenetic variation on developmental and adaptive traits
need to be conducted. Importantly, such studies must move beyond
simply correlating epigenetic molecular marks with traits and employ
experimental designs capable of partitioning DNA sequence variance
and epigenetic variance, to measure the magnitude of effect of
epigenetic variation on phenotypic traits. As previously mentioned,
tree species that can be clonally propagated may prove useful for such
studies. A largely unexplored but critical area for trees is to determine
how different levels or length of exposure to stress result in
establishment of new epigenetic states, and how long these states
last or are reset for different traits. Experiments focused on the
dynamics of epigenetic programming could be overlaid with surveys
of different epigenetic marks to determine which marks are the most
important for different traits or associated with different dynamics or
timescales. Additionally, variation among tree species for basic
epigenetic processes and dynamics should be explored. Whether
there might be fundamental differences between angiosperm and
gymnosperm trees in epigenetic processes is largely unknown. And
whether there might be significant differences among trees with
different lifestyles is unknown. For example, might epigenetic states
be more dynamic in short-lived pioneer species versus longer lived
species? Finally, epigenetics could be a major factor determining how
trees respond to increasing variation in weather extremes associated
with climate change. Understanding the epigenetic regulation of tree
developmental and adaptive traits might thus provide useful new
insights into expectations and management tools for mitigating
effects of climate change on forests.
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