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The development of multicellular organisms occurs through a series of cell
state transitions controlled by gene regulatory networks. Central to these
networks are transcription factors (TFs) which bind enhancers and activate the
expression of other genes, some of which are also TFs. Gene regulatory
networks (GRN) connect TFs and enhancers in a nonlinear circuit capable
of producing complex behavior such as bifurcations between stable cell
states. Our dynamic network modelling of the Embryonic Stem Cell (ESC)
to Definitive Endoderm (DE) transition requires an as yet unknown negative
feedback mechanism for stability. Here, we show that cell state specific
microRNAs (miRNAs) can provide this negative feedback by inactivating
other cell lineage determining TFs (ESC or DE) during the transition. Our
model provides a mechanism to maintain stable cell states without requiring a
large set of cell-type-specific repressive TFs, of which there are fewer known
examples than activators. In support of this model, we use computational
models and analyze gene and miRNA expression and chromatin accessibility
data from human cell lines to detect enhancers activating the miRNAs
consistent with our network model. Our analysis highlights the interplay
between TFs and miRNAs during ESC to DE transition and proposes a
novel model for gene regulation.
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Introduction

Cell state transitions and their proper regulation are central to the development of
multicellular organisms. These transitions are controlled by gene regulatory networks
which exhibit complex behavior in response to developmental and environmental
perturbations via the nonlinear interactions between transcription factor (TF) binding
at enhancers that activate other TF genes. We refer to lineage-specific TFs as core TFs, and
their transcription factor binding sites (TFBS) can quantitatively predict the active
enhancers (accessible peaks) in that cell type. Differentiated cell types are stable states
of these gene regulatory networks (Davidson, 2010; Beer et al., 2020). In addition to being
important for understanding congenital developmental disorders, gene regulatory networks
are disrupted in cancer (Xing et al., 2020; Xu et al., 2023; Sheng et al., 2021; Ho et al., 2023;
Razavi-Mohseni et al., 2024), and quantitative models may aid the identification of effective
therapeutic targets.
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We have recently developed quantitative dynamic gene
regulatory network (GRN) models (Luo et al., 2023) of this cell
state transition process, which reproduce many intriguing
experimental observations in the embryonic stem cell (ESC) to
definitive endoderm (DE) transition (Luo et al., 2023). In these
experiments, the differentiation from ESC to DE is induced while
perturbing enhancers with CRISPRi. Perturbation of single
enhancers flanking core DE TF genes caused a significant
decrease in expression of the core DE TF genes, but the
transcriptional response was transient, and eventually fully
recovered to unperturbed levels, in spite of the fact that ATAC-
seq verified that the CRISPRi targeted enhancers remained
inaccessible (Luo et al., 2023). This dynamic effect is explained in
a nonlinear model by autoregulation of the cell-specific TFs (of

which there are many, perhaps 5-10 per cell type) and redundant
enhancers (of which there are also typically 5-10 enhancers per core
TF gene). If only one enhancer is perturbed, the other enhancers are
usually sufficient to activate the core TFs. In contrast, if the promoter
is perturbed, the gene remains inactive. An additional component of
this modeling is that all enhancers within a CTCF loop, or
topologically associating domain (TAD), can activate the target
gene, while those outside a CTCF loop have little or no effect
(Luo et al., 2023). This observation greatly simplifies the complex
problem of enhancer-promoter interactions (Xi and Beer, 2018;
Gschwind et al., 2023; Yao et al., 2024) needed for modeling of gene
regulatory networks, as CTCF binding and its action as anchors to
cohesin extruded loops are, to a large degree, predictable with simple
models (Xi and Beer, 2021) and are largely independent of cell type.

FIGURE 1
GRNmodels of cell-state transitions occur via activation of cell-specific TFs, but also require repressivemechanisms to inactivate TFs of the previous
cell-state. (A) Autoregulatory GRN cell state transitions require an unknown negative feedbackmechanism of cell type 1’s TFs on cell type 2’s TFs, and vice
versa. (B)miRNAs activated in one cell type can provide this negative feedbackmechanism by targeting the 3′ UTRs and translationally repressing the TFs
of the other cell type; Gene regulatory network (GRN), microRNA (miRNA), embryonic stem cell (ESC), definitive endoderm (DE).
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However, in this model (Luo et al., 2023) we only focused on the
activation of core DE TF genes, and not the concomitant
inactivation of the core ESC TF genes. In our earlier modeling
(Li et al., 2019; Beer et al., 2020), we were able to model stable
bifurcations between cell states by including negative feedback
between core DE TFs (GATA6, SOX17, EOMES, MIXL1) and
core ESC TFs (POU5F1(OCT4), SOX2, NANOG), as shown in
Figure 1A (TF expression shown in Supplementary Figure S1).
However, this mechanism requires a set of repressive TFs, or a
repressive configuration of otherwise activating TFs, specific to each
individual cell type, which may be difficult to satisfy given the
relatively few known repressive TFs compared to activators. Our
large-scale machine learning analysis of chromatin accessibility in a
broad range of cell types and tissues in the ENCODE project
identifies TFBS for some known repressive TFs, but we find that
the majority of cell-specific TFBS signals we learn are activating. To
be clear, by this we mean that the predictive cell-specific sequence
features (TFBS) are dominated by those that have a positive model
weight, increase the accessibility of peaks, and are recognized as
TFBS active in the cell type. Yet it is experimentally clear that
inducing the DE state somehow inactivates the ESC TFs. We do not
know the direct consequences of having both ESC and DE TFs active
at the same time, but it likely disrupts the proper expression of
downstream genes required for cellular viability and function.
Similarly, prior to the induction of DE, without a repressive
effect of ESC TFs on DE TFs, autoregulation of DE TFs could
inappropriately activate in response to signaling fluctuations or
noise. Thus, our modeling implies that stable and precise
development of all cell types (not only ESC and DE) requires
some negative feedback acting on core TFs of cell types
immediately upstream and downstream in the lineage.

While many TF genes regulate gene expression through
activation, other classes of genes, such as microRNAs (miRNAs),
affect gene regulation largely through direct translational repression
of their targets. miRNAs are ~22 nucleotide-long non-coding RNAs
which, through their seed regions (~7 nucleotides), bind to the 3′
untranslated region (3′ UTR) of their target mRNA and reduce the
rate of translation (Lee et al., 1993; Bartel, 2004; Lewis et al., 2005).
miRNAs play important roles in various biological processes such as
apoptosis, cancer progression and embryonic differentiation (Chang
et al., 2007; Hayes et al., 2014; Tay et al., 2008).

In this paper, we will present analysis in support of the
hypothesis that miRNAs can act as a required negative feedback
mechanism to prevent the misexpression of TFs whose activation is
associated with immediate precursor and/or downstream cell types
in the lineage. The pervasive autoregulation of core TFs makes
activation of neighboring cell types susceptible to signaling noise
and fluctuations which could disrupt normal development. We will
show that negative feedback is required to repress precursor and
downstream cell type TFs and provide stability to cell fates. As
shown schematically in Figure 1B, this could be achieved if DE TFs
transcriptionally activate miRNAs which translationally repress ESC
TFs, and if ESC TFs transcriptionally activate miRNAs which
translationally repress DE TFs. Earlier work has shown that
miRNAs can produce bifurcated cell-state transitions, but did not
directly model core TF or miRNA enhancer activation (Zhao et al.,
2019; Lai et al., 2016). DICER1 is required for human ESC renewal
(Teijeiro et al., 2018), consistent with the possibility that lack of

miRNA repression induces inappropriate expression of DE or other
germ layer TFs and leads to slow cell death over time. We will
present machine learning analysis of functional epigenomic datasets
in the early ESC to DE transition in support of miRNAs potentially
acting as the required negative feedback mechanism through
enhancer-driven differential miRNA activation.

Results

Machine learning detects many activating
TFs and few repressive TFs

We used a machine learning approach, gapped-kmer SVM
(gkm-SVM) (Ghandi et al., 2014a; Beer et al., 2020; Lee et al.,
2015) to identify TFBS driving variations in chromatin accessibility
during cell state transitions.We chose gkm-SVM for its combination
of predictive accuracy and interpretability (Ghandi et al., 2014a; Beer
et al., 2020; Lee et al., 2015; Shigaki et al., 2019; Beer, 2017; Yan et al.,
2021; Kreimer et al., 2017; Gate et al., 2018; Mo et al., 2016; Jain et al.,
2024), and because of its advantages relative to deep neural networks
(DNNs) when training on smaller numbers of differentially active
peaks during a transition between related cell types (~2000 peaks).
However, we have shown that gkm-SVM and DNNs detect similar
features when DNNs produce a robust model (Shigaki, 2024). We
trained a gkm-SVMmodel on the top 10,000 distal ATAC-seq peaks
against random negative genomic sequences, following our standard
pipeline (Beer et al., 2020), for ESC and DE (after 2 days of
differentiation, DE-D2). Each gkm-SVM model summarizes the
TFBS required to classify the ATAC-seq peaks in a vector of gapped
kmer weights which can predict the accessibility of the sequences.
These weight vectors have a tail of large positive weight kmers which
map to activating TFs expressed or active in the cell type, and amuch
weaker tail of negative weight or repressive TFs, as shown in
Figure 2A for ESC and DE. In Figure 2A, we also show the
average of all weight vectors trained from every ENCODE
DNase-seq dataset (1270 cell/tissues), and again find an
imbalance between activating and repressive TFBS. Within the
repressive tail of negative weight kmers learned in the full
ENCODE set of tissues, we do learn kmers mapping to known
repressive binding sites, most commonly SNAI1/2, TWIST, and
ZEB1/2 (5′-CACCT-3′motif) which are repressors known to play a
key role in EMT and cancer (Craene and Berx, 2013; Vandewalle
et al., 2008); GLI3, GLIS2, and ZBTB7A (5′-GACCCC-3′ motif)
known to have a repressive role in Hedgehog signaling (Lex et al.,
2022; 2020) and fetal hemoglobin switching (Liu et al., 2021); and
nuclear hormone receptor monomer and dimer elements (5′-
AGGTCA-3′) bound by large families of co-repressors (Perissi
et al., 2010). We also learn non-ZEB-like E-box motifs (5′-
CAGNTG-3′) which are usually activating, but repressive in
heart and fibroblasts, where they could be bound by E-box
binding helix-loop-helix TFs (e.g., E47, E2A, also known as
TCF3) and targeted by repressive ID factors (Perk et al., 2005).
Although we detect several well documented repressive TFBS, in all
of our ENCODE models the negative weight tail of repressive TFBS
is only slightly enriched above the expected null normal distribution,
while the positive weight tail is dramatically enriched in all cell/
tissues and contains hundreds of activating cell-specific TFs (5-
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10 per cell/tissue). In addition, we find the repressive TFBS in
broader sets of cell types and tissues than the activators, so while
they are clearly playing an important repressive role, there may not
be cell-specific repressors unique to each cell type. For the specific
case of the ESC to DE cell-state transition, we trainedmodels on ESC
and DE ATAC-seq peaks, and extracted motifs from each weight
distribution (Methods). We find motifs for the expected regulators
OCT4-SOX2-NANOG in ESC and GATA in DE (Figure 2B), but we
found no or very weak negative weight motifs. Consistent with the
results from our machine learning models, a systematic study of TF
binding in HepG2 cells found that 34 out of 35 TFs with strongly
reproducible effects on expression were activating, while only REST
was repressive (fraction significant >0.8, |median effect estimate|
>0.5) (Moyers et al., 2023). The miRNA repression analyzed in this
paper is an alternative repressive mechanism.

We next trained a model on the most differentially active peaks
in ESC vs. DE (n = 3000 in each set). Now OCT4-SOX2-NANOG is
learned as a positive signal, and GATA, EOMES, SMAD, andMIXL1
(Crx homeodomain motif) are learned as negative signals. This
training design (ESC peaks vs. DE peaks) more sensitively detects
the motifs required to explain all the accessibility changes induced
during the cell-state transition from ESC to DE. Again, the known
activating TFBS signals OCT4-SOX2-NANOG and GATA, EOMES,
SMAD, and MIXL1 are learned (the same motifs learned when
trained against negative genomic regions are learned as contributing
positively to that cell type’s differentially active peaks). If repressive
TFs were contributing broadly to changes in ESC and DE chromatin
accessibility, we would expect to see them. In some cases, we do learn
an EBOX motif (5′-CANNTG-3′, which as discussed above can be
repressive in some cell types) as contributing to ESC specific peaks,

FIGURE 2
Sequence features identified by machine learning models can explain chromatin accessibility profiles during cell-state transitions with many
activating TFBS, and very few repressive TFBS. (A) Machine learning models detect a strong tail of activating positive weight kmers mapping to TFBS in
ESC, DE, and in all ENCODE cell/tissues, with only a few repressive TFBS detected (little deviation from expected null normal distribution on the negative
tail). (B) gkm-SVM models detect expected regulators OCT4-SOX2-NANOG in ESC, and GATA in DE and only weak negative weight signals. (C)
When trained on differentially active peaks in ESC vs. DE-D2, again only the activating signals are learned, with (D) OCT4-SOX2-NANOG with positive
weight and GATA and EOMES with negative weight; DE day 2 (DE-D2), 10k randomly generated GC-matched genomic sequences (neg); LASSO
regression weight on the gkm-SVM weight space is denoted by “W.” “Z” is the Z-score of the motif in gkm-SVM weight distribution. “I” is the relative error
increase after deletion of the particular motif from the motif list explaining the weight vector.
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FIGURE 3
AGRNmodel withmiRNAs activated by enhancers in one cell type, which target TFs of the other cell type, can produce stable cell-state bifurcations.
(A) Two-state autoregulatory GRN model with miRNA negative feedback. (B) With weak negative feedback (d = 0.1), cell type 1’s TFs remain on after a
stimulus, δ, activates cell type 2’s TFs. With modest negative feedback (d = 1), cell type 1’s TFs are repressed as cell type 2’s TFs are activated. (C) Phase
plane analysis shows a stable fixed point with both cell types’ TFs activated at d = 0.1 (ψ1 ,ψ2) � (2.3,2.3), which becomes unstable with miRNA
repression (d = 1).
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but this is most likely bound by MYC, which is strongly expressed in
ESC but is downregulated in DE. This analysis does not preclude the
possibility that DE TFs are activating a repressive TF that is only
binding at a few core ESC TF enhancers (those flanking POU5F1
(OCT4), SOX2, and NANOG), but if this were a dominant
mechanism, we would also expect to see the repressive TF having
an effect at other peaks which have weak binding sites for the TF,
and thus should appear in the weight vector. In conclusion, we see
little evidence for a strong repressive TF expressed in DE which
shuts down the ESC core TF enhancers, and little evidence for a
strong repressive TF expressed in ESC which keeps the DE TFs
repressed. The PRC2 complex may play this repressive role by being
recruited to specific promoters, but how the complex achieves cell-
specificity is unclear (Youmans et al., 2021).

Dynamic gene regulatory network modeling

The gene regulatory network model (Luo et al., 2023) we
developed to understand the dynamic effect of CRISPRi enhancer
perturbation is a two-state transcriptional model with a large enhancer
activated transcription rate, e1, and a low basal transcription rate, e0
(see Figure 3A for GRNmodel variables). When we learn the core TFs
in any cell type with gkm-SVM, we also find binding sites for multiple
core TFs in each core TF enhancer. For simplicity, we model this
cooperative autoregulatory activity by assuming that all core TFs are
activated together, and we call this activation ψ1(t) for cell type 1 and
ψ2(t) for cell type 2. ψ(t) describes how the concentration of core TFs
for each cell type vary as a function of time (Methods). Each cell type’s
enhancers are active proportional to cψ3

b+cψ3 and inactive proportional to
b

b+cψ3. We will assume that miRNAs are similarly transcriptionally
activated by enhancers, with the same rates, and repress the other cell
type’s core TF activity with an additional rate d. Relaxing the
assumption that core TFs and miRNAs are transcribed at the same
rates e1 and e0 does not qualitatively change our findings. The
translational repression rate, d, includes miRNA processing and
nuclear transport. Together this yields two coupled nonlinear
differential equations for ψ1 and ψ2 as shown in Figure 3A. We
have also added a stimulus, δ(t), which acts at a subset of enhancers to
induce the transition from cell type 1 to 2 by activating enhancers of
cell type 2 through a mechanism independent of ψ2. Further details of
the model are provided in Methods.

In the limit d � 0, these two equations are completely uncoupled,
and each has a stable OFF state at ψ � e0/r and a stable ON state at
ψ � e1/r. When initial conditions are near the OFF state, a stimulus is
required to transition into the ON state, but for d � 0, and even for
small d, it is possible to activate ψ1 and ψ2 at the same time. As
discussed in the introduction, this likely causes inappropriate
expression of many downstream genes and interferes with normal
cell function and viability. For small d � 0.1, with a stimulus δ0 � 0.3
(see Methods) sufficient to induce the activation of cell type 2, ψ2

becomes activated (Figure 3B, left), but cell type 1 remains active. In
contrast, for larger miRNA repression of cell type 1’s TFs d � 1.0, at
the same stimulus (δ0 � 0.3), when ψ2 becomes activated, the
activation of miRNAs repressing ψ1 TFs are sufficient to drive ψ1

fully to the OFF state (Figure 3B, right).
Further understanding of this behavior is provided by phase

plane analysis in Figure 3C. For d � 0.1, there is a stable fixed

point at (ψ1,ψ2) � (2.3,2.3) (Figure 3C, left), showing that a
stable solution exists with both ESC and DE TFs activated.
With sufficiently strong negative feedback, this stable fixed
point disappears (d> 0.4), and the only three stable fixed
points are with ψ1 in the ON state and ψ2 in the OFF state
(ψ1,ψ2) � (3,0), ψ1 in the OFF state and ψ2 in the ON state
(ψ1,ψ2) � (0,3), and both ψ1 and ψ2 in the OFF state
(ψ1,ψ2) � (0,0) as shown in Figure 3C (right), for d � 1. This
situation is more similar to what is seen experimentally in the ESC
to DE transition, where activation of core DE TFs genes (GATA6,
MIXL1, EOMES, SOX17) induces the inactivation of the core ESC
TF genes (POU5F1, SOX2, and NANOG).

Cell-specific expression of miRNAs

Next, we analyze miRNA expression data to detect miRNAs
that are differentially expressed in ESC and DE and might be
repressing TFs in the other cell type. PCA of miRNA expression
across 177 ENCODE samples (Reese et al., 2023) shows some
degree of clustering and separation between samples originating
from the three germ layers (endoderm, mesoderm and ectoderm)
(Figure 4A; Supplementary Figure S2, Methods). The three human
embryonic stem cell samples (hESC) are close to each other in the
PCA space, and have an average expression correlation of
0.95 compared to average expression correlation of 0.77 for all
177 pairwise comparisons.

We performed a differential expression analysis for miRNAs in DE
compared to the ESC cell line and found 59 miRNAs overexpressed in
DE state and 100 miRNAs with higher expression in ESC (Figures 4B,
C). Some miRNAs upregulated in either ESC or DE are co-expressed
across other tissues and cluster together (Figure 4B), providing
evidence that miRNA expression differences are informative and
vary across differentiation states and tissues.

Differential miRNA expression is driven by
differential chromatin accessibility and TF
binding at putative enhancers

ESC and DE ATAC-seq along with H3K27ac (Li et al., 2019; Luo
et al., 2023) shows that peaks flanking differentially expressed
miRNAs are consistently more active in the tissue where the
flanking miRNAs are overexpressed (Figure 4D, Methods). Core
DE and core ESC TFs bind preferentially to the most differentially
accessible peaks between DE and ESC that are near a differentially
expressed miRNA (Figure 4E). GATA6, EOMES and SOX17 have a
significantly higher binding to ATAC peaks flanking miRNAs
upregulated in DE (named “DE-MIR-flanking” peaks), whereas
MYC, POU5F1 and NANOG have a higher ChIP-seq signal at
differentially accessible peaks in ESC flanking ESC miRNAs
(“ESC-MIR-flanking” peaks) (t-test p < 0.01, Figure 4E). In
addition, GATA and POU5F1 DNA-binding motif sequences have
a significantly higher enrichment in differentially accessible DE-MIR-
flanking peaks and ESC-MIR-flanking peaks, respectively (t-test p <
0.05, Supplementary Figure S3, Methods). Taken together, there are
distinct patterns of accessibility and TF binding at peaks near
differentially expressed miRNAs in ESC and DE which suggest
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that they are functioning as enhancers driving the differential
expression of these miRNAs in ESC and DE, consistent with our
modeling in Figure 3.

Differentially expressed miRNAs are
predicted to target 3′UTRs of core DE and
ESC TFs

Our dynamic network modeling (Figures 1, 3) highlights the
possibility of miRNAs repressing core ESC and DE TFs during
embryonic differentiation. We used TargetScan and mirDIP
(McGeary et al., 2019; Tokar et al., 2018) to find the set of
candidate miRNAs targeting 3′UTRs of core TFs (Figure 5A,
Methods) and discovered a subset of miRNAs predicted to target
MYC, SOX2, POU5F1, EOMES and GATA6 (Figure 5B). MIR92B is
expressed at a higher level in ESC and is confidently predicted to
target EOMES and GATA6 (Figure 5C). MIR145 is upregulated in
DE and consistent with the target prediction, MIR145 was shown to

repress pluripotency by targeting ESC TFs POU5F1, SOX2 and
KLF4 (Xu et al., 2009). MIR892A is upregulated in DE while it has
low expression in the ESC state and is predicted to target POU5F1.
Another core ESC TF is MYC predicted to be targeted by
MIRLET7D (Supplementary Figure S4). In addition, our analysis
of differentially expressed miRNAs identified a potential
combinatorial regulation of SOX2 by multiple DE miRNAs such
as MIR145, MIR369 and MIRLET7F1 (Figure 5D). This potential
combinatorial repression is consistent with SOX2 being the core
ESC TF having the highest and the fastest downregulation following
ESC-DE transition through DE day 3 (Supplementary Figure S1).

Chromatin accessibility variations around
miRNAs targeting ESC and DE TFs

We identified differentially expressed miRNAs putatively
targeting DE or ESC TFs and found differentially active enhancer
peaks consistent with their cell-specific expression. MIR92B is

FIGURE 4
In the transition from ESC to DE, there are multiple miRNAs expressed in a cell-specific manner, flanked by peaks of cell-specific chromatin
accessibility consistent with enhancer activity driving the targetmiRNA expression. (A) PCA ofmiRNA expression in tissues and cell lines identifies clusters
of samples. (B) Correlation heatmap of 835 miRNAs with detectable expression in multiple samples (Methods). Differentially expressed miRNAs in DE
compared to ESC have some similar patterns of expression in ENCODE samples. (C) Number of upregulated miRNAs in DE compared to ESC. (D)
There are differentially active ATAC peaks flanking differentially expressed miRNAs with higher activity in the tissue where the flanking miRNA expression
is upregulated. “DE-MIR-flanking” peaks are ATAC peaks having a miRNA upregulated in DE within 100 kb of them. “ESC-MIR-flanking” peaks are defined
similarly. (E)DE and ESC TFs have higher binding to differentially accessible DE-MIR-flanking and ESC-MIR-flanking peaks, respectively (t-test, *p < 0.01).
MYC, POU5F, and NANOG ChIP-seq experiments were performed in ESC (H1), while others were done in DE cells. hESC: human embryonic stem cell.
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predicted to target DE TFs and has a differentially active candidate
enhancer (E1) flanking it (Figure 6A), where ESC TFs such as
POU5F1 and NANOG bind. Conversely, DE TFs such as
EOMES, GATA6 and SOX17 bind to the differentially accessible
candidate enhancers (E2 and E3) flanking MIR145 and MIR892A
(Figures 6B, C). These candidate enhancers are all within loop
extrusion model predicted CTCF loops (Xi and Beer, 2021)
enclosing the miRNA, providing more support that they are
responsible for the miRNA differential expression. Together,
these results suggest DE and ESC TFs, through activating cis-
regulatory elements, upregulate miRNAs, which in turn repress
core TFs for the other transition state.

Discussion

Cell state transitions are characterized by the activation of
lineage-specific core TF genes and the inactivation of at least some
of the core TF genes of the precursor cell type. Our modeling shows
that a repressive mechanism is required to achieve this

inactivation. In our analysis of a very large set of chromatin
accessibility datasets, we have found a deficit of repressive
sequence signals in enhancers that could provide this shut-off
mechanism, relative to activating sequence signals. We see
evidence for TFBS for ZEB1/2, SNAI1/2, GLI, ZBTB7A, Nuclear
Hormone Receptors, GFI1, REST and others acting as repressors,
but in our systematic sequence analysis, there are far fewer
repressors detected than activators, suggesting that there are too
few repressors to act individually in multiple different cell types to
negatively regulate the large set of known activators. On the other
hand, it is quite easy to imagine each cell type expressing a small
number of miRNAs to repress the TFs in precursor and
downstream cell types by targeting the TF’s 3′UTRs. The
PRC2 complex or other repressive complexes may play this
repressive role by binding promoters, but how these complexes
are recruited to different genomic locations in a cell specific
manner is unclear. There is also strong autoactivation of core
TFs in most tissues, where we have found that core TFs bind their
own enhancers. This autoactivation is a key component of our
dynamic gene network model, and helps explain our experimental

FIGURE 5
Some differentially expressed miRNAs target 3′ UTRs of core TFs of other cell types, consistent with a negative feedback role in cell-type
specification. (A) Distribution of mirDIP prediction scores for pairs of [miRNA, TF] where we chose 0.2 < mirDIP_score as the cutoff for miRNA target
prediction. (B) Differentially expressed miRNAs in DE compared to ESC (|log2FC| > 2). Labeled miRNAs are those with a flanking (<100 kb) differentially
active ATAC peak which are predicted to target a core DE or ESC TF by mirDIP. Numbers are mirDIP target prediction scores. (C) miRNA seed
sequences aligned to 3′UTR of DE and ESC TFs. (D) The SOX2 3′UTR contains multiple seed target sequences for DE expressed miRNAs, consistent with
combinatorial translational repression.
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observations of the effect of enhancer perturbation in the ESC-DE
transition (Luo et al., 2023). However, the autoactivation also
induces hysteresis in the gene regulatory network which makes

it difficult to turn off cell-specific core TFs once they are activated.
One could argue that the tendency for chromatin to be bound by
nucleosomes and revert to a heterochromatic state could provide a

FIGURE 6
Chromatin accessibility and TF binding at candidate enhancers activating ESC or DE specific miRNAs. Chromatin landscape around (A)MIR92B (B)
MIR145 (C) MIR892A. E1, E2 and E3 are candidate enhancers within the same CTCF loop as the miRNAs. Their accessibility may be regulated through
binding of core DE or ESC TFs and these candidate enhancers may control the expression of the nearby miRNAs which will repress TFs of the other
transition state.
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generic shut-off mechanism that provides the required negative
feedback, but mathematically this would be equivalent to using a
lower basal transcription rate, controlled by parameters b and e0 in
our model, which are already quite small. The repressive effect
could also be modeled by requiring stronger cooperativity to
overcome the heterochromatic state, by using cψ4 instead of
cψ3, but changing b, e0 or the cooperativity exponent does not
qualitatively change the stability analysis shown in Figures 3B, C.
The point is that once autoactivation is significant enough to
overcome any default heterochromatic repression, it remains
strong enough to overcome it until another distinct repressive
mechanism is induced. In this paper we have provided modeling
and analysis of epigenomic datasets in support of miRNAs acting
to provide the negative feedback necessary to shut off the core TFs
of neighboring cell types and provide stability to cell types and cell
state transitions.

Our miRNA model is generic and can apply to many
different cell types, but our epigenomic analysis is specific to
the ESC to DE transition for which we have ample high-quality
datasets. We identified differentially expressed miRNAs in ESC
and DE, and differentially active enhancers flanking these
miRNAs which are likely responsible for their differential
expression and which are bound by the relevant cell-specific
core TFs. We found both ESC-expressed miRNAs which are
driven by core ESC TF-bound enhancers that provide the
translational repression of core DE TF genes through binding
sites in their 3′UTRs, and DE-expressed miRNAs which are
driven by core DE TF-bound enhancers that carry out the
translational repression of core ESC TF genes, again with
miRNA binding sites in their 3′UTRs.

More detailed experimental validation of these predictions is
required, but if verified, a better understanding of the role of
miRNAs in cell-state transitions may allow further improvement
in the efficiency of stem cell differentiation for both scientific and
therapeutic purposes, and may help better understand the role of
miRNAs in cancer and as potential therapeutic targets.

Methods

Gkm-SVM modeling

We trained gkm-SVM on ATAC-seq data from ESC and DE
(Li et al., 2019), after removing promoter peaks within 2 kb of an
annotated TSS, non-cell specific peaks accessible in more than 30%
of ENCODE samples, and CTCF binding sites. We removed
promoters as they have similar TFBS and are usually active
across all cell types (Oh and Beer, 2024). Gkm-SVM uses
counts of gapped kmer features under the 300bp sequences
centered on the ATAC-seq peaks, as gapped kmers are effective
at describing regulatory sequence features (Ghandi et al., 2014b;
Amanchy et al., 2011) and do not require previous knowledge of
TFBS. Following the default training method in the gkmSVM-R
package (Ghandi et al., 2016), the AUROC was evaluated on 5-fold
cross validation (CV) and AUROC is the average of 5 CV test sets
(0.902 for ESC, 0.949 for DE-D2, and 0.975 for DE-D2 vs. ESC). All
cross-fold validation sets produce similar sets of features and have
very similar weight vectors. We normalized weight vectors to have

zero mean and unit standard deviation for comparison. We
extracted TFBS from this weight vector using gkm-PWM
(Shigaki, 2024), which produces a lasso weight reflecting the
importance of each motif in explaining the full weight vector
(W in Figure 2). Other motif metrics Z and I describe the
Z-score for kmers mapping to the motif and the error induced
by removing the motif from the list.

Dynamic gene regulatory network modeling

We modified the gene regulatory network model (Luo et al.,
2023) to include miRNA repression. The model describes the rate
of change of cell-specific TFs, where one cell state’s TF
concentrations are described by ψ1(t), and the other cell
state’s TF concentrations are described by ψ2(t). For
simplicity, we assume that through autoregulation, each cell
state’s TFs turn on or off together, and can thus be
represented with one concentration (Luo et al., 2023). The
differential equation describes the change in concentration of
the TFs, which is driven by the balance between a transcription
rate, T(ψ), and degradation/export, −rψ, see, for example, (Alon,
2019). For both the TF and miRNA transcription rate we choose
the form T(ψ) � e1cψ3+e0b

b+cψ3 . This rate depends on the TF activity, ψ,
through enhancer activation, and the parameters control the rate
at which transcription transitions from low transcription to high
transcription as a function of ψ. It is a simple Hill form (Alon,
2019), but can also be understood as a two-state model with a
large enhancer activated transcription rate, e1, and a low basal
transcription rate, e0. Each cell type’s enhancers are active
proportional to cψ3

b+cψ3 and inactive proportional to b
b+cψ3. We will

assume that miRNAs are similarly activated with enhancers, and
repress the other cell type’s core TF activity with a rate d. This rate
includes miRNA processing and nuclear transport. The core TFs
are degraded and/or exported from the nucleus at a rate r.
Together this yields two coupled nonlinear differential
equations for ψ1 and ψ2 as shown in Figure 3A. Transitions
from cell type 1 to cell type 2 are modeled (Luo et al., 2023) by
adding a time-dependent stimulus, δ(t), which acts at a subset of
cell type 2 enhancers to induce activation of ψ2, by increasing the
probability that ψ2’s enhancers are active. The probability that ψ2

is in the basal state is b, and the probability that ψ2’s enhancers are
active is cψ3

2 without stimulus and cψ3
2 + δ(t) with the stimulus,

with δ(t) � δ0[1 + erf(t−t0)
2
�

2
√ ]/2. This stimulus turns on gradually at

t0 � 3. The other parameters are (b, c, e0, e1, r, d, δ0) �
(0.5, 1, 0.1, 3, 1, 1, 0) unless specified otherwise.

ENCODE miRNA expression data

We downloaded 177 ENCODE miRNA-seq samples from the
ENCODE portal (Reese et al., 2023) (Supplementary Table S1). Raw
miRNA expression counts were mean-normalized across the
177 samples and log2-transformed. 835 miRNAs of the annotated
1877 miRNAs had a log2-normalized expression above 4
(~16 normalized counts) in at least two samples. We used this
subset of 835 miRNAs to plot a PCA and heatmap of miRNAs
across different tissues. We generated a table assigning a likely germ

Frontiers in Epigenetics and Epigenomics frontiersin.org10

Razavi-Mohseni and Beer 10.3389/freae.2024.1473789

https://www.frontiersin.org/journals/epigenetics-and-epigenomics
https://www.frontiersin.org
https://doi.org/10.3389/freae.2024.1473789


layer of origin to miRNA-seq tissue and cell line experiments
(Supplementary Table S1). PCA and heatmaps were generated in
R using ‘prcomp’, ggplot2 and pheatmap. We used ENCSR588ZRK
(H1 embryonic stem cells) labeled “ESC” and ENCSR820BMF
(endodermal cell originated from H1) labeled “DE” for miRNA
expression analysis.

We used a threshold of |log2FC| > 2 to call differentially
expressed miRNAs between ESC and DE. Ensembl
bioMart V.110 and V.111 were used for miRNA gene name
conversion and transcription start site annotation (Martin
et al., 2023).

DE and ESC core TFs and RNA-seq analysis
We used RNA-seq data from GEO GSE213394 (Luo et al.,

2023) to define core DE and core ESC TFs. RNA-seq expression
values for HUES8 (ESC) and SOX17+ HUES8 (DE) were upper-
quartile normalized. Expression values for DE-D3 (DE day 3) and
ESC samples were averaged across the three replicated and
differentially expressed genes were called using a threshold of |
log2FC > 1.5|. The list of human TFs was obtained from Lambert
et al. (Lambert et al., 2018).

ATAC and ChIP-seq analysis

ATAC-seq, ChIP-seq (TFs and H3K27ac) fastq and bigwig
files were obtained from GEO GSE213394 (Li et al., 2019).
They were processed according to the pipeline described by
Shigaki et al. (Shigaki et al., 2019). We compared ATAC-seq
and ChIP-seq samples in ESC to DE-D2 (day 2), as some TF
ChIP-seq data was only available in DE-D2 (and not in DE-
D3). We used ATAC-seq and H3K27ac to identify differentially
active candidate enhancers regulating differentially expressed
miRNAs in DE and ESC. We extended the ATAC peak summit
by ± 500bp or 150bp on each side (peak length = 1000bp for
H3K27ac and 300bp for ATAC) and calculated the average
H3K27ac signal across the extended region, as H3K27ac peaks
typically flank the ATAC peak summit. Differentially active
regions were called from the set of top 25,000 strongest ATAC
peaks in DE and ESC which satisfy the following: i) ATAC |
log2FC| > 1; ii) H3K27ac |log2FC| > 0.25; iii) fall within 100kbp of a
differentially expressed miRNA. Peak color indicates whether they
are close to a miRNA upregulated in DE (“DE-MIR-flanking”
peak) or to a miRNA upregulated in ESC (“ESC-MIR-flanking”
peak). Of the 101 DE-MIR-flanking and 183 ESC-MIR-flanking
peaks, only seven peaks are shared among the two sets and
this subset of peaks has a relatively similar ATAC signal in DE
and ESC (not differentially active and not affecting the rest of
the analysis).

GATA6, EOMES and SOX17 ChIP-seq samples in DE were
obtained from GSE213394, while the bigwig files for MYC
(ENCFF145JGY, Snyder Lab), POU5F1 (ENCFF106YHB, Myers
Lab) and NANOG (ENCFF512EZC, Myers Lab) ChIP-seq in H1
(ESC) were downloaded from the ENCODE portal (Luo et al.,
2020). UCSC bigWigAverageOverBed was used to calculate
average ChIP-seq signal over DE-MIR-flanking and ESC-MIR-
flanking peaks and the values were log2-transformed and
t-test was used.

TF motif analysis

For motif enrichment analysis, we used STORM (Schones
et al., 2007) and the following PWMs: GATA (MEME “MOTIF
GATA1-ext”), GSC (JASPAR “MA0648.1”), SOX (JASPAR
“MA0143.4”), EOMES (MEME “MOTIF Eomes”), NANOG
(HOMER “motif224”), POU5F1 (JASPAR “MA1115.1”) (Bailey
et al., 2015; Fornes et al., 2020; Heinz et al., 2010). t-test was used.
To remove CTCF binding sites we scored with ScanACE (Karnik
and Beer, 2015) with a score threshold of 5.0.

miRNA target prediction

We used mirDIP to find a set of candidate miRNAs targeting
core DE/ESC TFs and selected pairs of miRNA and core TFs whose
mirDIP score is greater than 0.20. TargetScan was used to validate
mirDIP predictions and align 3′UTRs to miRNA seed regions.

Genome browser

We used WashU Epigenome Browser (Li et al., 2022) for
Figure 6. For better visual clarity in the figure, we used RefGene
annotations (genomic coordinates) for MIR145 and MIR92B, while
we used GENCODE V39 for MIR892A coordinates.
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