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The crosstalk between metabolism and epigenetics is an emerging field that is
gaining importance in different areas such as cancer and aging, where changes in
metabolism significantly impacts the cellular epigenome, in turn dictating changes
in chromatin as an adaptivemechanism tobring backmetabolic homeostasis. A key
metabolic pathway influencing an organism’s epigenetic state is one-carbon
metabolism (OCM), which includes the folate and methionine cycles. Together,
these cycles generate S-adenosylmethionine (SAM), the universal methyl donor
essential for DNA and histone methylation. SAM serves as the sole methyl group
donor for DNA and histone methyltransferases, making it a crucial metabolite for
chromatinmodifications. In this review, wewill discuss how SAM and its byproduct,
S-adenosylhomocysteine (SAH), along with the enzymes and cofactors involved in
OCM, may function in the different cellular compartments, particularly in the
nucleus, to directly regulate the epigenome in aging and cancer.
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Introduction

The connection between metabolic intermediates and epigenetic regulation has become
increasingly evident in recent years. Metabolites serve as crucial signaling molecules,
orchestrating cellular responses and adaptability based on the broad range of nutrients
absorbed from our diet. Previous works have shown that dietary changes can influence an
organism’s epigenetic landscape, with the potential for these modifications to be inherited
by future generations (Padmanabhan et al., 2013; Vaiserman and Lushchak, 2021). A
compelling example of this is the devastating famine that occurred at the end of World War
II in the Netherlands known as the Dutch famine, where thousands suffered from
malnutrition. The children of women who were pregnant during this period exhibited
an increased incidence of obesity, schizophrenia, and diabetes. Subsequent studies on this
population demonstrated that these children inherited epigenetic marks that significantly
impacted their lives (Vaiserman and Lushchak, 2021; González-Rodríguez et al., 2023). One
of the key reasons for this effect is due to the fact that all the epigenetic modifications in our
chromatin are chemical modifications (metabolites), and thus, their availability directly
affects chromatin dynamics. Specifically, changes in an organism’s nutrient intake can
significantly influence both DNA and histone modifications. For instance, Acetyl-CoA is a
pivotal player in acetylation, S-adenosylmethionine (SAM) is the universal donor for
methylation reactions, and adenosine triphosphate (ATP) is a fundamental component for
phosphorylation (Wei et al., 1999; Rossetto et al., 2012; Etchegaray and Mostoslavsky, 2016;
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Mentch and Locasale, 2016; Boon et al., 2020; Guertin and Wellen,
2023). Among these, multiple studies have shown that the
availability of Acetyl-CoA is critical for chromatin function. In
that context, nuclear acetyl-CoA is derived from multiple
pathways, including the (ATP)-citrate lyase (ACLY)-dependent
conversion of cytosolic citrate (Wellen et al., 2009), the Acyl-CoA
synthetase short-chain member 2 (ACSS2)-dependent conversion of
acetate (Bulusu et al., 2017), and the generation of acetyl-CoA from
pyruvate by the pyruvate dehydrogenase enzyme. Interestingly, all these
enzymes can translocate to the nucleus to generate acetyl-CoA in situ to
support histone acetylation at specific genes. Such an adaptation was
key to drive the expression of lysosomal and autophagy genes to support
thesemetabolic pathways in neurons, as well as to support local repair of
DNA damage (Sutendra et al., 2014; Bulusu et al., 2017; Li et al., 2017;
Sivanand et al., 2017; Li et al., 2021). Parallel studies have shown that
nuclear translocation of ACSS2 in hippocampal neurons was key to
allowing histone acetylation locally at neuronal genes, a critical switch to
drive long-term spatial memory (Mews et al., 2017). These mechanisms
were dependent on phosphorylation reactions initiated by signaling
cascades, including activation of the AMPK kinase (Li et al., 2017),
suggesting that nuclear metabolic demands were coordinated with
nutrient supply. In addition to acetyl-CoA, subcellular availability of
the central metabolic coenzyme NAD+ also appears critical to
supporting epigenetic reactions. Beyond its key roles as an electron
carrier in mitochondrial respiration and other redox reactions (Luengo
et al., 2021), NAD+ can also act as a co-factor in deacetylation reactions
driven by the sirtuin enzymes, as well as an ADP-ribosylation donor for
the PARP enzymes (Finkel et al., 2009). Given their NAD+ dependency,
sirtuins can link nutritional states to metabolic reprogramming through
sensing of NAD+ levels (Liu et al., 2012; Martinez-Pastor and
Mostoslavsky, 2012). For instance, the histone deacetylase
SIRT6 modulates glycolytic metabolism as a silencer of glycolytic
genes in response to glucose availability, a role that defines it as a
strong tumor suppressor, while SIRT1 is a major inducer of PGC1α-
dependent mitochondrial biogenesis under conditions of nutrient stress
(Rodgers et al., 2005). Notably, metabolic stress was shown to increase
nuclear levels of NAD+ specifically through the nuclear localization and
activation of the NAD+ synthesis enzyme Nicotinamide
Phosphoribosyltransferase (NAMPT) (Svoboda et al., 2019). In
addition, SIRT6 was shown to directly activate local NAMPT
(Sociali et al., 2019) while in parallel regulating the activity of
PARP1 as a sensor of DNA damage (Mao et al., 2011), thus
balancing NAD+ consumption and production. Local NAD synthesis
and SIRT1 activation were also shown as key to preventing axonal
degeneration (Araki et al., 2004). Another strong evidence of subcellular
regulation of NAD levels was determined in studies showing a switch in
expression from the nuclear NMNAT1 to the cytoplasmic NMNAT2 to
shift NAD + production from the nucleus to the cytoplasm to inhibit
PARP1-dependent parylation of adipogenic genes, in turn driving
activation of these genes during adipogenesis (Ryu et al., 2018).

The recent discovery of novel histone modifications involving
other metabolites, such as lactylation (Zhang et al.,
2019), homocysteinylation (Zhang et al., 2018), dopaminylation
(Lepack et al., 2020), benzoylation (Huang et al., 2018),
serotonylation (Farrelly et al., 2019), O-GlcNAcylation (Chen
et al., 2013), succinylation (Xie et al., 2012), and ADP-
ribosylation (Messner and Hottiger, 2011), underscores the
profound connection between metabolic pathways and cellular

epigenetics. A striking example is lactate, which was
conventionally viewed as a mere metabolic waste product. Recent
studies have unveiled its role in various pathways, including redox
balance and serving as an intermediary energy store, mirroring
glucose (Rabinowitz and Enerbäck, 2020). Specifically, lactate has
been found to have a significant influence on embryonic stem cells,
which are predominantly glycolytic; lactylation marks in these cells
are associated with active enhancers crucial for the development of
the neural crest and presomitic mesoderm, highlighting the
reevaluation of lactate from a waste product to a key epigenetic
regulator (Martinez-Outschoorn et al., 2011; Merkuri et al., 2024).

Despite its central role as a metabolic node and modulator of
methylation reactions on chromatin, the roles of one-carbon
metabolism in the different cellular compartments have been less
explored. This review will delve into the one-carbon pathway and its
pivotal role in cellular methylation processes.

OCM pathway overview

One-carbon metabolism, which includes the folate pathway, the
methionine cycles, and the transsulfuration pathway, plays a critical
role in generating one-carbon units (methyl groups). These groups
are required for several metabolic processes, including DNA
synthesis, protein methylation (e.g., of histones and creatine),
DNA methylation at heterochromatin regions and CpG islands
in promoters and enhancers, and the biosynthesis of polyamines
and lipids (Yang and Vousden, 2016) (Figure 1).

Starting with the folate cycle, central to one-carbon metabolism,
vitamins, and amino acids are utilized as cofactors and methyl group
donors, respectively. The cycle is divided between the cytoplasmic
and mitochondrial folate cycles (Petrova et al., 2023) (see Figure 1,
Folate cycle). In the cytosol, the amino acids serine, histidine, and
the metabolite formate act as methyl group donors, with vitamin B9
(folate) serving as the acceptor. Serine is not an essential amino acid;
thus, it can be taken up by the cells through different transporters or
produced by the cells from other metabolites (Reid et al., 2018; Tajan
et al., 2021; Papalazarou et al., 2023). The serine synthesis pathway
(SSP) is the major pathway for serine synthesis. The cycle begins
with a glycolytic intermediate, 3-phosphoglycerate (3-PG). Initially,
Phosphoglycerate dehydrogenase (PHGDH) catalyzes the oxidation
of 3-PG to 3-phosphohydroxypyruvate (3-PHP), simultaneously
producing NADH. Subsequently, 3-PHP is transformed into 3-
phosphoserine (3-PS) by phosphoserine aminotransferase
(PSAT1) in a transamination reaction, with glutamate donating
the amino group and concurrently generating α-ketoglutarate. The
final step is the dephosphorylation of 3-PS to serine, facilitated by
phosphoserine phosphatase (PSPH). This reaction produces serine
and generates reducing power in the form of NADH and provides α-
ketoglutarate, an important intermediate for the TCA cycle (Yang
and Vousden, 2016). To underscore the importance of maintaining
appropriate serine levels within cells, serine acts as an activator of the
enzyme pyruvate kinase M2 (PKM2). This enzyme catalyzes the
transfer of a phosphate group to ADP, producing ATP from
phosphoenolpyruvate in the final step of the glycolysis pathway,
resulting in the formation of pyruvate. Low levels of serine inhibit
this reaction, potentially reversing the pathway toward
gluconeogenesis, thereby increasing the availability of 3-
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phosphoglycerate (3-PG) for the serine synthesis pathway (SSP)
(Chaneton et al., 2012; Ye et al., 2012) (see Figure 1, Serine
synthesis pathway).

Additionally, carbon units for the folate cycle can also be derived
from formate, which can donate one carbon directly to
tetrahydrofolate in a reversible reaction catalyzed by the tri-
enzyme Methylenetetrahydrofolate Dehydrogenase, Cyclohydrolase,
and Formyltetrahydrofolate Synthetase 1 (MTHFD1). This reaction
consumes an ATP and generates 10-formyl-THF, which can directly
enter the de novo synthesis of purines or continue through the folate
cycle via the cyclohydrolase and dehydrogenase activities of
MTHFD1 (Brosnan and Brosnan, 2016) (See Figure 1,
Cytoplasmatic Folate cycle). Formate can be generated in cells by
tryptophan catabolism or by the activity of aldehyde dehydrogenase
class 3 (ADH5), detoxifying formaldehyde from the cells and
converting it into the more stable formate (Burgos-Barragan et al.,
2017). Moreover, formaldehyde itself can directly condense with
THF, driving the formation of 5, 10-methylene THF, the only
form of folate that could be combined with homocysteine to
generate methionine, which in turn is used by the MAT2 enzymes
to synthesize SAM (see Figure 1,Methionine cycle). It has been shown
that Lysine-specific demethylase 1 (LSD1) is a folate-binding protein,
indicating that while it demethylates and releases the highly reactive
metabolite formaldehyde, it could directly recycle it by condensing

with THF, thus forming nuclear 5, 10-methylene THF (Luka et al.,
2011; Luka et al., 2014; Garcia et al., 2016) (see Figure 1,
Formaldehyde clearance). Moreover, histidine catabolism can also
generate a carbon unit when it is oxidized to glutamate. The
intermediate of the reaction that releases a carbon unit is
N-formiminoglutamate (FIGLU) throught the bifunctional enzyme
glutamate formiminotransferase (FTCD) that donates one carbon
from FIGLU to THF, forming N5-formimino-THF and glutamate.
N5-formimino-THF is then further processed to 5, 10-methenyl-THF
by formiminotransferase cyclodeaminase (FTCD) (Brosnan and
Brosnan, 2020). In this context, histidine catabolism has been
suggested as a major consumer of THF, and contributing to the
toxicity of the chemotherapeutic antifolate methotrexate (Kanarek
et al., 2018). In other organisms but not in humans, the essential
amino acid threonine can be converted to Serine in a two-step
process: initially, threonine is transformed into 2-amino-3-
ketobutyrate by L-threonine dehydrogenase, generating NADH in
the process. Subsequently, glycine C-acetyltransferase (GCAT)
catalyzes the conversion of 2-amino-3-ketobutyrate to acetyl-CoA
and glycine. This pathway has been shown to be essential for mouse
Embrionic Stem Cells (mESCs) (Wang et al., 2009; Shyh-Chang
et al., 2013).

In the mitochondria, the sources of methyl groups are more
diverse. Here, dimethylglycine (DMG), glycine, and sarcosine, along

FIGURE 1
Diagram depicting One Carbon Metabolism and its related metabolic pathways in the different sub-cellular compartments (see text for details).
Created with BioRender.com.
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with serine and formate can be utilized as carbon sources to fuel the
cycle. The serine required for the mitochondrial folate cycle is
transported into the mitochondria through the sideroflexin 1
(SFXN1) transporter (Kory et al., 2018). Once inside, it enters
the folate cycle, where it is converted to glycine by serine
hydroxymethyltransferase 2 (SHMT2), and a carbon unit is
donated to THF to generate 5, 10-methylene THF (Ducker and
Rabinowitz, 2017). As highlighted above, most serine is derived from
glucose or cellular intake. However, this is not the case in the liver,
where it has been shown that Serine hydroxymethyltransferase 2
(SHMT2), which in most organs converts mitochondrial serine to
glycine while donating a carbon unit to Tetrahydrofolate, primarily
operates in the reverse direction in the liver. This process helps clear
the glycine pool and generates serine, which can then be converted
by the enzyme serine dehydratase (SDH) into pyruvate and utilized
by the TCA cycle (McBride et al., 2024). In the mitochondria, glycine
can further contribute to the folate cycle by donating an additional
carbon unit through the Glycine Cleavage System (GCS), generating
5, 10-methylene THF, ammonia, and NADH (Kikuchi et al., 2008).
Both DMG and methylglycine, also known as sarcosine, can enter
the folate cycle. DMG can release two one-carbon units in
subsequent reaction steps. First, the enzyme dimethylglycine
dehydrogenase (DMGDH) converts DMG to sarcosine, releasing
5, 10-methylene THF and reductive power in FADH2 (Frisell and
Mackenzie, 1962). The subsequent reaction utilizes a second
mitochondrial enzyme, sarcosine dehydrogenase (SARDH), that
catalyzes the oxidation of sarcosine to glycine, generating
formaldehyde, which will react with THF to form 5, 10-
methylene THF (Wittwer and Wagner, 1981) (See Figure 1,
Mitochondria folate cycle).

The methionine cycle is a crucial component of one-carbon
metabolism, which is linked to and dependent on the folate cycle.
While the folate cycle is essential for generating most of the methyl
groups for purine synthesis and reductive power in the
mitochondria in the form of FADH2 and NADPH, the
methionine cycle’s primary role is generating the universal
methyl donor S-adenosylmethionine (SAM), regenerating
methionine, and producing polyamines such as spermine and
spermidine (Cantoni, 1952; Sanderson et al., 2019) (see, Figure 1,
Methionine and salvage cycle). The folate and methionine cycles
intersect at the conversion of homocysteine back to methionine by
the cytosolic enzyme methionine synthase (MTR), which uses
methylcobalamin (methylated vitamin B12) as a cofactor. During
this step, a carbon unit generated in the folate cycle and carried by 5-
methyl THF is donated to homocysteine, resulting in methionine
(Banerjee and Matthews, 1990). This part of the cycle is critical to
prevent the accumulation of homocysteine in cells. Dysfunctions led
by a polymorphism in MTHFR (the enzyme converting 5, 10-
methylene THF to 5-methyl THF) or a lack of vitamin B12 can
lead to both hyperhomocysteinemia and folate deficiency. This
occurs because 5, 10-methylene THF cannot be recycled in the
folate cycle, and homocysteine cannot be recycled in the methionine
cycle, thus leading to what is known as the “folate trap” (Scott and
Weir, 1981; Gershoni-Baruch et al., 2000; Refsum et al., 2006; Maruti
et al., 2009; Hasan et al., 2019) (see Figure 1, Folate trap). The
methionine cycle is not the sole pathway that uses homocysteine; the
transsulfuration pathway is an alternative route. Here, the enzyme
cystathionine β-synthase (CBS) catalyzes the initial reaction,

combining serine with homocysteine to generate cystathionine
while releasing a molecule of water (Werge et al., 2021). The
subsequent reaction, catalyzed by cystathionase, produces
cysteine and α-ketobutyrate, releasing ammonia and water. Both
reactions require vitamin B6 (pyridoxal phosphate) as a cofactor and
can produce hydrogen sulfide as an alternative byproduct. Cysteine
then enters the glutathione biosynthesis pathway; initially, it is
converted to γ-glutamylcysteine by glutamate-cysteine ligase
(GCL), adding glutamate (Chandel, 2021). Subsequently,
glutathione synthetase (GSS) adds glycine to form glutathione
(GSH), a critical tripeptide that acts as a reducing agent to
counteract oxidative stress, to facilitate the detoxification of
xenobiotics, and to regulate the cellular redox state (Aquilano
et al., 2014) (see Figure 1, Transsulfuration pathway).

The methionine cycle and the transsulfuration pathway are
intricately interconnected and regulated by S-adenosylmethionine
(SAM) levels. High levels of SAM enhance CBS activity by binding
non-covalently to a heme group within CBS, stabilizing the enzyme
and increasing the homocysteine flux into the transsulfuration
pathway (Prudova et al., 2006). Concurrently, high levels of SAM
allosterically inhibit methylenetetrahydrofolate reductase (MTHFR)
and betaine-homocysteine S-methyltransferase (BHMT),
respectively inhibiting the formation of 5-methyltetrahydrofolate
and methionine. Conversely, a low SAM/SAH ratio inhibits CBS due
to the lack of SAM and activates MTHFR when bound by
S-adenosylhomocysteine (SAH), directing more homocysteine
towards the methionine cycle (Kutzbach and Stokstad, 1967;
Kutzbach and Stokstad, 1971; Jencks and Mathews, 1987; Ou
et al., 2007) (See Figure 1, Allosteric inhibition activation).

Methionine can be regenerated from homocysteine in a folate-
independent manner by the enzyme BHMT, which is exclusively
expressed in the liver and kidneys. In this pathway, trimethylglycine
(known as betaine) donates a methyl group to homocysteine,
generating methionine and releasing dimethylglycine (DMG) in
an ATP-independent manner (Pajares and Pérez-Sala, 2006).
DMG can then enter the mitochondrial folate cycle, as previously
mentioned. The subsequent step involves the generation of SAM,
facilitated by the methionine adenosyltransferase (MAT) enzyme
family. In mammals, there are two MAT enzymes, MAT1A and
MAT2A, that encode for two homologous catalytic subunits, α1 and
α2, respectively. MAT1A is primarily expressed in the liver and
organizes into two isoenzymes, MATIII (a dimer) and MATI (a
tetramer) (Kotb et al., 1997; Ramani and Lu, 2017). Conversely,
MAT2A is expressed in most tissues and forms the MATII
isoenzyme, which can exist as both a dimer and a tetramer (Kotb
and Kredich, 1985). MAT enzymes catalyze the reaction between
methionine and ATP to generate SAM (also known as AdoMet),
releasing phosphate and diphosphate (Niland et al., 2021). At this
step, SAM can follow two pathways: it can be used for methylation
reactions throughout the cell or enter the polyamine pathway. In the
polyamine pathway, SAM is decarboxylated by adenosylmethionine
decarboxylase (AMD1) to S-adenosylmethioninamine (dcAdoMet),
where it donates a propylamine group to putrescine and spermidine
to generate spermidine and subsequently spermine through the
enzymes spermidine synthase (SRM) and spermine synthase
(SMS), releasing 5-methylthioadenosine (MTA) (Minois et al.,
2011). Intriguingly, MTA can reenter the methionine cycle using
what is termed the methionine salvage pathway or MTA cycle,
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where MTA can be recycled back to methionine by S-methyl-5-
thioadenosine phosphorylase (MTAP) (Albers, 2009) (See Figure 1,
Methionine salvage pathway). The main pathway for SAM involves
donating a methyl group in various methylation reactions catalyzed
by several methyltransferases, producing S-adenosylhomocysteine
(SAH), a potent allosteric inhibitor of many methyltransferases
(Richon et al., 2011; Kung et al., 2015). SAH can continue the
cycle where it is converted back to homocysteine by
S-adenosylhomocysteinase (AHCY) (Turner et al., 1998; Vizán
et al., 2021). Moreover, SAM can refuel the folate cycle too by
donating a carbon to glycine in the reaction guided by Glycine
N-methyltransferase (GNMT) and generating sarcosine that will
feed the mitochondrial folate pathway (Yeo andWagner, 1992; Luka
et al., 2009).

Nuclear OCM and its epigenetics
implications

Histone and DNAmethylation aremetabolic reactions driven by
enzymes that add or remove methyl groups (Xiao and Locasale,
2021). These changes depend directly on two key components: the
availability of the substrate, S-adenosylmethionine (SAM), and the
presence of enzymes. In the case of histones, these enzymes are
histone methyltransferases (HMTs), which belong to two main
classes: SET domain-containing and non-SET domain-containing
enzymes. Both classes require the metabolite SAM as a methyl donor
and release S-adenosylhomocysteine (SAH) after the
transmethylation reaction (Dillon et al., 2005; Husmann and
Gozani, 2019). Interestingly, SAH itself can act as an inhibitor of
both classes of HMTs. Therefore, changes in the SAM/SAH ratio can
activate or inhibit several methyltransferases, thereby increasing or
decreasing histone methylation (Richon et al., 2011; Mentch and
Locasale, 2016). This ratio is referred to as the “Methylation Index”
because it is directly proportional to the cell’s capacity to methylate
(Zhang, 2018) (see Figure 1, Circadian regulation). Mimicking the
chemical structure of SAH has led to the development of a new class
of drugs targeting methyltransferases (Zhang and Zheng, 2016). A
notable example is EZH2, which is highly expressed in several
cancers, such as prostate cancer. EZH2 is part of the polycomb
repressive complex and represses transcriptional activity through
the methylation of H3K27 (Kung et al., 2015; Duan et al., 2020).

As mentioned above, although not strictly related to the subcellular
regulation of the OCM, few recent studies have emerged pointing to
compartment-specific roles for some enzymes in the cycle (Boon et al.,
2020). A significant example is AHCY, which catalyzes the hydrolysis of
SAH to homocysteine and has been shown to be associated with
CLOCK-BMAL1, the circadian complex that in turn interacts with
the SET-dependent MLL family of H3K4 methyl transferases. AHCY’s
binding was required to mediate an oscillation of H3K4me3 marks that
are circadian dependent, suggesting that these daily chromatin changes
are AHCY-dependent and that pharmacological inhibition of AHCY in
the hypothalamus alters the amplitude of circadian gene expression.
Similarly, another one-carbon pathway gene, MAT1A, was shown to be
recruited to the same chromatin complex, suggesting a possible role in
the transcriptional regulation of one-carbon enzymes, though its role
was not fully explained (Greco et al., 2020) (See Figure 1, Circadian
regulation).

Furthermore, MAT2A, which catalyzes the conversion of
methionine to SAM, has been shown to interact on a chromatin
complex with MafK, Swi/Snf, and NuRD complexes, and its catalytic
activity was required for the expression of the MafK-dependent HO-
1 gene (Katoh et al., 2011). Subsequent work from the Igarashi lab
demonstrated that MAT2A represses the expression of
cyclooxygenase 2 (COX2) by specifically interacting with the
H3K9 methyltransferase SET-dependent SETB1, inducing the
repressive mark H3K9me1/3 and specifically repressing COX-2
genes (Kera et al., 2013). These results suggest a possible
compartmentalized role of OCM at the nuclear level (See
Figure 1, Co-repression), although it remains unclear whether
such roles for MAT2A in the nucleus represent a specific
function on few loci or a broader, chromatin-wide role.

In addition, methionine restriction has been shown to impair the
methylation pattern of histones. Mentch et al., (2015) demonstrated
that H3K4me3, a histone mark commonly found near transcription
start site (TSS) regions of actively transcribed genes, was depleted
upon methionine restriction. Interestingly, the study found that the
methylation mark was depleted across the genome, and the breadth
of the peak decreased after methionine restriction, suggesting a
potential additional role of these markers as a methyl sink that could
be reused in case of necessity. Although Bérénice et al., (2014) linked
the breadth of H3K4me3 to transcriptional consistency, this could
suggest that in times of need, cells could sacrifice consistency to gain
access to additional methyl groups. Along these lines, another study
suggested a similar pattern in yeast, demonstrating that
demethylation of the Protein Phosphatase 2 A complex (PP2A)
in response to methionine deprivation activates PP2A, which then
phosphorylates Rph1, a histone demethylase that specifically
demethylates H3K4 and H3K36, allowing the preservation of
SAM (Ye et al., 2019). Haws et al., (2020) further demonstrated
that with the depletion of the cellular SAM pool in vivo, cells
preferentially conserve H3K9 monomethylation at the expense of
di- and tri-methylation, suggesting that maintaining
H3K9me1 could help retain the heterochromatin region and
preserve genome stability.

OCM in cancer

The concept of altered metabolic changes in cancer cells was first
identified by Otto Warburg in the 1920s, as evidenced by his
discovery of increased aerobic glycolysis in cancer cells (Vander
Heiden et al., 2009). Additionally, cancer cells, in their quest for
rapid proliferation, frequently upregulate several other metabolic
pathways, such as the OCM, reflecting the increased demand for
synthesizing purine and pyrimidine nucleotides. These nucleotides
are essential for synthesizing DNA and RNA, underscoring the
critical role of OCM in supporting the proliferative needs of cancer
cells (Shuvalov et al., 2017; Petrova et al., 2023). Building on these
foundations, anti-folates, targeting the one-carbon pathway, were
developed following Sydney Farber’s observation of leukemia’s
response to folate-deficient diets (Farber et al., 1948). Despite
antifolate’s efficacy in cancer treatment, its broad impact on
metabolic pathways can lead to severe side effects.

Traditional strategies targeting cancer metabolism often face
limitations due to the essential role of these pathways in normal
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physiology, leading to limited success. To circumvent these collateral
effects, researchers are now exploring the combination of specific
diets with targeted therapy. A notable example comes from the work
of Gao et al., (2019) who demonstrated that a methionine restriction
diet was sufficient to inhibit tumor proliferation in vivo in a human
PDX model harboring a KRAS mutation. Additionally, the
therapeutic effect was enhanced by combining methionine
restriction with radiation therapy, which induced a cell-
autonomous response dependent on decreased redox and
nucleotide metabolism flux. Similarly, a recent study by Li et al.,
(2024) targeted the one-carbon pathway in liver cancer through the
pharmacological inhibition of MAT2A, resulting in increased DNA
damage and cell cycle arrest. Further pharmacological screening
identified a GSK3 inhibitor that selectively kills MAT2A-inhibited
senescent liver cancer cells, suggesting a potential combination
therapy between MAT2A and GSK3 inhibitors. Wang et al.,
(2019) demonstrated that OCM plays a critical role even in
tumor-initiating cells (TICs). They performed metabolomic and
tracing experiments, specifically identifying an increase in
methionine cycle consumption and a high dependency on
exogenous methionine in TICs. In this case, pharmacological
inhibition of MAT2A was sufficient to cripple the tumor-
initiating capability of these cancer cells and alter their epigenetic
state. Further highlighting the importance of OCM in cancer, several
tumors harbor deletions in the loci containing cyclin-dependent
kinase 2A (CDKN2A). Methylthioadenosine (MTAP), as previously
discussed, is a gene involved in the methionine salvage pathway and
is co-deleted in almost 15% of all cancers with CDKN2A deletion.
The deletion of MTAP makes the cells more reliant on the
methionine cycle, lacking the ability to recycle methionine from
the salvage pathway and, more specifically, depending on MAT2A.
Kalev et al., (2021). developed and tested two new inhibitors of
MAT2A and demonstrated that cancer cells lacking MTAP were
more susceptible to MAT2A inhibitors compared to their wild-type
counterparts; they also showed increased sensitivity to taxane
therapy in vivo when co-treated. Moreover, MAT2A has been
identified as a potential target in Diffuse Midline Gliomas
(DMGs), a new subclass of high-grade gliomas, over 80% of
which are characterized by a hotspot mutation in H3K27 that
leads to a global reduction in H3K27me3. Impairment of
H3K27me3 spares SAM, increasing its intracellular levels which
are used by the RNA methyltransferase METTL16 to methylate the
mRNA of MAT2A, causing intron retention and degradation of
MAT2A itself. The authors showed that further inhibition of
MAT2A activity under these conditions disturbed
H3K36me3 methylation and inhibited the oncogenic and
developmental transcriptional program of the gliomas, extending
survival in multiple models of DMG (Golbourn et al., 2022). The
metabolic pathways highlighted above are extremely plastic,
exemplified by the carbon units utilized by OCM that can be
derived from various sources such as serine, glycine, formate, and
others as shown above. For instance, a study by Sullivan et al., (2021)
showed that the major source of folate in the cellular environment in
vivo is 5-methyl-THF, which can sustain the folate cycle in vivo
instead of folic acid and bypass the efficacy of antifolate therapies
such as methotrexate, which inhibit the pathway upstream.

The SSP pathway is tightly regulated in several cancers,
underscoring the dependency of cancer cells on serine

catabolism. An example is the work by Ding and colleagues,
where several cancer cells experiencing serine depletion require
the histone 3 lysine 9 (H3K9) methyltransferase G9A to maintain
the expression of SSP genes such as PHGDH and SHMT2. Genetic
knockdown of G9A inhibited cell proliferation and depleted the
serine pool in cancer cells (Ding et al., 2013). Moreover, SHMT2 and
GLDC have been shown to antagonize the activity of PKM2 and
reduce oxygen consumption in glioblastoma multiforme (GBM),
thereby driving a survival advantage by reprogramming the
metabolic state of the tumor (Kim et al., 2015). In a similar
fashion, cancer cells have been shown to deplete exogenous
serine, triggering a p53-dependent activation of the SSP pathway,
which suppresses anaerobic glycolysis and increases the flux toward
the TCA cycle (Maddocks et al., 2013). The OCM pathway is not
only deregulated somatically in cancer. Inherited polymorphisms in
the OCM pathway are associated with an increased risk of
tumorigenesis. A study exploring the inherited susceptibility to
cancer-related epigenetic alterations analyzed 233 patients with
colorectal, breast, or lung cancer for germ-line variants in genes
critical for methyl group metabolism, including
methylenetetrahydrofolate reductase, methionine synthase, and
cystathionine β-synthase. This investigation revealed a complex
link between genetic predispositions and epigenetic modifications
in cancer. Key findings indicated that individuals with the
methylenetetrahydrofolate reductase 677 T allele exhibited
inherently low genomic 5-methylcytosine levels and less severe
global hypomethylation in tumors. Additionally, tumors in
patients homozygous for the methionine synthase 2756G allele
had fewer hypermethylated CpG islands in tumor suppressor
genes, further underscoring the intricate relationship between
metabolism and epigenetics in cancer (Paz et al., 2002).

Impact of OCM on pluripotency
and aging

Aging and pluripotency are closely interconnected, albeit in
opposing manners. Aging can be described as the gradual
exhaustion of an organism’s cellular pluripotency (Pal and Tyler,
2016; López-Otín et al., 2023). Similarly, both processes are heavily
influenced by epigenetic modifications. Studies pioneered by the
Horvath’s lab defined changes in the methylation of specific CpGs as
one of the best predictors of chronological and biological aging in
organisms, a phenomenon termed “epigenetic clock” (Horvath,
2013). Conversely, the maintenance of pluripotency necessitates a
distinct epigenetic state, as demonstrated by induced pluripotent
stem cells (iPSCs), which are reprogrammed through the Yamanaka
factors (Oct4, Sox2, Klf4, and c-Myc), which are characterized by a
“rejuvenated” epigenetic landscape (Stadtfeld and
Hochedlinger, 2010).

The significance of one-carbon metabolism (OCM) in
maintaining the pluripotent state of cells was highlighted by the
discovery of a more than 200-fold upregulation of threonine
dehydrogenase (TDH) in mouse Embrionic Stem Cells (mESCs)
(Alexander et al., 2011). Furthermore, the deprivation of threonine
among 20 amino acids tested was found critical for the proliferation
and differentiation of these cells (Wang et al., 2009). TDH, an
enzyme within the OCM, catalyzes the oxidation of threonine to 2-

Frontiers in Epigenetics and Epigenomics frontiersin.org06

Bernasocchi and Mostoslavsky 10.3389/freae.2024.1451971

https://www.frontiersin.org/journals/epigenetics-and-epigenomics
https://www.frontiersin.org
https://doi.org/10.3389/freae.2024.1451971


amino-acetate, which subsequently contributes to the generation of
acetyl-CoA and glycine through Glycine C-acetyltransferase
(GCAT). The depletion of threonine was shown to slow growth
and increase differentiation in mESCs due to a reduction in the SAM
pool and, consequently, decreasing H3K4me3 markers. Only
supplementation with both glycine and acetyl-CoA could rescue
this phenotype, suggesting that ES cells require both methyl donors
from glycine and reductive power from acetyl-CoA (Shyh-Chang
et al., 2013). It is important to note, however, that the TDH enzyme
is a pseudogene in human cells and is therefore not active (Edgar,
2002). In another study, Shiraki et al., (2014) tested the reliance of
both human Embryonic Stem Cells (ESCs) and iPSCs on single
amino acid deprivation. They highlighted that deprivation of
leucine, lysine, or methionine inhibited cell proliferation, with
methionine deprivation causing the most significant decrease.
Similar to previous studies, methionine deprivation led to a
decrease in the cellular content of SAM, triggering demethylation
of H3K4me3 followed by broader global demethylation, which
consequently increased p53 signaling and decreased the
expression of the pluripotency marker NANOG.

The reprogramming of iPSCs driven by Yamanaka factors
requires extensive epigenetic remodeling, necessitating a large
supply of methyl donor groups in the form of SAM. Kovatcheva
et al., (2023) demonstrated that during reprogramming, cells deplete
the essential cofactor vitamin B12, crucial for methionine and,
consequently, SAM production. Replenishing the vitamin
B12 pool significantly enhanced the efficiency of reprogramming
and prevented illegitimate transcription initiation by maintaining
the histone mark H3K36me3. Contrary to the works discussed above
suggesting the requirement of one-carbon metabolism (OCM) in
pluripotency, overall aging, and lifespan have been associated with
what seems to be a downregulation of OCM through methionine
restriction (MR). Several studies have shown that dietary restriction
of methionine alone is sufficient to improve metabolic function and
life extension (Orentreich et al., 1993; Miller et al., 2005; Lees et al.,
2014). For example, a study using male Fischer 344 rats showed a
30% increase in lifespan. In a subsequent study on the same rats, it
was demonstrated that those on a methionine-restricted diet
exhibited reduced visceral fat, decreased levels of insulin and
glucose, and increased energy expenditure (DEE) (Malloy et al.,
2006). It is important to note that DEE is normalized to body weight,
and the MR rats weighed almost half as much as the control
group. This further suggests that the lifespan extension
phenotype could be attributed to the effects of a restricted caloric
diet, which is known to extend lifespan and inhibit full development
(McCay et al., 1939; Fontana et al., 2010). In a similar study with
Drosophila, methionine was found to be necessary and sufficient to
increase fecundity in the context of dietary restriction (DR), without
negating the positive lifespan effects induced by DR. (Grandison
et al., 2009). Moreover, alteration in the OCM has been shown to be
in part responsible for the increased life span induced byMetformin,
an oral antihyperglycemic drug for type 2 diabetes (T2D). Cabreiro
et al., (2013) demonstrated that C. elegans co-cultured with
Escherichia coli exhibited impairment in folate and methionine
pathways upon metformin treatment, mimicking a methionine-
restricted diet. Mechanistically, metformin inhibits methionine
synthase in E. coli, causing an accumulation of
S-adenosylmethionine (SAM) and 5-methyl tetrahydrofolate (5-

methyl THF). This accumulation leads to the inhibition of C.
elegans SAMS-1, decreasing SAM and S-adenosylhomocysteine
(SAH) levels, which drives the life extension phenotype. The
study suggests an important role of the microbiota in the
influence of the OCM and that the beneficial effect of metformin
could be mediated through the OCM pathway.

All the studies above suggest that MR and OCM downregulation
are possible mechanisms of healthy and extended life. MR and DR
have been shown to increase the fluxes towards the transsulfuration
pathway responsible for the production of Hydrogen Sulfide and
Taurine (Kabil et al., 2011; Kosakamoto et al., 2023). In line with
this, several studies have shown that the aging population has a
decrease in the levels of taurine, a semi-essential amino acid that can
be taken from the diet or generated by a branch of the OCM, the
transsulfuration pathway (See Figure 1, Transsulfuration pathway)
(Stuerenburg et al., 2006; Wallace and Dawson, 2009; Ripps and
Shen, 2012; Yoshimura et al., 2021; Singh et al., 2023). Taurine
deficiency in early life is associated with skeletal, central nervous
system and vision impairment (Ripps and Shen, 2012). In a recent
study, Singh et al., (2023) demonstrated that taurine levels drop by
80% in the elderly population across several species, including mice,
monkeys, and humans. This finding suggests that taurine may play a
role in aging-related diseases. To explore this further, the researchers
administered daily intraperitoneal taurine to middle-aged mice. The
results revealed a significant decrease in cellular senescence, DNA
damage, mitochondrial dysfunction, and inflammaging. Notably,
both monkeys and mice receiving taurine supplementation
exhibited increased health span and lifespan. Moreover, the
upregulation of enzymes in the transsulfuration pathway, such as
cystathionine β-synthase (CBS), has been observed in long-lived
Drosophila under dietary restriction (DR), further validating the
importance of this pathway and possibly suggesting that one-carbon
metabolism (OCM) could be one of the main players in the effects of
DR on longevity (Kabil et al., 2011). Similarly, in humans, when
comparing taurine and one-carbon metabolism (OCM) levels
between centenarians and the normal elderly population,
centenarians exhibit upregulation of the transsulfuration pathway
and taurine levels and of a microbiome supporting sulfate
metabolism (Mota-Martorell et al., 2021; Johansen et al., 2023).
These findings suggest that OCM may be crucial for maintaining a
healthy aging phenotype.

Changes in DNA and histone methylation are hallmarks of
aging (López-Otín et al., 2023). Recently, it has been shown that
double-stranded DNA breaks induce the recruitment of DNA repair
genes, including chromatin remodeling enzymes such as SIRT6,
HDAC1, and PARP1, to repair the breaks. This recruitment can lead
to the loss of epigenetic marks, resulting in the loss of a youthful
epigenome and an increased rate of aging (Mostoslavsky et al., 2006;
Toiber et al., 2013; Tian et al., 2019; Kovatcheva et al., 2023; Yang
et al., 2023). The addition or removal of epigenetic marks, as
discussed above, are driven by enzymatic reactions, as
exemplified by the one-carbon metabolism (OCM) pathway with
S-adenosylmethionine (SAM) as the universal methyl donor.
Impairment in the OCM pathway could lead to a loss of these
epigenetic marks and potentially increase the rate of aging. An
interesting example comes from the work of Kang et al., (2024)
where similar results were observed in vivo in a study comparing
aged versus young mice, focusing on the quantity of muscle stem
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cells (MuSCs). The study revealed that aged MuSCs were associated
with decreased levels of heterochromatin, such as H3K9 di- and tri-
methylation, and the heterochromatin protein HP1. This reduction
was due to the depletion of SAM, which was preferentially utilized
for polyamine production at the expense of nuclear methylation.
Supplementation with SAM or inhibition of the polyamine pathway
greatly enhanced heterochromatin formation, improved the
functionality of MuSCs, and reversed the aging phenotype.

Conclusion

Since the discovery of the double helix and particularly after the
Human Genome Project, genetics was hailed as the holy grail for
understanding biological processes and curing diseases such as cancer.
However, the reality is that while the genome provides the instructions
for building cellular components, it does not dictate their use. Often,
these decisions are influenced by the environment, which includes
metabolites among other factors. Two recent studies challenge this
conventional view. The first, by Kong et al., (2024) revisits Knudson’s
“two-hit” paradigm in cancer, which posits that both copies of an
autosomal tumor suppressor gene must be inactivated for
carcinogenesis to occur. This study elegantly demonstrates that a
single metabolite, Methylglyoxal (MGO)—derived nonenzymatically
from glyceraldehyde-3-phosphate mainly during glycolysis—can act as
an oncogene by transiently inactivating Breast cancer type 2 (BRCA2).
This transient inhibition of BRCA2 is sufficient to trigger single-base
substitutions (SBSs) and increase genomic instability. The second
significant study, by Parreno et al., (2024) shows for the first time
that a transient epigenetic event can induce tumorigenesis in the
absence of additional stimuli. The authors transiently downregulated
the polycomb complex (PRC) in flies, which is responsible for
depositing H3K27me3 repressive marks and H2AK118UB, which is
important for repressing developmental genes through cellular
memory. This downregulation activates JAK-STAT signaling and
zfh1 (ZEB1 in mammals), which alone was sufficient to induce
cancer without driver mutations. Notably, the activity of the PRC
complex, including the histone methyltransferase EZH2, as previously
discussed, depends on the availability of SAM and is inhibited by SAH.
This suggests that transient disruptions in one-carbon metabolism
(OCM) could lead to enduring changes in chromatin architecture
and, subsequently, cancer.

A longstanding question in oncology is why most cancers
develop later in life. One possible explanation is metabolic
impairment, which may drive epigenetic changes in chromatin
that are sufficient to initiate tumorigenesis independently or to
induce DNA damage, thereby leading to cancer-driver mutations.
Although we lack current data to support this hypothesis, further
studies could establish such a connection. In this context, it might be
worthwhile to consider integrating metabolic analysis with standard
tests such as PSA or PAP tests.

In this review we aimed to highlight the nuclear role of OCM
metabolic enzymes not only as agents in oxidative or reductive
reactions but also as signaling proteins. As mentioned above,
components of the OCM can relocate to the nucleus, bind to

nuclear proteins, and perform signaling functions. This suggests
that cellular functions, although compartmentalized, are tightly
regulated by metabolic processes, and there is a need to adopt a
systems biology approach rather than focusing solely on individual
genes or metabolic pathways independently. In discussing the role of
OCM in cancer and aging, we highlight the fact that genetic
manipulation of the genome, without considering the actuating
role of metabolites, could yield modest results, whether in
activating pluripotency pathways or in attempts to modulate
organismal aging. Future research will undoubtedly continue to
elucidate this critical interplay between metabolite levels, metabolic
enzymes, subcellular localization, and changes in the
chromatin landscape.
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