
Transcription factor network
dynamics during the commitment
to oncogene-induced
senescence

Themistoklis Vasilopoulos and Ricardo Iván Martínez-Zamudio*

Robert Wood Johnson Medical School, Department of Pharmacology, Rutgers University, Piscataway,
NJ, United States

Aberrant oncogenic signaling causes cells to transition into oncogene-induced
senescence (OIS) to limit uncontrolled proliferation. Despite being a potent
tumor suppressor mechanism, OIS is an unstable cell state susceptible to
reprogramming that can promote tumorigenesis. Therefore, elucidating the
underlying gene regulatory mechanisms that commit cells to OIS is critical to
identifying actionable targets to modulate the senescence state. We previously
showed that timely execution of the OIS program is governed by hierarchical
transcription factor (TF) networks. However, the gene regulatory mechanisms
that prime cells to commit to the OIS fate early upon oncogene hyperactivation
are currently not known. Here, we leveraged our time-resolved multi-omic
profiling approach to generate TF networks during the first 24 h of oncogenic
HRASG12V activation. Using this approach, we demonstrate that the commitment
to OIS requires the rearrangement of the TF network on a pre-established
epigenomic landscape, priming the cells for the substantial chromatin
remodeling that underpins the transition to OIS. Our results provide a detailed
map of the chromatin landscape before cells transition to OIS thus offering a
platform for manipulation of senescence outcomes of potentially therapeutic
value.
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Introduction

Loss of cell identity (i.e., the differentiated phenotype) by oncogene hyperactivation, one
of the earliest events during oncogenic transformation, occurs due to the destabilization of
the transcription factor networks (Ji et al., 2021) that control cell type-specific gene
expression (Wilkinson et al., 2017; Ferreiros et al., 2019). Aberrant oncogenic signaling
can force cells with perturbed identities into oncogene-induced senescence (OIS), a potent
tumor suppressor mechanism defined by a stable proliferative arrest and a pleiotropic
senescence-associated secretory phenotype (SASP) (Braig et al., 2005; Bartkova et al., 2006;
Campisi, 2013; Martinez-Zamudio et al., 2017). Despite the loss of proliferative capacity,
cells in OIS remain highly dynamic entities which can reprogram themselves as well as
destabilize the identity of cells within their surrounding tissue environment through cell
autonomous and cell non-autonomous mechanisms (Lee and Schmitt, 2019). This
functional heterogeneity of cells in OIS can lead to multiple, and sometimes
paradoxical, outcomes, including reinforcement and destabilization of the proliferative
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FIGURE 1
Transcriptional landscape of WI38 fibroblasts during the first 24 h of oncogenic HRASG12V overexpression. (A) Diagram describing the experimental
approach for the time-resolved multi-omic profiling used to define the early gene-regulatory networks preceding OIS commitment. (B) Euler diagrams
showing overlaps of differentially expressed genes (DEGs) for each time point in the time series relative to proliferating cells (0 h). (C) PCA projection plots
showing the individual transcriptional trajectories of DEGs identified within 24 h of RAS induction. Two biologically independent time series are
shown. (D)Heatmap showing the number-codedmodules (I-IV) of DEGs identifiedwithin 24 h of RAS overexpression. Two biologically independent time
series experiments are shown. (E) Functional over-representation analysis map showing significant associations of the Molecular Signatures Database
(MSigDB) Hallmark gene sets for each module described in (D). Circle fill is color-coded according to the FDR-corrected p-value from a hypergeometric
distribution test. Circle size is proportional to the percentage of genes in each MSigDB gene set found within each gene module. N > 200 genes per
module. (F) PCA projection plots showing the trajectories of DEGs identified through the entire time series (up to 144 h after RAS overexpression). (G)
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arrest (Acosta et al., 2008; Martinez-Zamudio et al., 2023),
reprogramming into a stem cell-like state (Milanovic et al., 2018)
and transformation of non-malignant cells (Krtolica et al., 2001).
Given their considerable impact on the outcome of carcinogenesis
(Haugstetter et al., 2010; Eggert et al., 2016; Yu et al., 2018; Martinez-
Zamudio et al., 2020; Martinez-Zamudio et al., 2023), understanding
the mechanisms that commit cells to the OIS state early upon
oncogene hyperactivation can lead to new therapeutic
interventions of premalignant lesions.

Timing and duration of the oncogenic stimulus is critical for the
commitment to the OIS phenotype (Wilson et al., 2017; Khaliq and
Fallahi-Sichani, 2019). For instance, SASP from OIS fibroblasts has
been shown to dynamically change its composition based on a
NOTCH1-controlled switch that divides the secretome in two
distinct phases post-induction of oncogenic RAS (Hoare et al.,
2016). Additionally, it has been shown that the proliferative
output of cells upon induction of BRAFV600E can create
population wide heterogeneity on the senescence outcome within
the first 72 h (Chen et al., 2023). The transition to OIS is a highly
organized, epigenetically precoded and reversible program that is
mediated by hierarchical TF networks (Martinez-Zamudio et al.,
2020). Yet, although the MAPK/ERK signaling cascade is activated
within hours after RAS/BRAF activation (Chen et al., 2023), the
duration of the oncogenic signal input and the time point at which
cells commit to transition to OIS are unknown. Revealing the gene
regulatory mechanisms that prime cells to commit to OIS can
provide a detailed platform for manipulation of senescent cells
with potentially therapeutic implications.

In this study, we defined the gene regulatory networks formed
within the first 24 h of oncogenic HRASG12V activation that lead up
to OIS commitment. We measured and integrated bulk
transcriptome, epigenome and TF network dynamics at the early
stages (0–24 h) upon oncogenic activation in the WI38 human lung
fibroblasts undergoing HRAS-mediated OIS. This approach
revealed that the TF network leverages a pre-established
epigenomic landscape to promote the transcriptional changes
required to transition to OIS within 24 h of oncogenic signaling.

Results

Dynamic multi-omic profiling to define the
commitment to OIS

We performed time series experiments on human lung
fibroblasts (strain WI38) undergoing OIS using the well
characterized 4-hydroxytamoxifen (4-OHT)-inducible ER:RASG12V

system (Young et al., 2009). We determined global transcriptomic,
epigenomic and chromatin accessibility profiles using bulk RNA-
seq, Cleavage Under Targets and Tagmentation (CUT&Tag)

(Kaya-Okur et al., 2019) against H3K4me1 (putative enhancers),
H3K27ac (activation) and H3K27me3 (facultative
heterochromatin), and ATAC-seq at six time points (0, 2, 4, 12,
24, and 144 h after ER:RAS induction; Figure 1A). We verified the
OIS state by monitoring morphological changes through light
microscopy at each time point (Supplementary Figure S1A), RT-
qPCR profiling of a panel of OIS-associated genes at 144 h post-
induction as an end-point control (Supplementary Figure S1B),
which we further confirmed by plotting their normalized counts
at each time point (Supplementary Figure S1C). We confirmed
activation of the RAS-MAPK pathway by immunoblotting against
phosphorylated ERK1/2, which showed activation as early as 2 h
after induction with 4-OHT. Levels of pERK1/2 peaked at 24 h post-
induction and were maintained until the last time point at 144 h
post-induction (see below).

Early transcriptome dynamics precede
commitment to OIS

To examine early gene expression dynamics occurring upon
activation of the OIS program (up to 24 h post-induction), we
applied principal component analysis and a machine learning self-
organizing map (SOM) algorithm (Loffler-Wirth et al., 2015) to the
transcriptomes of WI38 fibroblasts expressing HRASG12V. These
approaches revealed that cells rapidly activate a transcriptional
response to HRASG12V expression, with detectable changes to the
transcriptional trajectory as well as the SOM portraits as early as 4 h
after HRASG12V induction, which continued to evolve until 24 h
(Supplementary Figures S2A–D). Importantly, the transcriptional
trajectories were remarkably reproducible across independent
experiments. We identified ~3,500 differentially expressed genes
(DEGs) within 24 h upon HRASG12V activation (Figure 1B;
Supplementary Table S1), whose transcriptional trajectory was
virtually identical to that identified at the global transcriptome
level (Figure 1C; Supplementary Figure S2A). We characterized
the DEGs using weighted correlated gene network analysis
(WGCNA) (Langfelder and Horvath, 2008), which identified
4 distinct modules (Figure 1D; Supplementary Table S1).
Pathway analysis revealed upregulation of genes involved in RAS
signaling, MYC targets, as well as TNF signaling (module II) all of
which are associated with the activation of the MAPK/ERK pathway
(Sabio and Davis, 2014), within 4 h of HRASG12V activation
(Figure 1E). By 12 h, cells upregulate genes associated with
mTORC1 signaling as well as G2M checkpoints (module I),
indicating the cells are processing the aberrant oncogenic signal
that perturbs the regulation of the cell cycle (Figure 1E) (Hsieh et al.,
2018). Interestingly, genes in modules III and IV representing
pathways playing major roles in senescence outcomes, such as
the p53 pathway as well as SASP-associated pathways (interferon

FIGURE 1 (Continued)

Heatmap showing the color-coded modules (yellow, blue, green and turquoise) of DEGs identified throughout the entire time series (up to 144 h
after RAS overexpression). Two biologically independent time series experiments are shown. (H) Functional over-representation analysis map showing
significant associations of the Molecular Signatures Database (MSigDB) Hallmark gene sets for each module described in (G). Circle fill is color-coded
according to the FDR-corrected p-value from a hypergeometric distribution test. Circle size is proportional to the percentage of genes in each
MSigDB gene set found within each gene module. N > 200 genes per module.
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responses (IFNα/γ), transforming growth factor β (TGFβ) signaling
and Notch signaling), are expressed in proliferating fibroblasts but
become repressed by 24 h, indicating that a basal activity of these
pathways is required to maintain cell identity which, upon
HRASG12V induction, become repressed as the cells transition into
OIS (see modules III, IV; Figure 1D). We then evaluated whether the
transcriptional dynamics observed within 24 h of HRASG12V

induction manifest in cells in OIS by reanalyzing the time series
including the reference OIS time point of 144 h. To our surprise,
inclusion of the 144 h time point resulted in the detection of an
additional 3,204 DEGs (Figure 1B), which drove a drastic shift in the
transcriptional trajectory of both DEGs and global transcriptomes
between 24 h and 144 h (Figure 1F; Supplementary Figure S2E),
consistent with our previous results (Martinez-Zamudio et al.,
2020). WGCNA clustering identified 4 distinct modules
(Figure 1G). Genes in the blue module, which enriched for
pathways such as EMT, myogenesis and cholesterol homeostasis,
were highly expressed in proliferating fibroblasts and early after
HRASG12V induction, steadily decreasing until cells reached OIS
(Figures 1G,H; Supplementary Table S1). Genes in the turquoise
module, which steadily increased as the cells committed to OIS, were
representative of cell cycle control and the metabolic sensor
mTORC1 pathways, likely reflecting implementation of the cell
cycle arrest and increased metabolic rates that are typical of
senescent cells (Wiley and Campisi, 2021). Interestingly, genes in
the yellow and green modules exhibited linear expression kinetics,
decreasing and increasing, respectively, until 24 h after HRASG12V

induction, then suddenly switching direction of expression,
achieving maximal expression and repression, respectively, by
144 h (see yellow and green modules Figure 1G). Genes in the
yellow module enriched for pathways characteristic of senescent
cells, including inflammatory response, p53 pathway and various
cytokine signaling pathways, while genes in the green module
represented pathways characteristic of response to cell damage
including DNA repair, apoptosis and UV response (Figure 1H).
We confirmed the effect of the transcriptome at 144 h on the overall
transcriptional trajectory as well as the switch in expression for a
subset of gene clusters by SOM analysis (Supplementary Figures
S2F–H; clusters D-I). To provide additional validation of the gene
expression behavior during the first 24 h of oncogenic activation on
a different cell line, we performed RT-qPCR profiling of a panel of
OIS-associated gene in GM21-ER:RAS skin fibroblasts undergoing
OIS. The pattern of expression of this OIS gene panel was
comparable across two independent time series (Supplementary
Figures S2I,J) and was also remarkably similar to normalized
read counts for the same gene set in WI38-ER:RAS fibroblasts
(compare to Supplementary Figure S1C). Together, these results
highlight the highly organized nature of the early transcriptional
events leading up to the commitment to OIS.

Early gene regulatory events leading to the
commitment to OIS take place in a pre-
established chromatin landscape

Previous studies have shown a critical role of enhancers in the
timely execution of the OIS program (Tasdemir et al., 2016; Guan
et al., 2020; Martinez-Zamudio et al., 2020; Martinez-Zamudio et al.,

2023).We therefore asked whether enhancer dynamics underpin the
early transcriptional changes during the commitment to OIS. To this
end, we initially focused on chromatin accessibility dynamics at
H3K4me1-defined putative enhancers (Natoli, 2010; Heinz et al.,
2015). PCA analysis of differentially accessible regions (DARs)
(Figure 2A) matched those of DEGs and global transcriptomes.
Surprisingly, despite the strong correlation between chromatin
accessibility and transcriptional trajectories, only a modest
amount of DARs was identified within 24 h of HRASG12V

induction (244 DARs), with most chromatin accessibility changes
occurring between 24h and 144 h (21,301 DARs) (Figure 2B;
Supplementary Table S2). Clustering with WGCNA identified
four modules (1–4) (Figure 2C; Supplementary Table S2).
Modules 2 and 3 exhibited linear accessibility dynamics, closing
and opening, respectively. Reminiscent of transcriptional modules,
DAR modules 1 and 4 exhibited dynamic behavior, with increasing
and decreasing accessibility up until 24 h, respectively, followed by a
reversal of their accessibility by 144 h (Figure 2C). Similar results
were obtained when chromatin accessibility datasets were analyzed
in their totality (i.e., irrespective of histone modification-defined
regulatory regions), with most chromatin accessibility changes
occurring between 24 h and 144 h (Supplementary Figures
S3A–C). Importantly, DARs, irrespective of the presence of
H3K4me1, were prominently bound by AP1 family TFs prior to
the induction of OIS (Figures 2D–F; Supplementary Figures S3D–F),
confirming the critical role of these TFs in the execution of the OIS
program (Han et al., 2018; Martinez-Zamudio et al., 2020). The
limited chromatin accessibility changes occurring within 24 h of
HRASG12V induction despite significant transcriptional dynamics
within this time frame prompted us to evaluate the activation state of
enhancers. We quantified the signal intensities of H3K4me1,
H3K27ac and TF binding (ATAC) at opening, closing and
dynamic enhancers throughout all timepoints. H3K4me1 levels
remained stable for the duration of the experiment across all
enhancer classes, as expected (Figures 2G–I, top panels).
Surprisingly, basal levels of H3K27ac were detectable at all
enhancer classes prior to RAS induction (Figures 2G–I, middle
panels). The activation state of these enhancers varied modestly
through the time series, reaching levels concordant with the
accessibility state of each enhancer class once cells had achieved
the OIS state (i.e., opening enhancers gained H3K27ac; closing lost
H3K27ac; dynamic enhancers remained constant) (Figures 2G–I).
This behavior was also observed for ATAC signals, which were
readily detectable prior to RAS induction, remaining stable up until
24 h and followed by measurable gains or losses of chromatin
binding by 144 h (Figures 2G–I, bottom panels).

To gain further insight into the chromatin-based mechanisms
leading to commitment to OIS, we performed a chromatin state
transition analysis on our chromatin accessibility and histone
modification datasets using the chromstaR algorithm. This
approach maximizes detection of chromatin regions undergoing
transitions through segmentation and quantification of non-
overlapping featured-enriched regions at each time point (Hanna
et al., 2018). Sixteen distinct chromatin states were identified, which
were correctly annotated to their respective genomic regulatory
regions in ENCODE project-defined chromatin states in normal
human lung fibroblasts (NHLF) at each time point
(i.e., H3K4me1 enriched at enhancers; H3K27me3 enriched at
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FIGURE 2
Gene regulatory events leading to commitment to OIS occur on a pre-established enhancer landscape. (A) PCA projection plots showing the
individual trajectories of the differentially accessible regions (DARs) within putative enhancer regions (H3K4me1-defined enhancers). Two biologically
independent time series are shown. (B) Euler diagram showing overlaps of DARs within putative enhancers regions for all time-points of the experiment
up to 144 h. (C)Heatmap showing the number-coded modules (1–4) of DARs within putative enhancers per time-point as cells commit to OIS. The
average of two biologically independent time series is shown. Modules represent DARs that are opening (Module 3), closing (Module 2) or demonstrate a
more dynamic behavior (Modules 1, 4) throughout the time series. (D–F) Rank plots showing the summed binding instances of TFs at DARswithin putative
enhancers at each module defined in (C). (G–I) Genome-wide signal intensity evolution heatmaps of H3K4me1, H3K27ac and ATAC-Seq signals in
opening (G), closing (H) and dynamic (I) putative enhancers as cells commit to OIS. The average of two independent time series is shown (D–I). Insets to

(Continued )
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repressed regions; Supplementary Data). Consistent with our
previous observations (Martinez-Zamudio et al., 2020; Martinez-
Zamudio et al., 2023), the majority of the genome was devoid of
histone modification or ATAC-seq signals (~65%) (unmarked
chromatin) followed by facultative heterochromatin (~15%).
Chromatin states linked to gene regulatory regions (enhancers
and promoters) represented ~20% collectively (Supplementary
Figure S4A). Intriguingly, we did not find major chromatin state
transitions within the first 24 h of HRASG12V induction. Most of the
chromatin state transitions occurred between 24 h and 144 h, which
largely involved activation of poised enhancers, commissioning of
putative enhancers from unmarked chromatin and gains in TF
binding at bivalent enhancers (defined as regions possessing
H3K4me1, H3K27me3 and in some instances H3K27ac) (Blanco
et al., 2020) (Figure 3A; Supplementary Figure S4B; Supplementary
Table S3). Quantification of signal intensities of histone
modifications and TF binding at each time point confirmed the
results from the chromatin state transition analysis (Supplementary
Figures S4C–E). The stability of the epigenome during the first 24 h
upon induction of OIS seemed at odds with the measurable changes
in gene expression during the same timeframe. To address this
apparent incongruency, we integrated the top eight chromatin state
transitions with the expression distribution dynamics of their nearby
DEGs (Figure 3B). This analysis yielded several unexpected
observations: I) the expression levels of DEGs near the top eight
chromatin state transitions exhibited a relatively tight unimodal
distribution during the first 12 h upon HRASG12V induction, II) as
cells approach the transition point at 24 h, this unimodal
distribution flattens, reflecting increased transcriptional noise
(Tsuchiya et al., 2015) before III) committing to OIS by 144 h, at
which time the distribution of DEG expression becomes bimodal,
with gene expression reflecting its respective chromatin state
transition (i.e., most genes near enhancers activated from a
poised state become highly expressed in OIS cells) (Figure 3B;
Supplementary Table S3). Correspondence analysis (CA)
confirmed the coherence between chromatin state transitions and
expression dynamics of DEG modules defined in Figure 1G
(i.e., highly expressed genes in the turquoise module are closely
associated with enhancer activation from the unmarked state upon
commitment to OIS; Figure 3C). The early transcriptional dynamics
in the absence of major chromatin remodeling suggests that early
upon HRASG12V induction, gene expression is primarily controlled
by TFs binding already accessible regions. This is consistent with the
minor fraction of DARs observed within the first 24hrs in contrast to
when the cells acquire OIS (Figure 2B; Supplementary Figure S3B).
To identify potential TFs regulating chromatin state transitions
during commitment to OIS, we performed footprinting analysis
of unmarked, poised and bivalent enhancers prior to induction of
HRASG12V (0 h) (Supplementary Table S3). We identified potential
new players including IRF1, SOX15 and KLF family TFs as well as
TFs involved in the regulation of OIS such as FOX family TFs and

POU2F2 (Han et al., 2018; Martinez-Zamudio et al., 2023) (Figures
3D–F and see below). Overall, our comprehensive epigenomic
analyses demonstrate that the early gene regulatory events
leading to the commitment to OIS (within 24 h) occur within a
pre-established chromatin landscape.

Widespread transcription factor network
dynamics precede commitment to OIS

Given the limited changes to chromatin accessibility and
chromatin states early upon HRASG12V induction, we explored
the possibility that TF network activity may underlie the gene
expression dynamics required for the commitment to OIS. To
this end, we leveraged our TF footprinting datasets and initially
determined TF co-binding interactions at DAR modules (Figure 4).
We quantified TF binding instances identified at each point at
closing, dynamic and opening DARs and subsequently projected
them onto a co-binding matrix (Figures 4A–C). We identified
AP1 family TFs as major mediators of TF interactions at all
DAR classes, consistent with our previous findings (Martinez-
Zamudio et al., 2023). In addition, we also detected additional
co-binding clusters involving KLF, EGR and HOX family TFs.
This was particularly notable at opening DARs, where
widespread dynamic TF connectivity was observed (Figure 4C).
Focusing the analysis on putative enhancers revealed similar results,
albeit to a lesser degree (Supplementary Figures S5A–C). These data
indicated that major TF network rearrangements are required
during the early stages prior to the commitment to OIS. To
address this possibility, we determined TF binding activity at
all DAR classes (Li et al., 2019). Of note, widespread differential
TF binding activity was readily detectable as early as 2 h upon
induction of HRASG12V across all DAR classes and at putative
enhancers (Figures 4D–F; Supplementary Figures S5D–F).
Consistent with our transcriptome and epigenome analyses,
the TF binding activity profile of cells in OIS was most
dissimilar relative to those at earlier time points, particularly
at opening DARs (and DARs at putative enhancers) where most
of the TF network rearrangements were observed (Figures 4C, F;
Supplementary Figures S5C, F). We observed similar TF binding
activity dynamics at poised enhancers, unmarked chromatin and
bivalent enhancers which underwent major transitions between
24 h and 144 h after HRASG12V induction (Supplementary Figure
S6). Incorporating the transcriptional status of the TFs in the
network revealed that, although the TF network dynamics can be
attributed to differentially expressed TFs (see annotations on
Figures 4D–F, Supplementary Figures S5D–F, S6), most of these
TFs are already expressed prior to the induction of OIS (i.e., TFs
in the yellow and blue modules), consistent with the notion that
the commitment to OIS leverages a pre-established
epigenomic landscape.

FIGURE 2 (Continued)

the left of heatmaps show the signal metaprofile of each respective histone modification and ATAC-seq signal in consecutive time points from top
to bottom.
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To visualize the dynamicity and structure of the TF interactome as
cells transition to the OIS fate, we constructed TF networks focusing
on the co-binding interactions at opening, dynamic and closing DARs
(Figure 5; Supplementary Figure S7; Supplementary Table S4). In line
with our previous work, the TF networks had a hierarchical structure
composed of top, core and bottom layers (Figure 5; Supplementary
Figure S7; Supplementary Table S4). However, and in contrast to our
previous work at later time points during the commitment to and
escape from OIS, the top layers of TF networks at opening and
dynamic DARs were composed of numerous constitutively as well as
differentially expressed TFs (202 TFs at opening DARs; 185 TFs at

dynamic DARs) comprising multiple TF families including HOX,
FOX, KLF, IRF, EGR as well as various ZNF TFs in addition tomaster
regulators AP1 TFs (Figures 5A,B; Supplementary Table S4). In
contrast, the top layer of the TF network at closing DARs featured
exclusively AP1 TFs (Supplementary Figure S7; Supplementary Table
S4). The increased complexity at the top layers at opening and
dynamic DARs is reminiscent of the TF binding dynamics during
embryonic stem (ES) cell differentiation, which, similar to findings
presented here, precede the widespread chromatin remodeling upon
germ layer commitment (Tsankov et al., 2015). To validate the
observations from TF co-binding and activity studies, we

FIGURE 3
A stable epigenomic landscape precedes commitment to OIS. (A) Arc-plot visualization of eight select chromatin state transitions (each colored
differently) at each indicated time-point during the first 24hrs post 4-OHT treatment and until OIS (144 h). The width of the edge is proportional to the
number of 200 bp bins undergoing a given chromatin transition. (B) Integration of the top eight chromatin state transitions (top pictograms; 0 h–144 h
from left to right) with nearby expression output of DEGs (Z score; violin plots; each dot represents a DEG). (C) Asymmetric biplot of the
correspondence analysis (CA) showing the association between the top six, best-projected (squared cosine > 0.5), chromatin state transitions and DEG
modules as defined in Figure 1G (blue, green, turquoise and yellow). The statistical significance of the association was calculated using a chi-squared test
and shown as an inset. (D–F) Rank plots showing the summed binding instances of TFs at poised enhancers (D), unmarked chromatin (E) and bivalent
enhancers (F) prior to the induction of OIS (0 h). Chromatin state transitions, footprinting and expression data are the average of two independent
time series.

Frontiers in Epigenetics and Epigenomics frontiersin.org07

Vasilopoulos and Martínez-Zamudio 10.3389/freae.2024.1423454

https://www.frontiersin.org/journals/epigenetics-and-epigenomics
https://www.frontiersin.org
https://doi.org/10.3389/freae.2024.1423454


monitored the protein levels of a subset of top layer, differentially
expressed TFs; Interferon response factor 1 (IRF1), Early growth
response 1 (EGR1) and Homeobox B6 (HOXB6) (Figure 5C; insets),
which exhibited dynamic binding activity at DARs, putative
enhancers, and at the top three most frequent chromatin state
transitions (Figures 4D–F, Supplementary Figures S5, S6). As a
reference, we also included the AP1 TF c-JUN. Immunoblot
analysis showed strong basal expression for all TFs across
independent experiments (Figure 5D). Upon induction of
HRASG12V, levels of EGR1, one of the early sensors of growth and
stress signaling (Wang et al., 2021), were drastically reduced within
4 h–12 h, and remained at similar levels until the last time point at
144 h. Interestingly, EGR1 activity at DARs and putative
enhancers was variable through the duration of the
experiments (Figures 4D–F). Similarly, protein expression of
IRF1, master regulator of the interferon response (Feng et al.,
2021), exhibited cycles of down- and up-regulation, which

generally matched its activity at genomic regulatory regions
(Figures 4D–F; Figure 5D). Expression of HOXB6, a member
of the developmental regulators HOX TFs (Smith et al., 2019;
Steens and Klein, 2022), gradually increased until reaching
maximal levels at 24 h post HRASG12V induction. Expectedly,
the protein levels of c-JUN were essentially stable throughout the
duration of the experiments (Figure 5D). The readily detectable
basal expression of these and other TFs in our network highlight
a widespread role for the TF network in the maintenance of the
fibroblast cell identity (Wilkinson et al., 2017). Additionally, the
ability of the cell to rapidly control both the expression and
activity of nodes within the network in response to HRASG12V

induction emphasizes its sensitivity to cell identity-perturbing
stimuli. Collectively, our analyses of TF network dynamics
confirm that a high degree of responsiveness of the pre-
existing TF network to oncogenic stress induced by HRASG12V

overexpression precedes the commitment to OIS.

FIGURE 4
Widespread TF network rearrangements precede commitment to OIS. (A–C) Transcription factor co-binding matrices at closing (A), dynamic (B)
and opening (C) DARs (as defined in Supplementary Figure S3C modules) during the first 24 h and as cells enter OIS (144hrs). All binding instances across
time points were collapsed onto the matrix and clustered using Ward’s aggregation criterion. The corresponding q values were projected onto the
clustering and are color-coded based on significance calculated using a hypergeometric distribution test. (D–F) Heatmaps showing the differential
TF chromatin binding activity (row Z-score) at closing (D), dynamic (E) and opening (F) DARs for each time point. Only expressed TFs were considered in
the analysis. The annotations on the left show the number of bound instances per TF and their gene expression (TXN) category (i.e., constitutively
expressed [black] or differentially regulated according to the module color code shown in Figure 1G). Insets show the chromatin binding activity of
representative TFs. TF footprinting (A–F) and differential chromatin binding activity were performed on ATAC-seq datasets from two biologically
independent time series.
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FIGURE 5
TF networks dynamics define the commitment to OIS. (A, B) TF networks at opening (A) and dynamic (B) DARs. TFs (nodes) are represented as
circles. Oriented edges (arrows) connecting nodes indicate that at least 15% of the regions bound by a given TF in the bottom and core layers were bound
by the interacting TF in the core and top layers, respectively, at the same or previous time points. Strongly connected components (SCCs) are represented
as a single node to facilitate visualization. The fill color of the node’s inner circle is based on the normalized dynamicity of TFs. The fill color of the
outer ring indicates whether the TF is constitutively expressed or belongs to a transcriptomic module (yellow, blue, green, turquoise). The node’s size is
proportional to the bound regions by a given TF. Each network has three layers: i) the top layer with no incoming edges, ii) the core layer with incoming
and outgoing edges, and iii) the bottom layer with no outgoing edges. Representative TF families at the top and core layers are shown (see text). Networks
were generated from pooled ATAC-seq data sets from two biologically independent time series. (C) Heatmap showing the expression levels of genes

(Continued )
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Discussion

Although the tumor suppressive role of OIS has been well
established, recent evidence shows that OIS can play a determinant
role on the outcome of carcinogenesis via cell autonomous and cell non-
autonomous mechanisms. For instance, the SASP generated by
hepatocytes in OIS can promote the immune clearance of pre-
malignant hepatocytes while simultaneously fueling growth of
carcinoma cells through inhibition of the natural killer cell function
(Eggert et al., 2016). Also, cells which have remained in OIS or therapy-
induced senescence (TIS) for prolonged periods can undergo epigenetic
reprogramming, resulting in TF network rearrangements and stemness
reprogramming that facilitate senescence escape (Milanovic et al., 2018;
Zampetidis et al., 2021; Martinez-Zamudio et al., 2023). Furthermore,
the heterogeneity of OIS, which is dependent on the nature and
duration of the oncogenic trigger as well as the tissue of origin,
manifests at the single cell level and can impact cancer development
at the subpopulation level (Chatsirisupachai et al., 2021). Thus, the
continuous evolution of the OIS state determines the functional
outcome in the progression of premalignant lesions. This
heterogeneity of the OIS state has an outsized negative impact on
the development of therapies that target senescent cells, which is
reflected by an underwhelming efficacy of senotherapies (Dolgin,
2020). Under this light, understanding the gene regulatory
mechanisms that commit cells to OIS may open new opportunities
to develop more effective therapies to prevent cancer development by
preventing the transition to this metastable cell state susceptible to
reprogramming.

Here we defined the gene regulatory networks during the early
time points prior to the commitment to OIS. By integrating gene
expression, epigenome and TF binding dynamics we identified the
time point at which cells under oncogenic stress due to HRASG12V

overexpression prepare to commit to OIS. Based on our findings, we
hypothesize this event occurs at 24 h post RAS induction, at which
the transcriptional and chromatin accessibility trajectories of these
cells undergo a drastic shift. From a gene expression point of view,
this shift in trajectory coincides with the repression of DNA repair
and metabolic genes and the upregulation of cell cycle control and
SASP-associated genes between 24 h and 144 h after RAS induction.
These events likely reflect an initial attempt of the cell to overcome
the DNA damage incurred by HRASG12V overexpression, including
replication stress (Fumagalli et al., 2014). As the cell’s machinery
becomes insufficient to deal with the damage, the transition to OIS
occurs, as reflected by the detection of an additional 3,204 DEGs
exclusive to senescent cells.

In contrast, despite being virtually identical to transcriptional
trajectories, only a small fraction of the accessible chromatin globally
and at putative enhancers underwent detectable changes within 24 h,
with the bulk of the chromatin accessibility changes occurring
between 24 h and 144 h. Of note, putative enhancers were already
bound by AP1 prior to the induction of oncogenic hyperactivity and

basally activated, which subsequently underwent subtle but detectable
(de)activation and gain/loss of TF binding as cells commit to OIS.
Consistent with the stability of putative enhancers early upon
induction of OIS, genomic regions undergoing chromatin state
transitions were also remarkably stable within 24 h of HRASG12V

induction. The most abundant transitions involved unmarked
chromatin, poised and bivalent enhancers gaining substantial
chromatin binding and acetylation between 24 h and 144 h, which
coincided with the resolution of the directionality of expression of
nearby genes. Thus, cells leverage and modulate their existing
epigenomic landscape to prepare for the commitment to OIS. In
the absence of a requirement of major chromatin remodeling, we
identified extensive TF network rewiring occurring early upon
HRASG12V overexpression. Indeed, in addition to the master
regulators AP1, the cell modulates the expression and activity of
various top layer, previously bound TFs, which subsequently drive the
transcriptional and chromatin state changes required for commitment
to OIS. Among these TFs, we validated the dynamic regulation of
IRF1, EGR1 and HOXB6. Interestingly, IRF1 and EGR1 have been
recently implicated with cellular senescence (Sadangi et al., 2022;
Moiseeva et al., 2023). IRF1, a master regulator of the interferon
pathway, has been reported to induce proliferative arrest and regulate
SASP-mediated inflammatory responses (Moiseeva et al., 2023;
Recchia Luciani et al., 2024). Given the dynamic regulation of
IRF1 expression, with downregulation at 24 h and upregulation in
senescent cells, we hypothesize that the interferon response may be
required to commit cells to OIS, similar to cells undergoing replicative
senescence (De Cecco et al., 2019). In contrast, EGR1, an early
response TF, has been shown to act in a context-dependent
manner playing roles both as a tumor suppressor and as an
oncogene through direct regulation of p53 and TGFβ1 (Baron
et al., 2006; Wang et al., 2021). Here, we show that EGR1 gets
rapidly downregulated within 4 h post oncogenic induction and
then stays stably expressed at low levels as cells become senescent
(Figure 5C). Given its established role as a regulator of the MAPK
pathway, the downregulation of EGR1 is surprising and suggests that
its downregulation reflects an insult to cell identity. In line with this
observation, it has been recently demonstrated that perturbance of
EGR1 levels delayed the onset of B-RAF senescence in human skin
fibroblasts (Carvalho et al., 2019). This highly organized response of
the TF network to a cell identity disrupting stimulus, previously
described during the differentiation of ES cells (Tsankov et al., 2015),
provides further evidence that OIS-associated cell fate transitions are
the result of epigenetically precoded programs and not simple stress
responses. Future work on the role of new TF network nodes in the
commitment to OIS is required to identify actionable targets to
manipulate this highly relevant cell state. In summary, this work
provides further evidence of the dynamic yet highly organized nature
of OIS and provides a logical framework for the modulation of
senescence-associated cell fate transitions through manipulation of
TF networks.

FIGURE 5 (Continued)

encoding TFs at each DEGmodules as defined in Figure 1G throughout the time series. (D)Western blot analysis of representative top layer, dynamic
TFs (EGR1, IRF1, cJUN, HOXB6) as well as phorphorylated ERK at the indicated timepoints after induction of OIS. Relative quantification values of band
density relative to T0 are shown below bands. Total protein staining of the blot was used as a loading control. Two biologically independent time series are
shown. Data in (C) are averaged from two independent time series.
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Limitations of the study

While we provided a comprehensive description of the gene
regulatory networks during the commitment to OIS, our data and
particularly the lack of chromatin state transitions linked to
transcriptional changes early upon induction of OIS,
highlights the possibility of additional chromatin-based
mechanisms that contribute to this process. For instance, we
cannot exclude the possibility of modulation of the three-
dimensional structure of chromatin, which has been recently
shown to play a critical role in the differentiation of myeloid
progenitors into neutrophils (Patta et al., 2024). Similarly, while
we detected widespread rearrangements of the TF network early
upon the induction of OIS, this activity did not result in any
detectable changes to enhancer-linked histone modifications.
One possibility that could potentially link TF network
rearrangements to transcriptional changes during the early
stages of OIS is the ability of TFs to recruit DNA
demethylation machinery to prospective OIS enhancers, as has
been previously described during the reprogramming of B cells
into induced pluripotent stem cells (iPSCs) (Sardina et al., 2018).
Incorporation of time resolved high-throughput chromosome
conformation capture methods such as Hi-C, ChIA-PET and
(oxidative)bisulphite-sequencing ([ox]BS-seq) will address these
possibilities in future work.

Methods

Cell culture

WI38 normal human lung fibroblasts (CCL-75, ATCC
-American Type Culture Collection) and GM21808 normal
human skin fibroblasts (Coriell Institute) were cultured in a
DMEM (D6429, Millipore-Sigma) medium supplemented with
10% fetal bovine serum, (#25–514, GenClone) at 37°C in a 5%
CO2 and 2% O2 atmosphere. WI38-ER:RASG12V & GM21-ER:
RASG12V cells have been generated via retroviral transduction as
described in (Benhamed et al., 2012) using retroviral plasmid
pLNCX2 ER:RAS (Young et al., 2009) (Addgene: 67844) and
Platinum-A (Plat-A, Cell Biolabs) as the retroviral packaging cell
line cultured in the same medium as WI38 cells. Once generated,
WI38-ER:RASG12V fibroblasts were cultured as above and stimulated
with 400 nM 4-hydroxytamoxifen (4-OHT)(H7904, Millipore-
Sigma); samples were collected and processed at the time points
indicated in the main text post treatment with 4-OHT. The 0 h
uninduced control sample was treated with the same volume of
EtOH (4-OHT vehicle) for 2 h. Cell images for phenotypic
validation of OIS induction were obtained using an EVOS
M5000 digital inverted microscope (Thermo Fisher Scientific).

Western blotting

Protein extracts from samples from each timepoint were prepared
in 1x CHAPS Lysis buffer (S7705,Millipore-Sigma) containing protease
and phosphatase inhibitor cocktail (#78440, Thermo Fisher Scientific).
Protein concentration wasmeasured using Qubit™ Protein and Protein

Broad Range (BR) Assay Kit (Q33212, Thermo Fisher Scientific) on a
Qubit™ 4 Fluorometer (Thermo Fisher Scientific) according to
manufacturer’s instructions. A total of 15 μgs of whole-cell lysates
were resolved on 4% –12%Bis-Tris Plus precast gels (NW4125, Thermo
Fisher Scientific) in 1X MOPS SDS running buffer (Thermo Fisher
Scientific), and proteins were transferred to PVDF membranes via the
iBlot 3 Western blot transfer system (Invitrogen/Thermo Fisher
Scientific) according to manufacturer’s instructions. Total protein
staining in post transfer membranes was done using No-Stain™
Protein Labeling Reagent (A44449, Thermo Fisher Scientific)
according to manufacturer’s instructions. Membranes were blocked
in 5% non-fat dry milk in 1x TBST (150 mM NaCl, 10 mM Tris–HCl,
pH 8.0, 0.05% Tween 20) at room temperature for 1 h, then incubated
with primary antibodies for 2 h at room temperature or at 4°C overnight
with gentle agitation. Membranes were washed three times in 1 × TBST
for 10 min with shaking, then incubated with secondary antibodies for
1 h shaking, washed three times in 1 × TBST for 10 min with shaking.
All blots were imaged using Amersham™ Imager 680 (GE Life
Sciences). The following primary antibodies and dilutions were used:
pERK (Cell Signaling Technologies; Cat no. #4370; 1:1000 dilution),
EGR-1 (Santa Cruz Biotechnology; Cat no. sc-101033; 1:500 dilution),
IRF-1 (Santa Cruz Biotechnology; Cat no. sc-74530; 1:500 dilution),
c-Jun (Santa Cruz Biotechnology; Cat no. sc-1694; 1:1000 dilution),
HoxB6 (Santa Cruz Biotechnology; Cat no. sc-166950; 1:1000 dilution).
The following antibodies were used as secondary: HRP-conjugated goat
anti-rabbit (PerkinElmer; Cat no. NEF812001EA; 1:6000 dilution) or
anti-mouse (Cell Signaling Technologies; Cat no. #70765; 1:
3000 dilution). Relative quantification of band intensity for each blot
was performed with background subtraction and normalized to total
protein for each lane (most prominent band of the total protein was
used) using Fiji (ImageJ) software Version: 2.14.0/1.54f.

Real-time quantitative polymerase chain
reaction for molecular validation of
OIS induction

WI38-ER:RasG12V were induced with 4-OHT as described above and
collected 144 h post treatment. Total RNA was isolated from cells with
RNeasy Mini kit (Qiagen, Germantown, MD) according to the
manufacturer’s instructions. As per the manufacturer’s instructions,
reverse transcription of 500–1000 ng of total RNA was carried out
using the iScript cDNA synthesis kit (Bio-rad). Quantitative real-time
PCR (qPCR) was performed using primers (listed below) with the iTaq
Universal SYBRGreen Supermix (Bio-rad) on a CFXOpus 96 Real-Time
PCR detection system (Bio-rad). Samples were analyzed in technical
triplicates, andGADPH levels were used for normalization. The following
Qiagen QuantiTect Primers were used: GADPH (QT00079247),
(QT00008799), IL1B (QT00021385), IL8 (QT00000322), CDKN2A
(QT00089964), CDKN1A (QT00062090), CCNA2 (QT00014798).

CUT&Tag

We performed CUT&Tag on 100,000–200,000 cells per target
per timepoint using the CUTANA CUT&Tag kit (Epicypher:
14–1102) using the following antibodies: Epicypher: H3K4me1
(Epicypher: 13–0057), H3K27me3 (Epicypher: 13–005), H3K27ac
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(Active Motif: 39,133) and rabbit IgG as a negative control
(Epicypher: 13–0042), according to the manufacturer’s
instructions. Libraries were amplified for 16 cycles and quality
assessed using a TapeStation 4200 instrument. Libraries were
paired-end sequenced on a Novaseq-X instrument. 10–20 million
reads per library were used for downstream analyses.

ATAC-seq

The transposition reaction and library construction were
performed as previously described in the original publication
(Buenrostro et al., 2013) using 50,000–100,000 cells from each
time point of the OIS escape time series (two biological
replicates). DNA fragments were extracted using a Qiagen
MinElute kit (Qiagen) and libraries were produced by PCR
amplification (7 cycles) of tagmented DNA using an NEB Next
High-Fidelity 2× PCR Master Mix (New England Biolabs). Library
quality was assessed using an TapeStation 4200 instrument (Applied
Biosystems). Paired-end sequencing was performed in an Illumina
Novaseq-X instrument. Typically, 30–50 million reads per library
were required for downstream analyses.

RNA-seq

RNA from 50,000–100,000 cells per time point was purified
using a Macherey-Nagel RNA XS Plus kit according to the
manufacturer’s instructions (Macherey-Nagel, Duren, Germany).
RNA integrity was evaluated in a TapeStation 4200 instrument
system and only RNA with an integrity number >= 9 was used for
library preparation. Libraries were constructed using the SMARTer
Stranded V2 (TakaraBio) according to the manufacturer’s
instructions (TakaraBio). Paired-end sequencing was performed
on an Illumina Novaseq-X instrument. At least 40 million reads
per sample (20 million per strand) were obtained and used for
downstream analyses.

Preprocessing of high-throughput
sequencing data

Paired-end (RNA-seq, CUT&Tag and ATAC-seq) reads were
processed as we previously described (Martinez-Zamudio et al.,
2023) aligned to the GRCh38.d1.v1 version of the human
genome using bowtie2 (Langmead and Salzberg, 2012) using the
local mode. Low-quality reads and adapters were removed using
fastq-mcf v.1.0.5 and cutadapt. Alignments were further processed
using samtools v.1.1.1, and PCR and optical duplicates were
removed with PicardTools v.2.2.2. Enriched regions for histone
modifications and ATAC-seq were identified using MACS v.3.0
(Liu, 2014) (macs3 callpeak—nomodel—shiftsize—shift-
control—gsize hs -p 1e-3). The identified peaks were
subsequently processed using the irreproducibility discovery rate
(IDR) pipeline (Landt et al., 2012), generating time point-specific
reproducible peak sets for histone modifications and ATAC-seq at
each time point. A master peak set was constructed using a custom
bedops script that merges common peaks between samples. For

RNA-seq samples, reads were counted using summarized overlaps
and normalized with DESeq2 for visualization.

Chromatin state transitions

We analyzed the genome-wide combinations of H3K4me1,
H3K27ac, H3K27me3 and ATAC-seq signals on IDR-controlled
reproducible peaks of each time point using the chromstaR package.
The algorithm was run on differential mode and configured to
partition the genome in 200 bp non-overlapping bins and count the
number of reads of histone modification/ATAC-seq mapping into
each bin at the time points indicated in the main text and modeled
using a univariate HMM based on a two-component mixture, the
zero-inflated binomial distribution. Subsequently, a multivariate
HMM assigns every bin in the genome to one of the multivariate
components considering 2(6-time points x4 genomic enrichment
variables [histone modifications and ATAC-seq]) possible states.
We focused on robust transitions of an enrichment score of >= 1 for
further analysis. Integration with gene expression data was achieved
by annotating the nearest DEGs with ChIPSeeker (Yu et al., 2015) to
the 8most frequent chromatin state transitions andmonitoring their
expression using violin plots. The association between chromatin
state transitions and DEG modules was performed through
Correspondence analysis (CA) and visualized on an asymmetric
biplot after filtering for the top contributing chromatin state
transitions (square cosine >0.5).

Heatmap and metaprofile visualizations of
ATAC-seq and CUT&Tag datasets

ATAC-seq and CUT&Tag alignments were normalized using
deeptools v3.3.1100103 (Ramirez et al., 2016) using the RPGC
approach to obtain 1X coverage (bamCoverage -b–normalizeUsing
RPGC–effectiveGenomeSize 2864785220 –ignoreDuplicates–binSize
10 –verbose -o).

Differential expression and accessibility

Differentially accessible regions (DARs) and differentially
expressed genes (DEGs) throughout the time course were
identified from ATAC-seq and RNA-seq data, respectively using
DESeq2. Raw reads are internally normalized by DESeq2 using the
median of ratios method (Anders and Huber, 2010). Reads per peak
(ATAC-seq, using a custom master peak list as feature input) or
exon (RNA-seq, using the GRCh38.107 genome model) were
quantified using the summarizeOverlaps package and peaks/genes
with at least 10 reads in at least 10 libraries were kept. Correction of
batch effects was performed with limma (Ritchie et al., 2015) using
“replicate” as the surrogate variable. Data transformation
(regularized-log [rld] transformation), exploratory visualization
(PCA and hierarchical clustering) and differential expression
analysis were performed with DESeq2 using the default
parameters as previously described (Love et al., 2014) and base R
functions. We focused on highly significant DARs and DEGs by
using an adjusted p-value filter of 0.05.
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WGCNA

Differentially expressed genes (DEGs) and accessible regions
(DARs) identified with DESeq2 were used as input for unsupervised
clustering usingWGCNA. We used the “signed” option with default
parameters, with the exception of the soft thresholding power which
was set to 12 for RNA-seq data (0 h–24 h), 14 for RNA-seq data (all
time points) and 12 for ATAC-seq data (accessible chromatin and
H3K4me1-defined regions). The minimum size for the DEG and
DAR modules was set to 200 features for the initial set of modules,
which were then merged by a dissimilarity threshold of 0.3 for RNA-
seq data and 0.08 for ATAC-seq data. For RNA-seq, WGCNA
modules were functionally profiled using clusterProfiler (Wu et al.,
2021) using the Molecular Signatures Database Hallmark gene sets
(Liberzon et al., 2015). Statistical significance was calculated by a
hypergeometric test with a cut-off of an adjusted p-value of <=
0.1 with Benjamini–Hochberg correction.

Transcription factor footprinting

Footprinting, TF motif enrichment, and differential binding
activity were performed as we previously described with HINT-
ATAC (Li et al., 2019) using the JASPAR position weight matrix
database for vertebrate TFs (Fornes et al., 2020) on merged ATAC-
seq datasets, focusing on enhancer and global DARs as well as the
3 most frequent chromatin state transitions. To investigate TF co-
binding, we joined chromatin regions containing TF binding
instances less than 500 bp apart, resulting in a set of
chromatin regions with variable sizes concentrating TF activity
during the entire time course. We performed a hypergeometric test
for each pairwise co-binding possibility for each time point
and adjusted p-values for multiple testing using Bonferroni
correction.

Transcription factor networks

We built TF hierarchical networks as previously described in
(Martinez-Zamudio et al., 2023), at opening, closing and dynamic
DARs. Each identified TF is represented as a node, connected by
directed edges representing co-binding events along the chromatin
and during the entire time course. An edge with TF A as the source
and TF B as the target indicates that TF A binds to the same
chromatin regions as TF B at the same or at a previous time point.
For each TF, we computed their normalized total number of
bound regions and dynamicity and represented those properties
in the networks as node size and node color, respectively. Each
edge is associated with a weight in the interval [0, 1], representing
the fraction of TF B binding instances previously occupied by
TF A. We filtered the networks for edges with a weight higher
than 0.15 and performed a transitive reduction to simplify the
obtained networks while keeping essential topological features.
Nodes included in the same strongly connected component
(SCC), i.e., connected both by incoming and outgoing paths,
were merged into a single node. We represented the identified
transcriptomic module distribution for TFs included in the same
SCC as Doughnut Charts.
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SUPPLEMENTARY FIGURE S1
Validation of the WI38-ER:RASG12V cell system for induction of OIS. (A)
Representative micrographs of proliferating (2 h post addition of vehicle
[EtOH]) and senescent (144h post addition of 4-OHT) WI38 fibroblasts.
Scale bar: 300 µm. (B) RT-qPCR profiling of senescence biomarkers for each
individual biological replicate of time series (n = 2) comparing WI38-ER:RAS
cells 144 h post treatment with EtOH (Proliferating) and 4-OHT (OIS). All
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targets were normalized using GAPDH as a reference gene. (C) Histogram
showing the normalized reads for the indicated senescence biomarkers for
each time point in WI38-ER:RASG12V

fibroblasts undergoing OIS. The bars
indicated the range of read counts per indicated gene (n = 2 biologically
independent time series).

SUPPLEMENTARY FIGURE S2
Transcriptional landscape of WI38 fibroblasts during the first 24 h of
oncogenic RAS overexpression. (A) PCA projection plots showing the
individual global transcriptional trajectories of two biologically
independent early time series during the first 24 h. (B) Averaged self-
organizing maps (SOMs) of global transcriptomes of two biologically
independent time series of WI38 fibroblasts during the first 24 h upon RAS
activation, expressed as logarithmic fold-change. (C) D-cluster projection
showing regions of SOMs with significant changes in expression during the
first 24 h (see regions of SOMs in (B) that change color through time). (D)
Expression of D-cluster metagenes in WI38 fibroblasts for every time point
during the first 24hrs post RAS overexpression. The histograms show the
change in the expression of metagenes in clusters identified in (C) (top of
each panel). They are color-coded according to time point (bottom of
panels). (E) PCA projection plots as in (A) through the entire time series (up to
144 h). (F–H) Averaged SOMs like, D-cluster projection and expression of
respective metagenes as in (B-D) through the entire time series (up to 144 h).
(I,J) RT-qPCR profiling of the indicated senescence biomarkers in GM21-ER:
RASG12V skin fibroblasts undergoing OIS (n = 2 biologically independent
time series).

SUPPLEMENTARY FIGURE S3
Gene regulatory events leading to commitment to OIS occur on a pre-
established chromatin accessibility landscape. (A) Principal component
analysis projection plots showing the individual trajectories of the
differentially accessible regions (DARs) as assessed by ATAC-Seq of every
time-point of two biologically independent time series. (B) Venn diagram
showing intersections of DARs in (A) for all time-points of the experiment
up to 144 h. (C) Heatmap showing the letter-coded modules (A–C) of DARs
of WI38-ERRAS fibroblasts for every time-point through the entire time-
course. The average of two biologically independent time series
experiments is shown. Modules represent DARs that are opening throughout
the duration of the time-course (Module A), closing (Module B) or
demonstrate a more dynamic behavior (Modules C). (D–F) Rank plots
showing the summed binding instances of TFs in chromatin regions of the
modules defined in (C) of Opening (D), Closing (E) and Dynamic (F) DARs.

SUPPLEMENTARY FIGURE S4
A stable epigenomic landscape precedes commitment to OIS. (A) Histograms
showing the percentage of the genome enriched in the indicated combinations
ofH3K4me1,H3K27ac,H3K27me3 fromCUT&Tag andATAC-seq signals at the
indicated time points after induction of OIS. (B)Quantification of the top 8 most
frequent chromatin state transitions occurring through the time series. (C–E)
Genome-wide signal intensity evolution heatmaps of H3K4me1, H3K27ac,
H3K27me3 and ATAC-Seq signals at unmarked chromatin (C), poised (D) and
bivalent (E) enhancers identified prior to the induction of OIS (0 h) during the
span of the time series. The average of two independent is shown. Insets to the
left of heatmaps show the signal metaprofile of each respective histone
modification and ATAC-seq signal in consecutive time points from top
to bottom.

SUPPLEMENTARY FIGURE S5
Widespread TF network rearrangements precede commitment to OIS. (A–C)
Transcription factor co-binding matrices at closing (A), dynamic (B) and
opening (C) putative enhancers (as defined in Figure 2C modules) during
the first 24 h and as cells enter OIS (144 h). All binding instances across time
points were collapsed onto the matrix and clustered using Ward’s
aggregation criterion. The corresponding q values were projected onto the
clustering and are color-coded based on significance calculated using a
hypergeometric distribution test. (D–F) Heatmaps showing the differential
TF chromatin binding activity (row Z-score) at closing (D), dynamic (E) and
opening (F) putative enhancers for each time point. Only expressed TFs were
considered in the analysis. The annotations on the left show the number of
bound instances per TF and their gene expression (TXN) category
(i.e., constitutively expressed [black] or differentially regulated according to
the module color code shown in Figure 1G). Insets show the chromatin
binding activity of representative TFs. TF footprinting (A-F) and differential
chromatin binding activity were performed on ATAC-seq/CUT&Tag
(H3K4me1) datasets from two biologically independent time series.

SUPPLEMENTARY FIGURE S6
Widespread TF network rearrangements precede commitment to OIS.
Heatmaps showing the differential TF chromatin binding activity (row
Z-score) at poised enhancers (A), unmarked chromatin (B) and bivalent
enhancers (C) (as defined in Figures 3D–F) for each time point. Only
expressed TFs were considered in the analysis. The annotations on the left
show the number of bound instances per TF and their gene expression
(TXN) category (i.e., constitutively expressed [black] or differentially
regulated according to the module color code shown in Figure 1G).
Insets show the chromatin binding activity of representative TFs. TF
footprinting (A–F) and differential chromatin binding activity were performed
on ATAC-seq/CUT&Tag datasets from two biologically independent
time series.

SUPPLEMENTARY FIGURE S7
TF networks dynamics define the commitment to OIS. TF networks at closing
DARs. TFs (nodes) are represented as circles. Oriented edges (arrows)
connecting nodes indicate that at least 15% of the regions bound by a given TF
in the bottom and core layers were bound by the interacting TF in the core and
top layers, respectively, at the same or previous time points. Strongly connected
components (SCCs) are represented as a single node to facilitate visualization.
The fill color of the node’s inner circle is based on the normalized dynamicity of
TFs. The fill color of the outer ring indicates whether the TF is constitutively
expressed or belongs to a transcriptomic module (yellow, blue, green,
turquoise). The node’s size is proportional to the bound regions by a given TF.
Each network has three layers: i) the top layer with no incoming edges, ii) the
core layer with incoming and outgoing edges, and iii) the bottom layer with no
outgoing edges. Representative TF families at the top and core layers are shown
(see text). Networks were generated from pooled ATAC-seq data sets from two
biologically independent time series.

SUPPLEMENTARY DATA
Enrichment heatmap for all time points of two averaged biologically
independent time series showing the combinations of H3K4me1, H3K27ac,
H3K27me3 CUT&Tag and ATAC-seq signals with reference chromatin
states in normal human lung fibroblasts from the ENCODE project. Txn,
transcription; CNV, copy number variation.
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