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Introduction: Whole-genome DNA methylation identification is crucial for profiling
physiologically and clinically relevant epigenetic changes. Although there aremultiple
experimental methods, their accuracy, advantages, and disadvantages need to be
investigated in their application to complex tissue objects. In this study, we performed
a benchmark of 5mC detection with Oxford Nanopore and enzymatic methyl-
sequencing (EM-seq) methods.

Material and Methods: To this end, we profiled in a genome-wide manner 5mC
sites in colorectal tumors and normal tissues for three patients and applied the
HumanMethylationEPIC BeadChip as an additional control approach. We estimated
the whole-genome scale of the methylation detection that each method yields.

Results: Our investigation describes the sensitivity and specificity of each
platform and the impact that sequencing coverage brings. Our analysis
revealed the higher sensitivity and specificity of Nanopore sequencing over
the EM-seq method. Moreover, Oxford Nanopore Technology (ONT)
sequencing, followed by Megalodon methylation detection, demonstrates
better quantitative agreement of the epigenetic signals between biological
replicates. Furthermore, our analysis highlights that with 40× and above
coverage, EM-seq slightly outperforms ONT and yields highly accurate
detection of the 5mC signals (AuPR = 0.99178 and AuROC = 0.98161).
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Conclusion: The study was performed on colon cancer and adjacent normal tissue
samples, placing our investigation close to the real application of methylation
studies in oncology.
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1 Introduction

Epigenetic modifications refer to changes in gene activity
without any alterations in the DNA sequence, compared to
genetic modifications such as nucleotide polymorphisms,
insertions, and deletions. DNA methylation is one of the key
epigenetic modifications, where a methyl group (-CH3) covalently
attaches to the cytosine (C) at 5′-carbon, mostly in cytosines located
in the CpG dinucleotides, also known as CpG sites. The human
methylome consists of approximately 58 million CpG sites (Vaisvila
et al., 2021) with a diverse regulatory function across the whole
genome, which raises the important issue of the precise, high-
throughput detection of epigenetic modifications to elucidate and
interpret their role.

Usually, DNA methylation of the promoter region leads to
expression repression (Greenberg and Bourc’his, 2019). However,
there are examples where the methylation level and gene
expression are positively correlated (Anastasiadi et al., 2018;
Moarii et al., 2015), highlighting the complex regulatory aspects
beyond a simple on/off model. There are several possibilities and
proposed mechanisms that explain the effects brought associated
with DNA 5mC modifications. In general, epigenetic changes in
the DNA might shift protein–DNA interactions and modify the
affinity of the loci to interact with nucleosome proteins, ultimately
leading to expression changes.

The abnormal changes in methylation levels are among the
common markers of the number of human cancers due to their
impact on neoplastic transformation (González et al., 2021;
Turpín-Sevilla, 2021; Nishiyama and Nakanishi, 2021). In
order to elucidate the role of DNA methylation and its
potential involvement in the processes leading to
malignization, DNA methylation profiling has to be performed
with high accuracy for both normal and tumor tissues. Modern
methods to detect methylation rely on different experimental
approaches and have their own limitations and detection
possibilities. The most common method for 5mC detection is
bisulfite sequencing (Ulahannan and Greally, 2015), which is able
to detect 5mC at a single-base resolution along the whole genome.
The limitation of the method is DNA susceptibility to damage
during bisulfite conversion. Enzymatic methyl-sequencing (EM-
seq) overcomes the issue using a set of two enzymatic reactions
that protect the modified cytosines from deamination, resulting
in non-methylated cytosine to uracil conversion and further
detection of methylated cytosines (Vaisvila et al., 2021). EM-
seq preserves the DNA backbone (Han et al., 2022), delivers
higher library quality, outputs longer reads, and provides more
uniform coverage even for the C-rich asymmetric unmethylated
regions; this ultimately decreases false positive detection
compared to bisulfite sequencing. Direct monomolecular

sequencing based on the Oxford Nanopore Technology (ONT)
approach became the state-of-the-art for the study of both large
genomic alterations and chemical DNA modifications such as
5mC (Simpson et al., 2017; Wang et al., 2021). With the
development of experimental and computational processing
methods, the average sequence accuracy increased from
96.52% for R9.4.1 to 98.34% for R10.4 (Luo et al., 2022).
However, the sequencing output for R10.4 is lower than that
of the previous version (Ni et al., 2023), which is still intensively
used in genome sequencing studies, especially considering the
large amount of data already generated in genomics. Infinium
MethylationEPIC Array 850K (EPIC) is another common
method used for the high-throughput profiling of DNA
methylation at predefined positions. It covers only 15% of the total
methylome, which is mostly coding and enhancer regions (Moran
et al., 2016). Furthermore, a microarray-based approach is applicable
only to the human genome, but EM-seq and ONT can be applied to
the DNA of any species.

In the current work, we compared three methods for DNA
methylation detection applied to colorectal tumors and matched
normal samples. We investigated genome-wide methylation
detected with EM-seq and ONT. Furthermore, we performed
profiling using HumanMethylationEPIC 850K microarrays as
an independent platform, not relying on sequencing. We
particularly selected both tumor and normal tissue samples for
investigations because DNAmethylation is one of the most studied
modifications in oncogenomics with a high potential for
translational research. In order to gain insight into the positive
and negative sides of each approach, we also profiled biological
replicate studies using tumor tissue from the same patient to obtain
information about the variance in the methylation detection
results across methods and propose an approach to investigate
the sensitivity and specificity of the study techniques. In the
current study, we focused on the main questions related to the
performance of the EM-seq, ONT, and HumanMethylationEPIC
chips with respect to methylation detection for cancer and normal
tissue samples.

2 Materials and methods

2.1 Tissue sample collection

The sequencing samples, pairs of tumor tissues, and adjacent
normal tissues were collected from the Federal State Budgetary
Institution “NN Blokhin National Medical Research Center of
Oncology” (NN Blokhin NMRCO) of the Ministry of Health of the
Russian Federation. The resected samples were immediately stored
at −80°. All the patients signed informed consent forms.
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2.2 DNA extraction

Genomic DNA (gDNA) from the tissue samples was
extracted using the QIAamp DNA Mini Kit (QIAGEN,
Germany) in accordance with the manufacturer’s protocol.
The yield and purity of the isolated gDNA were manually
determined using the Quantus Fluorometer (Promega,
United States) and NanoDrop OneC Microvolume UV-Vis
Spectrophotometer (Thermo Fisher Scientific, United States),
respectively. Only gDNA samples with absorbance ratios

A260/280 of 1.7–1.9 and A230/260 of 1.8–2.2 were selected for
further analysis.

2.3 Enzymatic methylation sequencing

Libraries for NGS-sequencing were constructed using the
NEBNext® Enzymatic Methyl-seq Kit (New England Biolabs,
United States) in accordance with the manufacturer’s
protocol. For the EM-seq experimental protocol, 100–200 ng

FIGURE 1
Overview of the research design and statistics on the number of detected methylated positions and their distribution in the genomic regions. (A)
Summary of the experimental design. (B) Bar plot visualization for a number of 5mC sites detected from each sample by whole-genome methods
(Nanopore + Megalodon, Nanopore + Nanopolish, and EM-seq). Number of sites detected by EPIC shown under the bar plot due to the array design
feature. (C) Bar plot visualization of the distribution of detected 5mC sites by genomic regions.
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of genomic DNA was subjected to ultrasonic fragmentation
using the Covaris LE220-plus Focused-ultrasonicator (Covaris,
United States), followed by library preparation of DNA shred to
270–320 bp on average. gDNA concentrations were measured

using the Qubit 4.0 Fluorometer (Thermo Fisher Scientific,
United States).

Samples were indexed using NEBNext Multiplex Oligos for
Enzymatic Methyl-seq (unique dual index primer pairs), NEB

FIGURE 2
Overview of the methylation profile for the paired tumor/normal samples. (A) UpSet diagram showing intersection sets between methylation
detection methods (M, Megalodon; EM-seq; NP, Nanopolish, and EPIC) in tumor (Pat1 T) and adjacent normal tissues (Pat1 C). (B–D) Density of 5mC
(β-value >0.0) around the transcription start site. (E) Pearson’s correlation plot of the methylation scores across methods and samples.
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FIGURE 3
Overview ofmethylation profile consistency in biological replicates of tumor tissue. (A)UpSet diagram generated from the intersection sets between
methylation detection methods for two biological replicates (Rep1 and Rep2) of tumor tissue. (B,C)Distribution of β-values across methods for biological
replicates. Density plot of the β-values for the CpG sites common across all replicates andmethods. A subset of methylation sites detected in each of the
replicates by both whole-genomemethods, ONT +Megalodon and EM-seq, was generated. β-values obtained fromONT +Megalodon in selected
sites were plotted. (C) Density plot of the β-values (EM-seq) in sites common to all replicates and methods. Same as B, distribution of β-values obtained
from EM-seq in the common selected methylation sites was plotted. The qualitative behavior of the curves demonstrates a higher variance of the results
obtained with EM-seq than those with ONT. (D)Distribution of β-values in sites detected in both replicates by either Nanopore or EM-seq. Distribution of
β-values in sites detected across both replicates by ONT + Megalodon but not captured by EM-seq. (E) Distribution of β-values in sites detected in both
replicates by EM-seq but not captured by ONT + Megalodon. β-values in sites common in both ONT + Megalodon. Only sites common in both EM-seq
and not detected by any ONT + Megalodon were taken into account.
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#E7140. We performed DNA cytosine conversion control with
unmethylated phage lambda (λ) DNA and CpG-methylated
pUC19 DNA controls provided in the kit. Considering the
obtained methylation values in controls compared to the
recommended threshold, the conversion in the experimental
samples was completed successfully. The size of the resulting
libraries was determined using the Agilent D1000 Reagent Kit
using Agilent 4200 TapeStation (Agilent Technologies, Inc.,
United States). The library pool was diluted to a final gDNA
concentration of 1.5 nM prior to sequencing. Pool quality
control was performed using the Agilent High Sensitivity
D1000 ScreenTape Reagent Kit using Agilent
4200 TapeStation (Agilent Technologies, Inc., United States).
Whole-genome sequencing was performed on Illumina NovaSeq
6000 (Illumina, Inc., United States) using the S2 Reagent Kit
(Illumina, Inc., United States) upon 200 cycles with 2× 100-bp
paired-end reads.

2.4 Data processing for EM-seq

Raw sequencing reads were aligned to the reference genome
(GRCh38) using Bismark v0.22.3 (Krueger and Andrews, 2011).
Data for each sample were deduplicated, and cytosine
methylation calling was performed on the deduplicated data.
For each cytosine locus, the β-value was calculated as the ratio of
the number of methylated reads to the total number of reads for
the CpG locus.

2.5 Human Methylation EPIC 850K

Bisulfite conversion was performed using the DNA Zymo
Methylation Kit (Zymo Research, United States) for 1,000 ng of
genomic DNA. The following preprocessing steps were
automated using the Tecan Freedom EVO using the Illumina
Infinium MethylationEPIC BeadChip Kit (Illumina,
United States) according to the manufacturer’s instructions
(Infinium HD Methylation Assay Protocol Guide [15019519 v07]).
Microarrays were scanned using the Illumina iScan System with the
AutoLoader 2.× loading module.

2.6 Data processing for EPIC

The Infinium MethylationEPIC Array (Illumina, United States)
was used to analyze the methylation status of 866,554 CpG sites,
according to the manifest file (Infinium MethylationEPIC
v1.0 B5). Data were processed using the minfi package (Fortin
and Triche, 2017). The samples were quantile normalized, and

probes with a signal detection p-value above 0.01 were removed
from the analysis. For the remaining 835,521 CpGs, β-value and
M-value were calculated. We used the sva package for batch effect
analysis and data correction on the M-values (Leek et al., 2012).

2.7 Nanopore sequencing

For Nanopore sequencing, 1,500 ng of genomic DNA was
taken for each sample. The Ligation Sequencing Kit SQK-LSK109
(Oxford Nanopore Technologies, United Kingdom) was used to
prepare libraries. Sample preparation was carried out according to
the manufacturer’s protocol (Genomic DNA by Ligation, version
GDE_9063_v109_revY14Aug 2019). The libraries were sequenced
on a PromethION 48 (Oxford Nanopore Technologies,
United Kingdom), and the loading concentration per well
was 50 pM.

2.8 Data processing for Nanopore

The obtained sequencing results, FAST5 files for each of the
samples, were processed using the Megalodon (version 2.3.4)
tool (Megalodon 2.3.3 Documentation, 2023) using the default
parameters according to the manual with GRCh38 as the
reference genome. As Megalodon performs simultaneous
basecalling of raw reads, as well as methylation calling, it
requires a basecalling model with read filtration based on
quality (reads with Q-score >7 were considered for further
analysis). There is a specialized model that takes into account
the cytosine methylation provided by Rerio (− − guppy −
configres_dnar941_ prom_modbases_5mC_CpG_v001.cfg).
The Megalodon result files consist of a basecalled FASTQ file,
mapping bam files, and bedMethyl file with information about
the 5mC positions (location and methylation levels). Apart from
Megalodon, methylation calling from Nanopore data was
performed using the Nanopolish tool (Simpson et al., 2017;
Simpson et al., 2017), and the − − call −methylation
subprogram using FASTQ files was generated by
guppy_basecaller (version 5.0.11) (de.NBI Nanopore, 2023).

2.9 Methylation analysis and visualization

For each sample, four methylation files were generated with
methylated position results from EM-seq, Nanopore (Megalodon
and Nanopolish), and EPIC each. The methylation profiles were
further compared in RStudio using the GenomicRanges (Lawrence
et al., 2013), ChIPSeeker (Yu et al., 2015), and UpSetR packages
(Conway et al., 2017). The plots for the CpG site intersection were

TABLE 1 Sequencing coverage in biological replicates. The average coverage for the whole genome and CpG sites were calculated.

ONT Rep1 EM-seq Rep1 ONT Rep2 EM-seq Rep2

Median total 49.30 21.60 49.80 21.40

Median CpG 23.10 18.20 23.80 22.00

Frontiers in Epigenetics and Epigenomics frontiersin.org06

Deinichenko et al. 10.3389/freae.2024.1362926

https://www.frontiersin.org/journals/epigenetics-and-epigenomics
https://www.frontiersin.org
https://doi.org/10.3389/freae.2024.1362926


FIGURE 4
Sensitivity and specificity of methylation calling methods. (A) ROC and precision recall (B) curves calculated based on the methylation profiles
obtained with ONT + Megalodon, ONT + Nanopolish, and EM-seq. A set of true positives and negatives was obtained based on the EPIC 850K array. As
true positives, we used methylated (β-value >0.3) in both replicates, and negatives are positions not methylated in both replicates as obtained with EPIC
850K. (C) Box plots for coverage of the CpG (β-value >0.3) positions obtained with ONT and (D) EM-seq. (E) Box plot for coverage obtained for sites
detected by whole-genome methods (β-value >0.3) and not detected by EPIC considering only overlapping sites between platforms.
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plotted using the R density function. The performance of the whole-
genome methods in terms of specificity and sensitivity was evaluated
using the area under the receiver operating characteristic curve (ROC
AUC) and precision-recall (PR) as implemented in the scikit-learn
Python library (Pedregosa et al., 2011). For Gene Ontology (GO)
analysis, we applied the enrichGO function as implemented in the
clusterProfiler package (Wu et al., 2021). For the correlation, we used
the cor function from the stats R package (R-core, 2013). Visualization
was performed using the corrplot R package (Wei et al., 2022).
Differential methylation analysis was performed using the methylKit
R package (Akalin et al., 2012).

2.10 Genotyping of the cancer samples

We utilized the ability of Nanopore sequencing to catch genetic
variants, particularly single-nucleotide polymorphisms (SNPs). This
procedure was performed with Clair3 using GRCh38 as the reference
(Zheng et al., 2022). The results of variant calling were used to search
for associations with specific colorectal cancer syndromes. The
obtained variants were annotated using the Ensembl Variant Effect
Predictor (McLaren et al., 2016); then, the analysis of the detected
variants for genotype–phenotype associations in the group of genes
associated with the development and progression of colorectal cancer
was performed by a medical geneticist. The described procedure was
performed on two sample pairs, for which the whole dataset (ONT,
EM-seq, and EPIC 850K) was obtained.

3 Results

3.1 Distribution of the 5mC sites detected
with ONT, EM-seq, and EPIC in the
hereditary colorectal tumor and normal
tissue genomes

Here, we profiled both tumor and adjacent normal tissue samples
of colorectal cancer (Figure 1A). We applied variant calling for ONT

FIGURE 5
Sites with high (+-1.0) delta values of the methylation signal between tumor and normal samples. (A,B) Venn plot for strongly changed methylation
sites detected for each patient with ONT +Megalodon and EM-seq. (C,D)Density plot of the deltas for β-values based on the EPIC results for differentially
methylated positions as obtained with the whole-genome methods (ONT + Megalodon or EM-seq).

TABLE 2 Summary of the comparison of characteristics and performance of
DNA methylation detection methods based on literature search and
obtained benchmarking results.

Characteristic EM-seq Nanopore EPIC

Whole-genome method Yes Yes Yes

Accuracy High High High

Dispersion Average Low Low

Amount of data Average Large Small

Ability to detect other modifications Only 5hmC Yes No

Computational expenses Average High Low

Ability to detect genomic variations No Yes No

Frontiers in Epigenetics and Epigenomics frontiersin.org08

Deinichenko et al. 10.3389/freae.2024.1362926

https://www.frontiersin.org/journals/epigenetics-and-epigenomics
https://www.frontiersin.org
https://doi.org/10.3389/freae.2024.1362926


and identified that samples contain variants known for hereditary
colon cancers (Supplementary Table S1). In the study, we aimed to
compare whole-genome methylation detection methods. In order to
estimate advantages and limitations, we benchmarked the methods
based on a quantitative comparison of the number of CpG sites
detected by each of the approaches. Considering the previous
computational comparison of the Nanopore methylation calling
methods (Liu et al., 2021), we performed 5mC calling from
FAST5 files using Megalodon (Megalodon 2.3.3 Documentation,
2023) and Nanopolish (Simpson et al., 2017).

We obtained the number of detected (β-value >0.0) 5mC sites
(Figure 1B). Both whole-genome methods detected a comparable
number of methylated CpG sites, ranging from 48 to 54 million.
Furthermore, the detected methylated CpG positions yielded minor
quantitative differences between tumor and normal pairs. The
methylation calling method for Nanopore sequencing was
selected based on previously reported performance (Liu et al.,
2021), where Megalodon was identified as the most optimal
approach. Moreover, for all generated Nanopore data, our results
also confirm that Nanopolish identifies significantly fewer sites,
demonstrating the lower sensitivity of the approach than that of
EM-seq in a genome-wide manner (Figure 1B).

The EPIC capacity of CpG detection yields more than 830 K
(Figure 1B) positions for everymicroarray experiment. This amount is
very close and strictly limited by the manufactured design of the
platform (McEwen et al., 2018), which can identify up to
866,554 positions and is located mostly in promoter regions
(Figure 1C). Furthermore, for whole-genome sequencing methods,
both ONT–Megalodon and EM-seq yield similar distributions of the
detected methylated CpGs, along with the annotation of the genomic
elements (Figure 1C). Furthermore, we analyzed how each method
performs within known genomic segments (promoters, introns, and
distal intergenic regions) and identified that ONT +Megalodon yields
higher-scoring (β-value >0.9) 5mC sites across all types of loci
(Supplementary Figure S3). Our analysis identified that both
ONT + Megalodon and EM-seq demonstrate the highest
performance with respect to the number of detected methylated
positions. Nanopolish captured much fewer 5mC CpG sites than
EM-seq and Megalodon. However, the distribution of the detected
positions in the genomic regions qualitatively is very similar between
all whole-genome approaches, with minor differences between
normal and corresponding tumor samples.

3.2 5mC sites detected across samples
and methods

Next, we compared the CpG sites detected in tumor and normal
samples. To this end, we investigated matched tumor and normal
pairs where methylation has been measured with all three
experimental methods (Figure 2A).

Our results indicate very high agreement on the total number of
CpG sites detected with ONT + Megalodon and EM-seq. ONT +
Megalodon identified 53.4 M common methylated sites between
tumor and normal tissue, and EM-seq detected 41.14 M. Here, we
hypothesize the lower sensitivity of the EM-seq method because we
consider all CpGs with β-value >0.0, and for the same tumor, ONT +
Megalodon and EM-seq yield nearly 50 M. Furthermore, an overlap

between EPIC and ONT + Megalodon (700 K for tumor tissue)
outperforms EPIC and EM-seq (635 K for tumor tissue). However,
when the Nanopolish method was used, a significant decrease in
sensitivity was observed compared to both EM-seq and Megalodon,
which also agrees with previous benchmarking results (Liu et al.,
2021). For the matched tumor/normal pairs of samples, Nanopolish
detected only 24.83M commonmethylated regions. Nanopolish and
EM-seq together detected a lower number of methylated positions
(20M) compared to the common sites betweenMegalodon and EM-
seq (50 M).

To investigate differences brought by the application of
Megalodon or Nanopolish for the number of detected methylated
sites, we applied EPIC results for the same biosamples. Surprisingly,
when we compared Nanopore-based methods with EPIC, we
identified that Megalodon yields a higher number of common
methylated CpG sites (700 K). However, for the same tumor
replicate, Nanopolish and EPIC have only 677 K in common.
This indicates a much higher sensitivity of the ONT +
Megalodon combination and allows us to conclude about the
lower performance of the Nanopolish approach.

In addition to considering the common potentially methylated
sites across computational and experimental methods, we also
considered other properties of the methylation signal important
for biological interpretation and usage of the methods. When we
compared the distribution of the methylated (β-value >0.0) CpG
sites around the transcription start site (TSS), both ONT (Figure 2B)
and EM-seq (Figure 2C) showed high similarity for profiles.
However, the distribution of the methylation signal for EPIC
(Figure 2D) follows the location of the designed probes for
microarray.

In order to assess quantitative agreement across methods, we
also performed a correlation analysis (Figure 2E). The result shows
an expected grouping of the most correlated pairs in sub-clusters
based on the processing method. This indicates obvious biases
brought by every methylation detection algorithm. However,
across all methods, the correlation remains very high. Our results
indicate that EM-seq has lower sensitivity than ONT.

3.3 Biological replicate analysis yields the
identification of the method with the
lowest variance

Next, we investigated the general reproducibility of the results
both in terms of the total number of identified methylated CpG sites
and quantitative signal agreement across experiments. Two tumor
samples obtained from one individual underwent methylation
detection by the same pool of methods (EM-seq,
ONT–Megalodon, ONT–Nanopolish, and HumanMethylationEPIC
850K). We identified very high agreement on the number of detected
methylated CpG sites (β-value >0.0) across biological replicates
(Figure 3A). Moreover, we found that ONT + Megalodon is the
most sensitive approach, with the largest number of detected sites.
Furthermore, more than 98% of the 5mC-modified positions were
common for two replicates processed with ONT + Megalodon. EM-
seq is the second-most sensitive detection method in our study that
successfully identifiedmore than 51Mmethylated positions with 97%
common sites across biological replicates. However, ONT +
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Nanopolish detected almost two-fold fewer methylated sites than
Megalodon, and 95% were consistent between replicates. Nanopolish
yielded amuch lower agreement on the 5mC detection in the replicate
analysis given the same sequencing data. The results obtained with
EPIC show very high agreement between replicates (almost 100%)
and indicate a much higher overlap across replicates for 5mC sites
detected with Megalodon rather than Nanopolish.

Despite the high agreement of the tools with respect to the
detection of the same 5mC positions in biological replicates, we
investigated how scores of the methylation signal are distributed
for each sample depending on the experimental and
computational approach to obtain an insight into the variance
brought by each method. To this end, we selected two sets of
positions. We selected a set of methylated sites common for both
biological replicates detected with both ONT + Megalodon and
EM-seq. Next, we qualitatively investigated the density plot of the
beta-values of each group. We identified that the ONT +
Megalodon (Figure 3B) results for a set of common
methylated CpG sites have a higher similarity of the detected
epigenetic profiles than EM-seq results (Figure 3C), where
density curves on the plot were less overlapping, indicating
higher variance of the method itself.

In addition to investigations of the recurrence across replicate
positions for ONT and EM-seq, we also examined the CpG sites that
were found methylated in both replicates only with one of the
approaches but were not detected by another method. Density
curves obtained for ONT + Megalodon scores are more
overlapping than those obtained for EM-seq, again indicating a
higher variance of the EM-seq method (Figures 3D, E).

3.4 Sensitivity and specificity of the
study methods

Our analysis identified the higher sensitivity of the ONT +
Megalodon approach to capture more 5mC sites than EM-seq
(Table 1). In order to gain insight into the overall sensitivity and
specificity of the whole-genome methylation capturing possibilities,
we again applied an approach based on the analysis of biological
replicates. To this end, we selected a collection of the true positive
(TP) (captured with EPIC in both replicates) and true negative (TN)
positions (not methylated in both biological replicates as found with
EPIC). CpG positions from EPIC with a methylation β-value lower
than 0.3 were determined to be unmethylated. TP outcomes were
defined as detected CpG sites found in both biological tumor
replicates with β-values of more than 0.3 (600,000), while all the
others were allocated as TN outcomes (250,000). Next, we used EM-
seq and ONT (both with Nanopolish and Megalodon) to calculate
the area under the ROC (Figure 4A) and PR curve (Figure 4B) using
a β-value threshold as a variable parameter. We identified that
ONT + Megalodon had the highest detection abilities both for
sensitivity and specificity (AuROC = 0.97724 and AuPR = 0.99031).
Moreover, ONT + Nanopolish demonstrated the lowest performance
(AuROC = 0.94142 and AuPR = 0.95228) and was outperformed by
EM-seq (AuROC = 0.96521 and AuPR = 0.98393).

One of the main factors that can contribute to the sensitivity and
specificity of methylation detection is sequencing coverage. Our
results indicate that the median coverage of the EM-seq experiments

for the study samples is 18–22×, and for ONT (filtered reads with
quality >7), it is 23× (Figures 4C, D) for CpG sites. One of the
advantages of EM-seq is its ability to detect CpG methylation even
with coverage as low as 5× (Vaisvila et al., 2021). Furthermore, the
ONT sequencing results indicate that 20× coverage is sufficient to
capture methylation signals with high accuracy (Table 1).

In order to take into account sequencing depth and its impact on the
comparison of the results obtained between EM-seq and ONT, we
performed several computational experiments. We evaluated how an
increase in coverage affects the detection ofmethylation with EM-seq. To
this end, we merged the sequencing results of the two tumor biological
replicate samples and performed methylation calling. Despite the
relatively low coverage, approximately 50 million sites were detected.
We investigated how the coverage affects the methylation detection
ability. The coverage of individual samples was approximately 20× for
each replicate, so after merging, the total coverage became nearly 40×
(Figure 4E) for CpG sites and reached average ONT coverage (40×). We
performed methylation calling on a merged sample and identified that
the number of detected methylated CpG sites increased (from 51 M to
52 M) with higher coverage. For individual samples of EM-seq,
1,032,160 CpG sites were not detected in either of the 2 replicates but
were detected in both Nanopore replicates. After merging 2 individual
EM-seq samples, 871 sites were detected out of 1,032,160. Thus, the
merging of samples led to a two-fold increase in coverage, but in terms of
CpG sites, detection does not yield a big difference.

We used ROC and PR metrics to estimate both the sensitivity
and specificity of the merged EM-seq data with high CpG coverage.
The results showed significant improvement of the EM-seq results
(AuPR = 0.99178 and AuROC = 0.982) by slightly outperforming
the ONT + Megalodon results (AuPR = 0.990 and AuROC = 0.977)
(Supplementary Figures S5, S6). Our results indicate that ONT +
Megalodon show the best performance in terms of the detection of
true methylation sites given similar coverage of the CpG positions
with EM-seq.

3.5 Differential DNA methylation

DNA methylation studies usually rely on statistical approaches to
identify a highly confident subset of the CpG sites with differential
methylation between the study conditions. We performed differential
methylation calling usingmethylKit (Akalin et al., 2012). Using EM-seq,
we identified 1,463 CpG positions of differential methylation between
tumor and normal samples. ONT + Megalodon found 1,061 CpG sites
with significant changes in the 5mC level. Unfortunately, there is no
overlap between the positions obtained for the two experimental
approaches. One of the most obvious explanations is low statistical
power due to an insufficient number of samples. Next, we assigned sites
in promoters to genes, and for ONT + Megalodon, we found
307 hypermethylated and 506 hypomethylated genes. EM-seq
detected 46 hypermethylated genes and 29 hypomethylated genes in
the tumor. We performed GO enrichment analysis, and the results did
not include specific cancer-related terms that indicate the high false
positive/false negative detection rate (Supplementary Table S4), given
the low number of samples.

To investigate the agreement of the approaches to capture
differentially methylated positions, we performed a custom
analysis. We studied how EM-seq and ONT methods agree on
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the sites with high changes in the methylation signal. To this end,
we used samples from two patients where both normal and
adjacent tissues have been profiled with two genome-wide
approaches. We identified a set of positions where the detected
delta of methylation signals between normal and cancer tissues was
maximal (the absolute difference of β-values is equal to ± 1.0).
Surprisingly, for this analysis, we identified only minor agreement
(Figure 5A, B) between EM-seq and ONT (672 and 681 sites for
each patient). These findings again highlight the importance of
using replicates in order to avoid biases due to high variance. The
results obtained with EM-seq demonstrate a much higher number
of differentially methylated positions and confirm the higher
variance of the EM-seq approach that identified fold times
more positions with highly changed methylation levels than
ONT but only with few in common.

We applied EPIC to quantify methylation differences for highly
changed sites detected with ONT or EM-seq (Figures 5C, D). The
density profile indicates that the majority of highly changed sites do
not show high methylation changes in EPIC (Figures 5C, D). Taking
into account the high discordance of the results, we conclude that
the usage of replicates is the right way to identify sites with
methylation changes, and relying on single-sample profiling is
prone to yielding false positive/negative results.

Overall, our analysis indicates that both ONT and EM-seq have
high variance, and identification of the differential methylation sites
requires more replicates (biological or technical). Furthermore, the
ONT + Megalodon approach is less prone to have overestimated
differences in methylation signals. Moreover, analysis of promoter
methylation did not yield enrichment of the GO terms associated
with cancer processes, which indicates the requirement to apply
more data samples to gain high-confident results.

4 Discussion

DNA methylation (5mC) is one of the main epigenetic
modifications that ultimately have regulatory effects on gene
expression and cell phenotype (Greenberg and Bourc’his, 2019;
Nishiyama and Nakanishi, 2021). A large variety of experimental
methods for 5mC detection raises important issues about the
consistency of the results, which experimental approach to use
considering biosample type/quality, and research questions.
Whole-genome bisulfite sequencing (WGBS) and its improved
modifications, such as EM-seq, are a very popular and widely
used technique both for fundamental and medicine-oriented
research. EM-seq outperforms WGBS as it requires a low amount
of input DNA, yields higher library quality, and provides more
uniform coverage (Han et al., 2022). Direct DNA sequencing using
ONT, coupled with computational data processing, yields a map of
the epigenetic modifications along the genome. ONT requires a large
amount of input DNA because it is PCR-free and based on direct
sequencing. HumanMethylationEPIC 850K Array represents a
high-quality methylation detection method and is considered the
gold standard for DNA methylation studies.

We designed an experimental setup to evaluate EM-seq, ONT,
and HumanMethylationEPIC 850K Array in order to highlight the
strong and weak points of each approach. To assess the
performance of the methods, we profiled both normal and

adjacent tumor tissues of patients with hereditary colon cancer
(Supplementary Table S1). Moreover, one tumor sample was
profiled twice with the three methods to obtain well-verified
estimations of the methylation signal variability across
biological replicates. Our experimental design relies on tissue
samples, in contrast to other similar studies where cell lines
have been used (Foox et al., 2021).

We analyzed genome-wide methylation profiles for tumors and
adjacent healthy tissues using Nanopore and EM-seq. In general, ONT
+ Megalodon, EM-seq, and 850K EPIC yield highly accurate and
reproducible results. Nanopore sequencing showed better
performance in terms of sensitivity, specificity, and consistency than
HumanMethylation EPIC chips. We investigated the coverage impact
on methylation detection. Our results demonstrated the expected
improvement in both the sensitivity and specificity for recovering
true 5mC modification signals when using consistent sites across
biological replicates obtained using the 850K EPIC platform. We
identified that a median coverage of 15–17× for EM-seq is suitable
to accurately capture (AuROC = 0.96521 and AuPR = 0.98393) true
methylation profiles. Furthermore, a coverage increase of up to 40×
yielded improvement, reaching AuROC = 0.98161 and AuPR =
0.99178. Such coverage twice overcomes the output based on the
standard protocol. We hypothesize that ONT would also increase
the performance given higher sequencing coverage. Furthermore,
given the similar coverage of the CpG sites, ONT outperforms EM-
seq.Here, we focused on the recommended coverage, which is supposed
to be obtained by spending a unit of the reagents per sample according
to prescribed protocols.

We investigated the performance of the ONT using two
processing algorithms—Megalodon and Nanopolish. Overall, in
line with previous studies (McLaren et al., 2016), we confirm that
Megalodon outperforms other methods. The lower performance of
the Nanopolish can be explained based on the way it scores
methylation signals. Nanopolish uses a hidden Markov model
that relies on locus information about CpG sites and detected
signals. To call 5mC sites, Nanopolish yields a log-likelihood
ratio of 5mC versus an unmethylated state (Simpson et al., 2017).
To this end, Nanopolish groups close CpG sites and detect
methylation jointly so that each site within a group obtains the
same methylation status. Megalodon performs methylation calling
for each CpG independently, relying on a neural network model that
leads to improvements over scoring with the hidden Markov model.

Computational processing of the ONT sequencing results has
disadvantages due to the generation of a large amount of raw data,
followed by highly intensive computations for processing and
methylation detection. From an experimental point of view, ONT
relies on direct DNA sequencing, which restricts the use of small
biosamples. However, while EM-seq is a method for 5mC and
5hmC detection, ONT can be used to retrieve other DNA
modifications apart from 5mC, as well as genetic variants such
as single-nucleotide variants or structural variants. Overall, we
highlighted the strengths and limitations of ONT and EM-seq
methods (Table 2), investigated the accuracy of 5mC detection
depending on the coverage, tested various methylation calling
models, and performed benchmarks relying on the microarray
platform with proven detection accuracy.

Altogether, combining the experimental results obtained with
the three benchmarked experimental approaches for two tumor

Frontiers in Epigenetics and Epigenomics frontiersin.org11

Deinichenko et al. 10.3389/freae.2024.1362926

https://www.frontiersin.org/journals/epigenetics-and-epigenomics
https://www.frontiersin.org
https://doi.org/10.3389/freae.2024.1362926


biological replicates, we estimated the sensitivity and specificity for
whole-genome methylation methods and identified the ONT +
Megalodon approach as the best performing in terms of
sensitivity and specificity.

Our work was performed on the newly generated data for tissue
samples, which is preferred over cell lines for the estimation of method
limitations under biologically complex conditions with high variability.
This raises additional difficulties and adds additional noise to the data.
However, we performed the analysis for the tissue biomaterial because it
better reflects the possible medical applications of the methods. We
expect more applications of ONT sequencing in biological and medical
studies to uncover complex relationships between mutation patterns
and epigenetic profiles.
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