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Plastic pollution is becoming a worldwide crisis. It can be found in all
environmental matrices, from the seas to the oceans, from dry land to the air
we breathe. Because of the various types of plastic polymers and waste
degradation methods, the types of plastic particles we are exposed to are quite
diverse. Plants and animals are continuously exposed to them, and as the top of
the food chain, humans are as well. There are numerous studies that confirm the
toxicity of these contaminants, yet there is still a significant vacuum in their
epigenetics effects and gene expression modifications. Here we collect studies
published to date on the epigenetics effects and gene expression modulation
induced by micro and nanoplastics. Although published data are still scarce, it is
becoming evident that micro- and nanoplastics, whether acutely or chronically
administered, do indeed cause such changes in various model organisms. A future
challenge is represented by continuing and deepening these studies to better
define the molecular mechanisms underlying the observed toxic effects and
above all to translate these results to humans to understand their impact on health.
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Introduction

Although plastic pollution has only recently achieved media notoriety, in the scientific
literature, the negative impact of this environmental contamination on living organisms has
been known since 1969, when two scientists first described the effects on seabirds of plastic
fragments (Kenyon et al., 1969). In the paper, the authors found in more than 70 out of
100 Albatrosses about 2 g of plastic residues identifying toys, pouches and caps. The
researchers hypothesized unintentional ingestion by the Albatrosses while fishing and
consequently death from digestive and airway obstruction. By 2023, about 170 trillion
plastic residues were estimated to be floating in the seas and oceans (Eriksen et al., 2023)
subjected to transport by currents that concentrate them in areas of higher density, which
can lead to the formation of large plastic islands varying greatly in concentrations in different
areas of the Planet (Huserbråten et al., 2022).

Today, a term called “plasticosis” has been coined investigating the sequential effects,
mainly fibrosis, that occur in seabirds due to ingestion of plastics (Charlton-Howard et al.,
2023). The Shearwaters (Ardenna carneipes), collected dead, were analyzed for plastic
ingestion and for plastic-induced fibrosis in the proventriculus by histopathological
analysis. On a scale with grade zero no effect, going up one begins to observe
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progressive thinning of the collagen layer and increased
disorganization of the submucosa and tubular glands of the
proventriculus until the last grade, the fifth, with a total loss of
the structure of the tubular glands and total disorganization of the
submucosa. The authors concluded that the extent and severe
presence of fibrosis is a consequence of plastic ingestion. It
would be interesting to extend the study to other animal models
to see if the term “plasticosis” can also be used more extensively on
other organisms.

Once plastic waste is dispersed into the environment, it
undergoes the action of chemical and physical processes that lead
to degradation with the formation of fragments of various sizes
(Figure 1A) (Lambert et al., 2016a; Lambert et al., 2016b).
Degradation mechanisms are triggered by different factors, e.g.,
salinity, UV, physical interactions, and oxidation and generally lead
to the formation of chains of radical reactions with release of small
fragments (Gewert et al., 2015). Recently, an interesting publication
indicates also biological factors, such as the ingestion of
microplastics in crustaceans, as promoters of the degradation
process (Dawson et al., 2018). Nowadays, there is still no
legislative classification for plastic pollution, therefore the
scientific community follows the general classification assigned to
micro- and nanomaterials. Specifically, nanoplastics (NPs) include
fragments of size between 1 and 100 nm, microplastics (MPs)
between 101 μm and 5 mm and macroplastics if larger.
Sometimes it is also included the term mesoplastics to refer to
those between 1 and 5 mm (Ng et al., 2018). To follow the most
recent publications on marine concentrations of MPs, a database has
recently been developed that illustrates the results directly on a
global map and shows how concentrations vary worldwide
(Čerkasova et al., 2023). For NPs, there are still no widespread
technologies for routine capillary sampling other than complex
systems that, however, belong to only a few laboratories (Cerasa
et al., 2021; Mariano et al., 2021). Although many cited works refer
to aquatic matrices and organisms, plastic pollution is also a
widespread phenomenon on lands (Hu et al., 2022). Even the air
we breathe can contain traces of plastic fragments formed by

aerosolization of polluted water or from emissions from motor
vehicles or industrial processes in a wide variety of shapes and
sizes (Abbasi et al., 2019; Allen et al., 2019; Bhat et al., 2023). In
addition, the progressive accumulation of plastic waste can be used
by geologists to identify our Era, as a stratigraphic indicator
(Zalasiewicz et al., 2016).

The growing need to understand the effects of plastic pollution
and to standardise knowledge of their impact on our health makes it
essential to continue and deepen studies on this global
environmental problem.

The topic of this mini-review is to collect published literature on
the epigenetic alterations and gene expression modulation induced
by MPs and NPs.

General effects

The adverse effects induced by MPs and NPs were recently
summarized by the World Health Organization (WHO) report
manifesting the need to define the risk to which humans have
been exposed for decades (WHO, 2022). Many studies have been
carried out in vitro and reported a reduced cell viability likely
caused by oxidative stress with increase in Reactive Oxygen
Species (ROS) and detoxifying enzymes such as catalase,
superoxide dismutase 1 and 2, and glutathione peroxidase.
Increased levels of inflammation markers such as interleukins
and TGF β were also observed (Hwang et al., 2019; Rubio et al.,
2020). This stress in turn led to genotoxic damage assessed by
comet and micronuclei assays (references in Table 1). In order to
investigate the effects on organism level, several in vivo studies
have been performed that show that MPs and NPs accumulate
mainly in liver and fatty tissues indicating that they cross tissue
barriers reaching different organs. The effects observed in vivo
follow similar trends to those on cells (references in Table 1).
More specific effects on complex organism’s aspects such as
behavior, immune response, nervous system and microbiota,
just to mention a few, were also observed.

FIGURE 1
(A) Schematic representation of MPs and NPs formation and general toxicity in exposed living organisms. (B) Brief summary of epigenetic and gene
expression modifications in different model systems.
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Epigenetics and gene expression
modulation

Epigenetics studies heritable effects that do not involve
mutations in the DNA sequence. Epigenetics is closely linked to
developmental processes and explains how an identical set of
genomic instructions can give rise to the plethora of cells in a
single organism. Epigenetics, turning on and off the expression of
certain genes, drives the developmental processes controlling cells
and tissues differentiation (Holiday, 2006). Moreover, epigenetics,
through molecular processes, determines the plasticity of living
organisms towards their environment allowing them to respond
to many different external cues and stimuli. The first epigenetic
mechanisms discovered are DNA methylation and histone
modifications (Li, 2021). DNA methylation is still the analysis
most frequently applied as well as the first to be historically
characterized (Mattei et al., 2022). Histone modifications are
more complex since not only there are different types of
histones, but they can go through many types of modifications,
e.g., methylation, phosphorylation and acetylation (Stillman, 2018).

Environmental epigenetics deals with the study of epigenetic
alterations caused by environmental factors (Bollati and Baccarelli,
2010). For instance, it has been seen how some crustacean species
respond to rising water temperatures by modulating genes involved
in temperature stress response demethylating and acetylating
histones (Hofmann, 2017; Eirin Lopez and Putnam, 2019).
Several studies have proved that environmental pollutants can
induce epigenetic modifications. A well-known example is the
arsenic that induces several pathologies like cardiovascular
diseases and cancer caused by general DNA hypomethylation due
to arsenic detoxification pathway (Arita and Costa, 2009; Domingo-
Relloso et al., 2022; Kirtana and Seetharaman, 2022). Epigenetics
linked toMPs and NPs represent a research field of growing interest.

Here, we collect published literature on the epigenetic alterations
and gene expression modulation induced by MPs and NPs.

It has been widely documented that nanomaterials in general
cause changes in gene expression in several exposed organisms, from
microrganisms to plants, especially if the particles are charged or
metal (Van Aken, 2015). For instance, Kaveh et al. (2013)
demonstrated that exposure of A. thaliana to Ag nanoparticles
increased plant growth at low doses and decreased plant growth
at higher doses. Genes associated to metal and oxidative stress
response were up-regulated while genes involved to pathogens
and hormonal stimuli response were down-regulated. Changes in
gene expression due to exposure to nanomaterials are also frequently
reported in animal models where many biological processes are
studied using molecular markers related to oxidative stress, cell
metabolism, DNA repair and cell cycle regulation (Burkard et al.,
2020).

Plants

The impacts of pollutants on plants are particularly important
since they are crucial components in the ecology of an environment
(Barton et al., 2019; Yin et al., 2021). Frequently observed outcomes
of the MPs and NPs exposure in plants are reduced nutrient uptake
from soil and photosynthesis rate (Matthews et al., 2021; Karalija
et al., 2022). MPs, according to their size, usually cannot be absorbed
by plant root systems, but recent data show that they might enter
plant tissues through stomata. Conversely, NPs can easily enter the
plant root system and cases of transport through the xylem to the
upper parts of the plant have been recorded (Karalija et al., 2022).

In addition to the toxicity mechanisms described before, it has
been shown that MPs and NPs can also induce alterations in gene
expression in various plants. Lagarde et al. (2016) showed that in the

TABLE 1 Summarizes in vitro and in vivo general effects and related references.

Model Particles size Outcomes References

In vitro studies

Intestinal cells 20 nm–10 μm Reduced cell viability and intestinal barrier integrity, inflammation, genotoxicity,
oxidative stress, apoptosis, alteration of the cell cycle

Lehner et al. 2020, Stock et al. 2019, Liu et al.
2020, Yan et al. 2020

Vecchiotti et al. 2021

Lung cells 60 nm–2 μm Reduced cells viability, ROS formation, inflammation, genotoxicity Lim et al. 2019, Xu et al. 2019, Paget et al. 2015

Hepatic Cells 15 nm–200 nm Reduced cells viability, ROS formation, genotoxicity proliferation, hemolysis Johnston et al. 2010, Kawata et al. 2019

Nervous system
cells

40 nm–10 μm Reduced cells viability, ROS formation, inflammation Schirinzi et al.2017

Raghnaill et al. 2014

Epithelial cells 100 nm–200 μm Reduced cells viability, ROS formation, genotoxicity Choi et al. 2020, Poma et al. 2019

In vivo studies

Drosophila
melanogaster

10 nm–800 μm Oxidative stress, increase in expression of stress response genes, genotoxicity Alaraby et al. 2023

Danio rerio 50 nm–45 μm Behavior alterations, Oxidative stress, less viability, movement reduction Brandts et al. 2020, Chen et al. 2017

Mouse 25 nm–5 μm Oxidative stress, neurotoxicity, metabolic disorder, intestinal barrier dysfunction,
dysbiosis

Deng et al. 2018, Jin et al. 2018, Rafiee et al.
2018

Plants and algae 60 nm–1,000 μm Reduced micronutrients uptake, photosynthetic rate, chromosomes aberrations Karalija et al. 2022 Gopinath et al. 2019
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microalga Chlamydomonas reinhardtii, polypropylene and high-
density polyethylene MPs of sizes 400 and 1,000 μm (100 mg in
both conditions) tend to form alga-MPs aggregates. Since it is
known that extracellular polysaccharides (EPS) provides an
attractive force that enhance aggregation of cells to abiotic
surfaces, the authors measured RNA levels of genes involved in
sugar biosynthesis pathways, such as upregulation of UDP-
glucuronate decarboxylase and UDP-glucose-4-epimerase
involved in xylose biosynthesis and a reduction for UDP-glucose-
4-6-dehydratase. The expression of these genes was studied by
quantitative Real Time-PCR (qRT-PCR) and interestingly they
found that polyethylene appears to over-express these genes more
than polypropylene.

In Allium cepa, a reduction in mitotic rate was observed in root
cells, due to a dose-dependent (100 nm nanopolystyrene in different
concentrations 25, 50, 100, 200, and 400 mg/L) decrease in gene
expression of the G2-M transition factor cdc2 by qRT-PCR (Maity
et al., 2020).

Sun et al. (2020) observed in A. thaliana that the administration
of micro- and nanopolystyrene (less than 100 nm for NPs and
between 0.1 and 5 mm for MPs) results in decreased root growth
and elongation. A RNA-seq analysis showed that positive charged
NP cause a more pronounced global gene expression alteration.
More specifically, downregulation of genes involved in metabolic
processes such as ROS, stimuli and stress responses was found for
both charged NPs. A difference in upregulated gene expression was
observed based on NPs charges.

The aforementioned results suggest that chemical composition
of MPs and NPs could influence the biological effects and/or their
intensity.

In wheat (Triticum aestivum L.), Lian et al. (2022) used
integrated differentially expressed gene analysis and weighted
correlation network analysis (WGCNA) to analyse the molecular
mechanisms of NPs phytotoxicity. They found that 100 nm NPs
(concentrations of 0.01, 0.1, 1, and 10 mg/L) significantly altered
carbon metabolism, aminoacid biosynthesis, mitogen-activated
protein kinase (MAPK) signaling pathway, hormone signal
transduction potentially leading to a reduction in biomass and
compromising food yield and quality.

Nowadays, to our knowledge, well-defined epigenetics effects of
MPs and NPs on plants are not reported in the scientific literature.

Animals

Studies on epigenetic alterations in animals are more advanced
than those in plants, but still very few in numbers. The standard
organism used for pollutant toxicity studies is Daphnia magna (Lee
et al., 2009; Pellegri et al., 2014).

Martins et al. (2018) demonstrated that exposure to 0.1 mg/L of
1–5 μm diameter polymer MPs from parental generation can impair
survival of subsequent generations that may lead to an increased
probability of extinction across generations. However, no molecular
analyses have been carried out to determine possibly epigenetic
causes, but the effects observed in the parental generation after
exposure, which manifest themselves again in subsequent filial
generations after a recovery period, in our opinion, support a
possible epigenetic mechanism as a memory of parental exposure

(Müller-Xing et al., 2014). If the observed effects on next
generations, were caused by a DNA mutation, no recovery period
would be expected. However this possibility cannot be ruled out.

Another validated bio-indicator of environmental stress are
copepods being the main components of the freshwater
interstitial communities (Di Cicco et al., 2021; Roncalli et al.,
2021). In recent work by Lee et al. (2023), P. nana species were
chronically exposed to 50 nm nanopolystyrene at a concentration of
10 mg/L. Multigenerational and transgenerational effects were
evaluated in the study along with simultaneous presence of other
environmental stresses such as water acidification (pH ranging from
7.0 to 8.0). The first result is that the co-presence of NPs and a
second stress such as lower marine water pH led to a reduction in
fertility in all exposed generations. Interestingly this fertility
reduction was also observed in subsequent generations when only
the parental generation was co-exposed. The authors, by whole-
genome bisulfite sequencing, detected an increased DNA
methylation in several genes (347 genes in the group in which
each generation was exposed to NPs and 383 in the one where only
the parental one was exposed) including those involved in responses
to thermal stress, oxidative stress and cell death.

Among invertebrates, Caenorhabditis elegans is widely used to
assess MPs and NPs toxicity. Yu et al. (2021) exposed the worm to
100 nm nanopolystyrene at a concentration of 50 mg/L for 72 h. In
addition to numerous chromosomal aberrations during oocyte
diakinesis and germline cell apoptosis, they observed
transgenerational effects. Accordingly, significant levels of
increased mRNA level of ced-3, −4, −9, genes involved in the
process of apoptosis, were maintained for 4 generations after
parental NPs exposure. The increased gene expression was
associated to a DNA hypomethylation (by pyrosequencing) of
proximal promoter of ced-3 gene in all four generations. In the
same study, by qRT-PCR analysis the researchers also observed a
reduced transcription of epigenesis-related genes such asmet-2, set-2
and spr-5. They concluded that trans-generational effects is
associated with epigenetic mechanisms. Wang et al (2021)
exposed the worms to concentrations from 1 to 100 μg/L of
103 nm NPs and by qRT-PCR, observed reduced expression of
methyltransferases met-2 and set-16. The involvement of the
epigenetic mechanism in the response of C. elegans to NPs
(100 nm) was confirmed by Qu et al. (2019). In Hiseq
2000 sequencing, a deregulation of 37 intergenic lncRNAs were
found and specifically a downregulation of linc-50 and an increase in
linc-2, linc-9, linc-18 and linc-61. These lncRNAs are associated with
a high number of biological processes such as development, immune
system responses, cell proliferation. Li et al. (2020) using an
intestinal specific mutant mir-35 identified a signaling cascade of
NDK-1-DAF-16/KSR-1/2 for the epigenetic control of toxicity
response to nanopolystyrene (1, 10, 100, and 1000 μg/L of
100 nm). Moreover, other miRNAs, mir-76, mir-38 and mir-794,
have been linked in C. elegans to defects in homeostasis and gut
response following nanopolystyrene exposure (Qiu Y. et al., 2020;
Yang et al., 2020; Liu H. et al., 2021).

In Drosophila melanogaster, Zhang et al. (2020) studied the
combination of MPs with the environmental contaminant
Cadmium (Cd). Several combination of NPs and Cd were used:
negative control group, MP(L) group (containing 200 μg/mL 1-μm
MPs), MP(S) group (containing 200 μg/mL 0.1-μmMPs), Cd group
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(1.5 mM Cd), Cd + MP(L) group (containing 1.5 mM Cd and
200 μg/mL 1-μm MPs), and Cd + MP(S) group (containing
1.5 mM Cd and 200 μg/mL 0.1-μm MPs). Position-effect
variegation (PEV) is a marker of gene silencing via
heterochromatin spreading in Drosophila and it is caused from
loss of epigenetic modifications, such as histone methylation and
acetylation (Elgin and Reuter, 2013; Wang and Elgin, 2019).
Cadmium alone induces gene silencing via PEV in somatic eye
tissue. Although MPs alone does not induce PEV, in combination
with Cd, PEV is enhanced. A mechanism involved in this effect
could be DNA methylation as shown in Guan et al. (2019). To date,
this work represents the first and unique that indicates a role of MPs
to induce chromatin structure changes and therefore epigenetic
alterations in fruit fly. With regard to gene expression, recent work
(Matthews et al., 2021) shows that exposure to MPs and NPs of
polystyrene does not alter the expression of genes involved in
oxidative stress but results in a significant upregulation of the
hsp70 gene, which in Drosophila is induced by various physical,
physiological and chemical stressors.

In Danio rerio, Qiang et al. (2020) to identify potential
transgenerational effects on offspring generation, studied the
expression of fish gonad-related genes. In particular, by qRT-
PCR an increase in the mRNA expression of hmgcra, hmgcrb and
hsd3b2 genes at 1,000 μg/L with 1 μm sized microplastics. Despite
the changes in the expression of steroidogenic genes, they found no
alteration in parental reproductive success and growth performance
of offspring. Santos et al. (2022) observed a generalized reduction of
survival and increased mortality after sub-chronic exposure to MPs
and Cu alone and in combination. The authors investigated their
impact on neuro-related genes and DNA methyltransferases and
suggest that MPs and Cu, combined or not, can induce neurotoxicity
by altering neural self-renewal, proliferation, differentiation and
maturation related genes. Furthermore, they found reduced
expression of DNA methyl transferases, known to be important
factors in nerve development. Since the two classes of gene
modulation cannot be directly linked going in opposite
directions, the authors suggest the involvement of another
molecular mechanism to be identified.

Pedersen et al. (2020) exposed fish to 10, 100, 1,000, and
10,000 ppb concentrations of 50 and 200 nm nanopolystyrene.
They found significant hyperactivity compared to the negative
control during hours of darkness associated with pathways
related to nerve and movement diseases. In particular, by RNA
Quant-Seq analysis differences were found in the expression of
GABA channels as the likely cause of behavioral disorders. In
addition, genes associated with lipid catabolism such as ppar and
aco showed an initial increase with a subsequent decrease as
concentrations rose (Cedervall et al., 2012).

Recently, interesting studies in mammals on transgenerational
effects of MPs and NPs have been published. (Luo et al., 2019a; Luo
et al., 2019b) investigated the effect of plastics during gestation and
evaluated the potential effects on the mice offspring. A serum
analysis of the metabolites showed an alteration of the molecules
related to the metabolism of lipids and fatty acids together with a
reduction in the weight of the offspring. Thus, using qRT-PCR, they
found that genes regulating fatty acid transport (Fabp1, Fatp2), β-
oxidation (Ppar-α, Acox, Cpt1-α, Mcad) and fatty acid synthesis
(Srebp1c, Fas, Acl, Scd1) were significantly decreased in MPs-treated

groups of F1 offspring (polystyrene MPs sizes 0.5 and 5 μm in
diameter and 100 and 1,000 μg/L in drinking water). To evaluate the
long-term consequences induced byMPs, the same authors analysed
the transcriptome also in F2 generation. The effects found in F2 were
much lower than those F1 offspring, although some genes were still
significantly altered. These results show that there are still hidden
molecular mechanisms that can cause adverse effects even in
individuals not directly exposed through pathways yet to be
determined.

In a recent study (Xiong et al., 2023), mice were exposed to
80 nm, 0.5 and 5 μm (100 mg/L) MPs and changes of renal fibrosis
were also investigated. By RNA-Seq, about 70 genes associated with
lipid storage, cellular response, and circadian regulation were
differentially expressed in all sized MPs. In this work, the authors
highlighted MPs as a potential important risk factor in kidney
disease. Moreover, Thorson et al. (2021) studied in rats the
transgenerational epigenetic effects induced by associated plastic
compounds, including bisphenol A (BPA) di-(2-ethylhexyl)
phthalate (DEHP), and dibutyl phthalate (DBP). They observed
in males sperm changes in the methylation pattern, by Methylated
DNA Immunoprecipitation-Seq Analysis, in genes associated with
kidney and testicular diseases. Compounds were injected in different
conditions: BPA 25 mg/kg BW/day, DEHP 375 mg/kg BW/day, and
DBP 33 mg/kg BW/day) or vehicle control dimethyl sulfoxide
(DMSO).

Discussion

The widespread plastic waste emergency is now public
knowledge. It is crucial to understand not only the general direct
and immediate effects on living beings, but also the underlying
molecular mechanisms and potential transgenerational
implications. Here, we focused on epigenetics and gene
expression modulation induced by MPs and NPs. To underline
the importance of epigenetics responses, it is worth emphasising that
epigenetics mechanisms are also associated with pathologies such as
Alzheimer, Parkinson and cancer (Pavlou and Outeiro, 2017;
Nebbioso et al., 2018; Migliore et al., 2022; Sahafnejad et al.,
2023). Recent toxicogenomics investigations also discovered that
epigenetic indicators of nanoparticles stress response were becoming
more significant. For instance, it was seen that C2H2 zinc finger
subfamily (C2H2-ZNF), that are central in regulating chromatin
accessibility, is an evolutionary response shared by many organisms
when exposed to nanomaterials to decrease their toxicity (Del
Giudice et al., 2023). Considering that plastic fragments have
now been found in various human districts such as lungs,
placenta, and breast milk, this area of investigation assumes a
key role (Ragusa et al., 2021; Jenner et al., 2022; Ragusa et al.,
2022). Although few studies at present have addressed the
epigenetics alterations of MPs and NPs (Lopez et al., 2022), it is
becoming more evident the involvement of epigenetics on the effects
observed in many model systems.

Among the mentioned papers in these review, it emerges
alteration of epi-genes such as methyl-transferases and
modulation of stress responses such as apoptosis and immune
system. Between metabolic pathways, the lipid metabolism is
affected in different animal organisms. For instance, the
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expression of the peroxisome proliferator-activated receptors ppar is
altered both in zebrafish and mouse suggesting that metabolic
energy imbalance is a common outcome of MPs and NPs
exposure. Interestingly, the Shearwaters “plasticosis” was found
similarly in mice indicating tissue fibrosis as another possible
common outcome in vertebrates.

In recent years, there has been an improvement in sequencing
techniques and bioinformatic tools/pipelines for analysing big
“omics” data, but a challenge in plastics research area is the
design of experiments. The environmental concentration, size
and exposure pathways of MP and NPs have not been fully
elucidated, so it is difficult to establish the best protocol to mimic
real-life conditions and therefore extrapolate results for human
health. Moreover, MPs have also been found in breast milk and
placenta indicating that humans are continuously exposed even
before their birth. From this perspective, the multi- and trans-
generational studies are the most realistic approach.

Actions to clean up contaminated matrices and limit future
plastic waste are crucial in addition to the research being done by the
scientific community (Onyena et al., 2022).

Considering the ability of certain bacteria to bioremediate
plastics, many studies have focused on exploiting these bacteria
as a biotechnological opportunity for plastic polymer degradation
and waste clean-up. (De Tender et al., 2017; Jacquin et al., 2019;
Farda et al., 2022).

In conclusion, there is a need to better understand the toxicity
mechanisms relating to MPs and NPs pollution, as well as to
increase and improve useful technologies for cleaning
environmental matrices, improve recycling laws, and most
importantly, raise awareness among the general public
worldwide, especially in developing nations (Meegoda and
Hettiarachchi, 2023).
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