
Triggers and mediators of
epigenetic remodeling in plants

Luca Comai*

Department of Plant Biology and Genome Center, University of California, Davis, CA, United States

Plant epigenetic studies have revealed that developmental or environmental
events can trigger both local and global epigenetic remodeling. In multiple
cases, transposable elements (TE) respond to the trigger and act as mediators.
Epigenetic remodeling results in mitotically and even meiotically persistent states
that impact phenotype and could contribute to its plasticity. The challenge is to
understand the mechanisms that trigger and mediate remodeling, their
evolutionary role, and their potential in breeding.
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Introduction

Plants life cycles display great diversity, from the short sexual cycles of annuals such as
arabidopsis and cultivated rice, to the clonal persistence of invasive weeds such as knotweed
(Hollingsworth and Bailey, 2000) and cordgrass (Ainouche et al, 2009), and to the long lives
of forest species, such as juniper, fir, and aspen (de Witte and Stöcklin, 2010). Plants are
sessile and must adapt to their varying environment. Mitotically stable changes alone have
great importance for large and long-lived clones that encounter great spatial and temporal
environmental variation. For plants with shorter cycles, both mitotic and meiotically
persistent epigenetic changes could play a role in fitness. The existence of this potential
is a critical question at a time of accelerated climate change.

Developmental epigenetics in plants

We have made progress in understanding programmed epigenetic switches occurring
during reproductive development. These are recurring changes associated with the
development of flowers, fruits and seeds. Flowering in arabidopsis is one of the best
characterized epigenetic switches. FLOWERING LOCUS C (FLC), a repressor of
flowering, integrates signals from three pathways, including one involving antisense
RNAs, to undergo persistent silencing by the Polycomb Repressive Complex (PRC) and
generational resetting by histone demethylases (Whittaker and Dean, 2017). Certain
specialized tissues essential for reproduction undergo large-scale epigenetic changes:
fleshy tissues in fruits, the central cell and endosperm, and the vegetative cell of pollen.
These tissues are distinct, non-proliferating branches of plant development. Fleshy fruits
exhibit two physiological ripening responses: climacteric ones, such as tomato, exhibit a
postharvest, ethylene-triggered respiratory burst (Chalmers and Rowan, 1971; Gallusci et al,
2016). Non-climacteric, such as oranges, do not. In both types, ripening can be regulated by
large-scale changes in DNA methylation (Gallusci et al, 2016). In tomato fruit, DNA
methylation at many loci opposes the action of ethylene, preventing early ripening.
Demethylating enzymes (Liu et al, 2015) remove methyl-C marks. Demethylation plays
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a role in strawberry, a non-climacteric fruit, and is mediated by
downregulation of RNA-dependent DNA methylation (RdDM)
(Cheng et al, 2018). The opposite happens in oranges, where
non-climacteric ripening correlates with hypermethylation
(Huang et al, 2019). In developing seed endosperm, a nutritional
organ resulting from independent fertilization, parental imprinting
of key seed factors depends on the maternal action of DNA
demethylases and on the maternal establishment of PRC-
dependent repressive chromatin (Gehring, 2013; Moreno-Romero
et al, 2019). In the pollen vegetative cell, a non-dividing cell
supporting male reproduction, epigenetic marks in transposable
elements (TE) undergo programmed relaxation (Slotkin et al, 2009)
and produce small RNA capable of interacting with sperm targets
(Calarco and Martienssen, 2011). Small RNAs are thought to
orchestrate epigenetic genomic changes at various stages of
reproduction, including the haploid gametophytic stage although
the specific mechanisms are still being elucidated (Martinez and
Köhler, 2017). TEs are not the only genomic feature to lose a
genomic mark persistent in the Soma: centromeres undergo
programmed loss of their characteristic chromatin via
proteasomal processing of sumoylated CENH3 (Mérai et al,
2014). Taken together, the epigenetic changes documented at the
different developmental stages of flowering, fruiting, and seed
production demonstrate the flexible and varied regulation of
developmental chromatin marks and indicate a key role in
reproductive fitness.

Epigenetic responses to stress

Many studies have documented the effect of stress, biotic and
abiotic, on epigenetic regulation: see Gallusci (2023) for a recent review.
How does stress affect epigenetic regulation? A take-home lesson from
FLOWERING LOCUS C regulation is that cold and day length
signaling are integrated into the developmental regulation leading to
epigenetic imprinting (Whittaker andDean, 2017). Because many plant
species are exposed to cold winters, they have evolved sophisticated
chromatin-based mechanisms to ensure that they flower only in
favorable times. Other environmental stresses recur. In most
environments, even mesic ones, drought and heat periods are
expected on a yearly basis. Multiple papers have documented
environmentally triggered epigenetic changes affecting DNA and
histone marks of key genes (Chang et al, 2020; Gallusci et al, 2023).
These findings suggest that stress signals engender fitness-promoting
epigenetic memories. It remains unclear what molecular mechanisms
transduce environmental and physiological clues into epigenetic
remodeling, what regulates their persistence, and to what degree
these states endure through generations.

Transposon regulation

Studies of epigenetic changes caused by tissue culture suggest that
triggers are mediated by transposon regulation, consistent with early
insights by Barbara (McClintock, 1984). Tissue culture involving shoot
regeneration from organ explants or from single cell protoplasts
combines multiple stresses because plant cells are exposed to
wounding, to cell wall digestion by fungal enzymes (in the case of

protoplasts), to unusual light and hormonal conditions, and are induced
to proliferate and organize into shoot meristems. A few hours after
exposure to protoplasting treatments, multiple species display strong
activation of silent TEs (Pouteau et al, 1991; Hirochika, 1993; Pouteau
et al, 1994). Rapid proliferation induced during tissue culture can
destabilize DNA methylation (Borges et al, 2021), but the timing of
TE induction suggests that at the least the early response is independent
of the replication-dependent dilution of methyl-C observed during cell
cycle acceleration. While methylation marks can be re-established,
transposon activation has persistent effects. A disrupting effect
depends on transposon excision and insertion at novel sites,
resulting in DNA breaks, genome instability, and relocation of
potential regulatory elements (Bennetzen and Wang, 2014). Indeed,
both genetic changes from DNA instability and increased epigenetic
changes contribute to somaclonal variation (Phillips et al, 1994;
Kaeppler et al, 2000; Ong-Abdullah et al, 2015; Fossi et al, 2019;
Borges et al, 2021). Another effect involves remodeling of chromatin
states, particularly those associated with homologous copies of the
activated transposons (Figure 1). Transposons can confer upon
associated genes novel regulatory properties that depend on the TE
epigenetic state (Bennetzen andWang, 2014). Tissue culture of oil palm
is associated with demethylation of the Karma TE and expression of the
connected MANTLED gene resulting in undesirable mantling of the
seed (Ong-Abdullah et al, 2015). Remarkably, transposons are often
sensitive to stress and can confer stress sensitive regulation to nearby
genes (Wessler, 1996; Cavrak et al, 2014). Independent insertion of two
retroelements near the Ruby gene of sweet orange conferred cold-

FIGURE 1
TE-mediated regulation of genes. A transposable element (TE)
and its cognate element share epigenetic states. Stress can trigger the
activation of the TE and induce expression of the proximal gene
(Wessler, 1996; Butelli et al, 2012; Cavrak et al, 2014).
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dependent activation of anthocyanin expression (Butelli et al, 2012). In
rice, novel transposition of TE mPing to new sites resulted in stress-
dependent activation of the connected genes (Naito et al, 2009). In
summary, when a transposon or a transposon fragment is located near a
gene, it can sensitize that gene to the status of cognate TEs. Because
these are often sensitive to stress, the gene can become stress responsive.
In conclusion, TE can sense multiple stresses and remodel the
epigenome.

Epialleles

An epiallele affects a trait without underlying DNA changes. Plant
epialleles can confer qualitative and quantitative phenotypes and can
persist through generations (Cubas et al, 1999; Mittelsten Scheid et al,
2003; Manning et al, 2006; Weigel and Colot, 2012; Quadrana et al,
2014; Zeng and Cheng, 2014; Baduel and Colot, 2021). Most persistent
epialleles result fromDNAmethylationmarks that reside inside a TE or
spread from a TE. If a novel gene-TE association that results in altered
regulation increases fitness, the polymorphism should experience
positive selection. When associated with a persistent or potential
epigenetic mark, sensitized loci can be identified when DNA
methylation homeostasis is perturbed. For example, mutation in
MET1 or DDM1, respectively the major CpG methyltransferase and
a chromatin factor needed for methylation maintenance, generates
epialleles either by loss of methylation (Baduel and Colot, 2021), or by
hypermethylation (Saze and Kakutani, 2007; Yi and Richards, 2008).
Genome wide removal of methylation marks is largely reversible by
complementation of the methylation defect, but some loci remain
unmethylated providing allelic variation that can underlie QTL.
Reversibility is affected by RdDM and the strength of the silencing
signal provided by the cognate TE family (Baduel and Colot, 2021).
Thus, biotic and abiotic stresses activate TEs, which in turn create and
modulate epialleles. Expressed or silenced epialleles can flip state as a
result of extreme life history events.

Discussion

The effects of epigeneticmarks on genes raises the questions of what
initiates, destabilizes, and resets them. At least in part, the answers may
lay in the co-evolution of parasitic genomic elements (and related
viruses) with the host. As exemplified by the sophisticated sensing of the
host state by lysogenic λ bacteriophage, selfish elements co-wire their
regulation with host stress pathways (Rokney et al, 2008). In the case of
plants, hormonal networks influence many regulatory decisions, both
developmental and stress-dependent (Waadt et al, 2022): for example,
imprinting-dependent phenotypes in developing seeds are exquisitely
sensitive to regulation by flavonoids and auxins (Dilkes et al, 2008;
Köhler et al, 2021). Epigenetic remodelers may thus directly or
indirectly respond to hormonal regulation (Liu et al, 2015).
Elucidating the changes of epigenetic states during development is a
grand challenge. To what degree do different types of marks, such as
those determined by the PRC, depend on TEs? Why do many TEs
respond to stress? How do hormones participate in their regulation?
Activation when the host is in danger makes good sense for viruses, but
what do cell-bound elements gain from this strategy? How is cellular
and developmental homeostasis coupled to epigenetic states?

Answering these questions will contribute to our basic
understanding of epigenetic phenomena. Further, it will help
elucidate the contribution of epigenetic state to evolution and the
potential exploitation of epigenetic regulation by plant breeders.
Over a quarter century ago, Rasmusson and Phillips proposed that
unexpected phenotypic variation observed in relatively narrowly based
breeding programs could, at least in part, be based on epigenetic
changes (Rasmusson and Phillips, 1997). Methylation-dependent
epialleles could thus contribute to variation useful for breeding
(Tsaftaris and Polidoros, 1999). Experimental evidence supporting
the influence of epialleles on quantitative traits relevant to
agriculture has multiplied (Baduel and Colot, 2021). Mutation of
mitochondrial MutS Homolog 1 affects DNA methylation
homeostasis in the nuclear genome, influencing agronomic traits
(Yang et al, 2015). It is possible, therefore, that natural and induced
epigenetic manipulation could increase breeding efficiency (Springer
and Schmitz, 2017; Gahlaut et al, 2020). To play an economic role,
however, agronomic epialleles must be sufficiently stable, emphasizing
the importance of understanding triggering and resetting mechanisms.

Notwithstanding the considerable interest in their potential, there is
no conclusive evidence that epialleles have contributed to evolution and
that they can be exploited for plant breeding. Skeptical views are useful:
selection on homozygous lines that show phenotypic variation has
failed (Charlesworth et al, 2017). Virtually all significant traits
characterized have a genetic origin (Doebley et al, 2006; Weigel and
Colot, 2012). Furthermore, most epialleles are genes sensitized by a
genetic change, such as a TE insertion nearby or the formation of a
transactive inverted repeat (Jablonka and Lamb, 1998; Melquist et al,
1999). These considerations should stimulate careful reflections on their
role and on the type of evidence necessary to attribute an evolutionary
role and to deploy them for breeding. For example, epialleles could serve
as crutches conferring short term fitness in dire circumstances and
facilitating the development of more persistent genetic solutions
(Jablonka and Lamb, 1998; Kalisz and Purugganan, 2004). Plants are
useful experimental systems to test these hypotheses.

In conclusion, scientific studies that describe the causes,
mechanisms, and impact of changes in epigenetic states will
broadly benefit the field of epigenetics and genome regulation.
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