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There is much focus in the field of HIV prevention research on understanding the
impact of social determinants of health (e.g., housing, employment, incarceration)
on HIV transmission and developing interventions to address underlying structural
drivers of HIV risk. However, such interventions are resource-intensive and
logistically challenging, and their evaluation is often limited by small sample
sizes and short duration of follow-up. Because they allow for both detailed and
large-scale simulations of counterfactual experiments, agent-based models
(ABMs) can demonstrate the potential impact of combinations of interventions
that may otherwise be infeasible to evaluate in empirical settings and help plan
for efficient use of public health resources. There is a need for computational
models that are sufficiently realistic to allow for evaluation of interventions that
address socio-structural drivers of HIV transmission, though most HIV models
to date have focused on more proximal influences on transmission dynamics.
Modeling the complex social causes of infectious diseases is particularly
challenging due to the complexity of the relationships and limitations in the
measurement and quantification of causal relationships linking social
determinants of health to HIV risk. Uncertainty exists in the magnitude and
direction of associations among the variables used to parameterize the models,
the representation of sexual transmission networks, and the model structure (i.e.
the causal pathways representing the system of HIV transmission) itself. This
paper will review the state of the literature on incorporating social determinants
of health into epidemiological models of HIV transmission. Using examples
from our ongoing work, we will discuss Uncertainty Quantification and Robust
Decision Making methods to address some of the above-mentioned challenges
and suggest directions for future methodological work in this area.
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1 Introduction

In the United States, HIV disproportionately impacts sexual

and gender minorities and other marginalized communities, with

the greatest impact on those with fewer resources and limited

access to prevention and treatment services (1, 2). It is now well

recognized that the elimination of HIV will require a greater

focus on communities that experience complex and co-occurring

socio-structural barriers to HIV prevention and care (3, 4). Thus,

plans to eliminate HIV have increasingly focused on factors that

indirectly impact HIV transmission, including housing,

employment, and incarceration, which also disproportionately

affect people vulnerable to HIV (3, 5, 6). However, interventions

to address social determinants of health (SDOH) can be resource

intensive, logistically challenging, and require long-term follow-

up, making it difficult to assess their impact using standard study

designs. Although not necessarily unique to interventions

addressing SDOH, it may be unethical or impossible to

randomly assign people to a control condition. In addition, those

with the greatest need for intensified interventions may have

limited interaction with traditional research settings due to the

same life challenges that make it difficult to engage in HIV

prevention and care. Thus, while housing and employment

interventions have been developed, (7–10), they are difficult to

conduct and evaluate on a larger scale.

Simulation approaches can be useful for elucidating mechanisms

or evaluating interventions that are difficult to test empirically.

Computational models have long been used to understand the

spread of infectious diseases and to make predictions about the

course of epidemics. Commonly used methods for modeling HIV

transmission dynamics include compartmental models (11), such

as the classic susceptible-infected-recovered (SIR) model (12) and

its extensions (13), individual-level microsimulation models,

including agent-based models (ABMs), and network models

(14–16), which can be used in combination with ABMs (17).

These models differ in their complexity, granularity, representation

of mixing between populations, and behavioral impacts on disease

transmission (18). Compartmental models use differential

equations to model the rate of transition between compartments,

assuming homogeneous populations within compartments and

homogeneous mixing within and between compartments (19).

ABMs, in contrast, simulate individual interactions, decisions, and

behaviors using a bottom-up approach in which decision rules are

applied such that the interactions between agents and their

behaviors can give rise to population-level patterns not explicitly

programmed into the model (20, 21). One of the benefits of

ABMs as compared to compartmental models for modeling HIV

transmission dynamics is the ability of ABMs to explicitly model

heterogeneous individual agent characteristics, behaviors, and

interactions among agents that result in HIV transmission.

Network models focus on detailed representation of networks that

connect individuals and through which information or disease can

spread (14, 16).

Whereas classic SIR models do not incorporate behavioral

dynamics, recent work has demonstrated the importance of

behavioral responses in epidemic modeling (18, 22, 23), where
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people change their behaviors in response disease dynamics,

which in turn affects transmission, resulting in behavioral-

epidemiological feedback (22, 24). Decisions about whether to

adhere to pharmaceutical or non-pharmaceutical interventions

(NPI) are likely to be shaped by the prevalence and severity of

the disease, perceived risk, and the cost of adhering to the

interventions, including social or economic costs (24). These

decisions can change over time in response to the epidemic and

can be shaped by social or contextual factors that affect the ease

of adherence or access to NPI or vaccinations.

ABMs simulate individual agent decision making, making

them well suited to explicitly model behavioral-epidemiological

feedback and to observe emergent patterns resulting from this

feedback over time (21). For example, individuals may change

their adherence or use of PrEP in response to changes in the

HIV epidemic and perceived risk, and SDOH can affect the ease

with which individuals change their behavior in response to

disease dynamics. ABMs can also be used to conduct

counterfactual experiments in which candidate interventions are

systematically evaluated and compared. This can facilitate

identification of effects that would be difficult to isolate using

traditional statistical approaches (25, 26) and more efficient and

focused intervention development (27, 28). In addition to

allowing for behavioral feedback, ABMs are well suited to

incorporate the dependency structures and feedback loops

common among co-occurring social determinants of health (21,

26, 29). Thus, ABMs can demonstrate the potential impact of

combinations of interventions that are not typically feasible to

evaluate in empirical settings. Applications of ABMs for studying

the impact of complex social phenomena on health outcomes

have been described, most notably in the context of chronic

diseases, where ABMs have elucidated network and system level

drivers of obesity (30), tobacco use (31) and violence and PTSD

(32–34). However, most ABMs of HIV transmission to date have

focused on more proximal influences on transmission dynamics

(e.g., sexual behaviors, networks) (17, 35, 36), and do not include

distal factors that may impact transmission indirectly. This is in

part due to the complexity of the relationships among SDOH

and HIV and limitations in the measurement and quantification

of causal relationships among SDOH.

ABMs are typically based on the inherent assumption that

associations among the variables used to parameterize the model

reflect causal relationships, but causality often cannot be inferred

from empirical data. Although one of the benefits of ABMs is

their ability to combine and triangulate information from

multiple sources, it can be difficult to reconcile variation in

estimates across different data sources. Effect sizes often vary

widely, obtained from observational studies conducted across a

wide range of populations and time periods. Uncertainty exists in

terms of the magnitude and direction of associations in the

variables used to parameterize the model, as well as in the model

structure itself (i.e., the causal relationships among the variables

being modeled). Thus, while a primary motivation to use ABMs

is often that they offer the opportunity to study aspects of

complex systems that are difficult or impossible to study

empirically, ABMs require detailed empirical data or strong
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assumptions to draw conclusions about the systems they represent.

These issues are not unique to modeling SDOH, but they are likely

to be particularly relevant since data on SDOH and interventions to

address them are often limited and complex social constructs are

difficult to accurately measure even when data are available.

Understanding how uncertainty and bias in empirical data

impact ABM outputs, and how ABMs can be used to guide

public health decision-making in the presence of this uncertainty,

are active and fruitful areas for future work.

Recent reviews have described various approaches to modeling

social determinants of health in the context of HIV, including

statistical and compartmental models and ABMs. Hogan et al.

(37) discuss uses of mechanistic and statistical models to answer

different types of questions related to SDOH in HIV. De Oliveira

et al. (38) describe the process of developing a conceptual

framework for incorporating SDOH into a compartmental model

of HIV. ABMs are valuable for studying the impact of human

behavior on HIV because they allow explicit modeling of

heterogeneous agent behaviors and interactions, but with a

significant increase in complexity and computational resources

compared to compartmental and statistical models. The sections

below focus on ABMs because of their utility for modeling

heterogeneous individual behaviors and transmission networks,

and the impact of SDOH on agent behaviors, interactions, and

disease dynamics. We also discuss challenges unique to ABMs

compared to other types of models.

The remainder of the manuscript is organized as follows. First,

we describe current examples of how SDOH can be incorporated

into agent-based models of HIV transmission. We then describe

approaches to addressing uncertainty and their limitations.

Finally, we discuss ongoing applied work in the use of ABMs to

support public health decision making in the presence of

deep uncertainty.
2 Approaches to incorporating SDOH
into agent-based models

2.1 Developing a conceptual model

The first step of incorporating SDOH into the ABM is to

develop a conceptual framework for describing how SDOH

impact HIV transmission. Embedded in this framework are a

number of causal hypotheses about how various factors relate to

one another. These hypotheses are then translated into the ABM.

Based on our previous research, review of the literature, feedback

from community members, and analysis of empirical data, we

hypothesized that SDOH impact HIV transmission through one

or more of the following mechanisms: (1) changes in individual

psychosocial factors (e.g., substance use, mental health) that

impact transmission related behaviors, prevention and care

engagement, and medication adherence; (2) changes in sexual

networks that affect the probability of serodiscordant sexual

partnerships; (3) changes in health care access or engagement

(e.g., as a result of employment and insurance changes, economic

hardship, or housing instability) that impact the probability that
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individuals are retained in HIV care or on PrEP. From our

conceptual model, we focus on modifiable or actionable

intervention levers. For example, we do not model racism

explicitly, but rather the model incorporates the effects of racism,

discrimination, and other larger social constructs on factors that

impact HIV transmission; i.e., housing, employment, and

incarceration can affect use of ART or PrEP, which impact the

probability of HIV transmission.
2.2 Incorporating relevant pathways and
processes to model interventions to address
SDOH

To evaluate the potential impact of interventions to address

SDOH on HIV transmission, we developed the Integrated

Framework for Modeling Social Determinants of HIV

(INFORM-HIV) ABM. The model extends and expands an

agent-based network model (17) of HIV that incorporates sexual

behaviors and networks, HIV testing, diagnosis, linkage to care,

and ART and PrEP use (Figure 1). The original model was

modified by (1) specifying hypothesized mechanisms by which

SDOH impact HIV prevention and care engagement directly and

indirectly via intermediate factors and assigning rules by which

these factors impact model processes, and (2) incorporating

agent characteristics that impact the probability of experiencing

incarceration, housing instability, and unemployment while

accounting for correlations among agent attributes. A simplified

model diagram is shown in Figure 2. Agent characteristics are

assigned probabilistically at the beginning of the simulation to

match the empirical distribution of SDOH in the population

represented in the model and the correlations among SDOH.

SDOH can produce changes in one or more domains, and

relationships among factors within and between domains can be

cyclical and bidirectional. As the simulation progresses, agents

make decisions at various steps in the HIV prevention and care

continuum (e.g., whether to get tested for HIV, take medication,

adhere to PrEP/ART). Decision probabilities reflect agents’ past

and current experiences of housing instability, employment, and

other structural factors, which can change in response to internal

or external factors, including substance use. Agent decisions are

also influenced by individual psychosocial factors, such as mental

health. Structural and psychosocial factors can influence each

other and can vary over time.
2.3 State transition models

In order to allow for dynamic (i.e., time-varying) agent

behaviors, states, and characteristics, we apply a state chart

approach within the ABM. Statecharts are a type of state diagram

(39), or visual depiction of sequential control procedures or

algorithms. Early examples of state diagrams include Moore

machines (40) and Mealy machines (41). Our implementation is

based the Repast Simphony implementation of Harel’s statecharts

(42) described in (43).
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FIGURE 1

Conceptual model of the pathways by which social determinants of health impact HIV transmission.

FIGURE 2

Components of the integrated framework for modeling social determinants of HIV (INFORM-HIV).
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Each agent has multiple state charts, each tracking separate

attributes, such as housing or employment, with distinct states

(e.g., housed/unhoused, or employed/unemployed). Transition

probabilities determine when an agent moves from one state to

another. The transitions incorporate dependency among different

agent attributes, such that rates of transition between states in

one statechart can be based on the occupied states of another

statechart, as well as on any other agent attribute. Transitioning
Frontiers in Epidemiology 04
between two states is determined by a probability where

transitions are more or less likely depending on agent

characteristics and previous states. We applied a multiplier to

base transition probability to indicate the increased or decreased

probability of transitioning into or out of a state based on other

agent characteristics. For example, an agent is more likely to

transition from housed to unhoused at a subsequent time step if

they become unemployed than if they remain employed.
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3 Modeling transmission networks

Network models provide a statistically principled approach

to representing concurrency (i.e., having one or more sexual

partnerships that overlap in time as opposed to serial or

sequential partnerships that do not overlap), which is

thought to be an important contributor to HIV transmission

dynamics in some settings due to efficiency of transmission

during the acute phase of infection (44–46). Extensive

methodological and software development has been

undertaken in modeling networks in the context of infectious

diseases, and we refer the readers to the published literature

for in-depth reviews and example applications (47–49). Below

is a brief overview of how HIV transmission networks are

modeled within the ABM using exponential-family random

graph models (ERGMs).
3.1 Exponential-family random graph
models (ERGMs)

ERGMs are a class of statistical models used to represent the

structure of social or sexual networks through the presence or

absence of ties, which are assigned to approximate target

statistics describing the observed network (50). Target

statistics reflect the likelihood that agents form partnerships

based on various individual (nodal) or dyadic (edge)

characteristics. For example, SDOH can impact the likelihood

of partnership formation and dissolution, this impacting the

network structure. Extensions of ERGMs, separable temporal

exponential-family random graph models (STERGMs), are

used to represent dynamic networks over time (51). These

models are said to be “separable” because the factors affecting

partnership formation and dissolution are assumed to be

independent conditional on the existing network structure

(16). Thus, STERGMs have separate formulas for partnership

formation and dissolution. While the formation and

dissolution models are conditionally independent at a given

time step, they are modeled jointly over time, allowing the

structure of the tie formation model to be identified in the

context of the existing persistence model (16). To optimize the

computational cost of fitting ERGMs, we use the

recommended “statnet” approximation for cases where the

networks are relatively sparse (such as in sexual networks) and

the relationships are of at least moderate duration (relative to

the time units of the model) (52).

Main and casual partnership networks are estimated using the

“ergm” package in R (47), and the coefficients for the ERGM

parameters are estimated using Markov Chain Monte Carlo

methods (47, 48, 53), using Carnegie et al.’s approximation

method (52). These estimated adjusted coefficients are used to

simulate main and casual networks, which are read into the

ABM. The “rpy2” package (54) is used to connect the Python

code to the ERG model in R.
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3.2 Uncertainty in network structure

ERGMs are typically developed to approximate target statistics,

and the formation and dissolution coefficients are used to simulate

networks dynamically over time. ERGMs seek to maintain

equilibrium with respect to the target statistics, and the amount

of variation across stochastic realizations of a network given a set

of formation and dissolution parameters is often not

characterized. Because HIV is transmitted via sexual networks,

the extent to which the network structure (e.g., in terms of

mixing patterns, partnership duration, concurrency, etc.)

accurately reflects the underlying network in the population

represented in the model is essential for accurately modeling

HIV transmission. Computational demands of modeling

networks has previously limited the extent to which sensitivity

analyses involving varying network structures could be

conducted. However, with increases in computational resources,

it is possible to experiment with different network configurations

to determine the impact of the network structure on model

outputs. Such analyses are important given the challenges

involved in measuring networks using empirical surveys (55–57).

Additionally, there may be limited data on how SDOH impact

network structure and dynamics.
4 Methodological considerations for
empirical data: obtaining causal effect
estimates

Associations have been demonstrated between various SDOH

(e.g., housing instability, incarceration, economic hardship) and

HIV risk (58, 59), mental health and substance use (60, 61), and

HIV prevention and care engagement (61–63) across multiple

geographic contexts and populations. However, much of the

existing evidence base has come from cross-sectional studies or

lacked power to test for interactions or mediation effects.

Further, many of these relationships are likely cyclical (e.g.,

housing instability creates employment barriers which leads to

ongoing lack of resources and reduced ability to obtain stable

housing). This makes it challenging to determine directionality in

terms of the causal structures underlying the model, which is

necessary to understand which interventions or combinations of

interventions would have the greatest public health impact.

Ideally, for each factor of interest (X) and outcome (Y), it

would be possible to determine (1) whether X affects Y (with the

assumption that the effect is causal), (2) how X affects Y (i.e.,

what are the mechanisms, or pathways, by which X affects Y,

including direct and indirect effects), and (3) whether the effect

of X on Y is the same across the whole population being

modeled, or whether it varies across subgroups of the population

(i.e., is there effect heterogeneity). If all of the above statements

are known, we can use the model to answer questions such as

“What would be the impact of intervening on X on the outcome

Y?” (in terms of absolute and relative effects, cost, or any other

relevant effect measure). We can also answer questions such as
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“Would interventions that are focused on a subgroup or subgroups

of the population be more efficient (in terms of cost, infections

averted, etc.) than more broadly targeted interventions?”

Many traditional applications of ABMs have focused on

answering the two questions above, assuming that the preceding

items (1–3 above) are known and quantified. There is also

typically the assumption that model parameters and calibration

targets are unbiased and measured without error (this is

discussed further below in the context of sensitivity analysis and

calibration). However, these assumptions often cannot be easily

tested or verified for most SDOH or other factors that are not

amenable to testing in randomized controlled trials. Thus,

conclusions are highly dependent on the availability and quality

of the data used to parameterize the model. There is thus a need

to account for and address uncertainty in models seeking to

understand the potential impact of interventions on SDOH for

reducing HIV transmission. This is discussed in further detail in

the sections that follow.

ABMs’ potential to aid epidemiological causal inference has been

recognized (20, 25, 26) but applications in the context of complex

social phenomena have been limited (34). Recently published work

has demonstrated how uncertain or biased input parameter

estimates can result in biased results from ABMs (64, 65). These

illuminating examples have focused on clinical data and endpoints,

and the potential for bias is likely amplified in the case of social

determinants of health. Debate remains about the circumstances

under which necessary assumptions can be tested and verified

(66), and estimates obtained from one population can be

transported to another (64, 67). More work is needed to

determine to what extent uncertainties can be addressed using

computational approaches and how ABMs can be used to study

highly complex systems in the presence of uncertainty.
5 Approaches to dealing with
uncertainty: uncertainty quantification,
sensitivity analysis, and calibration

Understanding the magnitude and potential impact of

various forms of uncertainty is essential in ABM research

because it directly impacts conclusions that can be drawn from

models, particularly when comparing interventions in order to

make public health decisions about use of limited resources.

Broadly, uncertainty is categorized into two types: aleatory and

epistemic. Aleatory uncertainty captures the inherent

randomness in the stochastic processes that drive agent

interactions within an ABM and the empirical data being

observed. Epistemic uncertainty, in contrast, arises from a lack

of knowledge about the process or input to the computational

model. Generally, epistemic uncertainty is considered

“reducible” by collecting more data, refining model

parameters, enhancing model structure, or conducting further

experiments, while aleatory uncertainty is “irreducible.” The

objective is to identify and account for all quantifiable

uncertainties within projections created by the ABMs.
Frontiers in Epidemiology 06
HIV transmission models that integrate the influences of

SDOH are inherently complex, with many relationships that are

indirect, bi-directional, or non-explicit. Such complexity

introduces structural uncertainty due to the incomplete

understanding of causal relationships among SDOH and between

SDOH and HIV. This complexity necessitates the inclusion of a

large number of parameters to control the various aspects of the

model. However, estimating these parameters is challenging,

often relying on incomplete data that may include significant

measurement errors, which underscores the need for large-scale

sensitivity analysis to assess the robustness of the model. Thus,

the overall task becomes computationally demanding due to the

model’s intricacy. Although sensitvity analysis (SA) has been

applied in ABM research previously [e.g., (68)], complex models

integrating SDOH entail far larger parameter spaces and, hence,

more uncertainties to address.

In the following sections, we provide a brief outline of

approaches for examining the impact of various forms of

uncertainty on model outcomes using uncertainty quantification

and sensitivity analysis tools (we refer readers to comprehensive

resources such as (69) and other cited works for a more in-depth

understanding). We also review how complex models with

uncertainties, including ABMs that seek to understand how

SDOH factors impact HIV transmission, can be calibrated.
5.1 Uncertainty quantification and sensitivity
analysis

Uncertainty quantification (UQ) and sensitivity analysis (SA)

are complementary approaches that are often performed together

to understand the impact of uncertainty on model outcomes. UQ

involves characterizing the uncertainty in a model’s input

parameters that arise from measurement error or natural

variation, often in the form of distributions or ranges (sometimes

referred to as uncertainty characterization) and subsequently

evaluating the impact of this uncertainty on model outcomes

(sometimes referred to as uncertainty propagation) (70, 71). In

other words, UQ is used to link uncertainty in the input

parameters to uncertainty in the model outputs. Sensitivity

analysis is then performed to understand which input parameters

have the most impact on model outcomes. In an ABM, some

parameter values are derived empirically from observed data,

while others, which are not directly observable, are estimated

through calibration and data assimilation. Uncertainty in the

data can lead to varying degrees of influence on model parameter

ranges and distributions. SA aids in simplifying the model by

identifying parameters with minimal impact on outcomes and

facilitating dimensional reduction. It also highlights parameters

with large impacts, where improving on empirical precision

would be beneficial to reduce model output uncertainty.

The first step in SA is to identify model parameters and define

their ranges. Parameter ranges may be informed by empirical data,

previous studies, expert opinion, or, when data is sparse, assigned a

broad range. When there is a large parameter space, an initial

screening is useful to identify parameters with minimal influence,
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allowing these to be fixed at specific values and thereby reducing

the problem’s dimensionality. The Morris method (72) is

effective for this screening, requiring only mr(pþ 1) simulation

runs, where m is the number of settings tested per parameter p,

and r is the number of replicates when a model is stochastic.

This approach provides an efficient way to identify influential

parameters before performing a full-scale SA. However, as model

complexity, and in turn, the number of parameters, increases,

comprehensive UQ/SA can become computationally infeasible

(70). Surrogate models, discussed next, and high-performance

computing (HPC) workflows become essential for global SA in

large computational models (73–75).
5.2 Surrogate models

Surrogate models, also referred to as emulators or reduced-order

models, serve as efficient approximations to actual models, in the

current context serving as surrogates for ABMs. These are

mathematical representations of the relationships between inputs

and outputs of a model, and are constructed to predict outputs of

a model based on a limited number of simulations. Trained

surrogates can be used to quickly reproduce predictions from a

model without having to run the model (76–79). Surrogates can

significantly reduce the computational costs in ABM analyses, thus

facilitating large-scale UQ/SA. Building a surrogate model involves

selecting an appropriate functional form, such as Gaussian

processes (80), polynomial chaos expansions (81), or neural

networks (82), and fitting it to a set of model input/output pairs,

using static or adaptive experimental designs (80). Once fitted, the

surrogate provides fast approximations of ABM outputs across the

input space, enabling extensive sampling needed for UQ/SA and

other critical analyses such as ABM calibration (83), discussed next.

For SA applications, surrogates can be used to estimate Sobol

sensitivity indices (84). To train a Gaussian process (GP)

surrogate, an initial simulation campaign is performed, e.g., using

a Latin hypercube space-filling design (85). If the parameter space

is high-dimensional, a single round of GP training can require a

significant number of simulations to produce acceptable prediction

accuracy. However, by integrating the GP with an active learning

strategy, such as the one developed in (86), the total simulation

budget can be reduced. This approach starts with a small number

of simulations and iteratively adds more, prioritizing those that

enhance the estimation of Sobol sensitivity indices. The active

learning framework can be combined with various GP constructs

to tailor the surrogate to the specific needs of the underlying

model. In addition, approximate GPs can be used to accelerate the

computation of sensitivity indices by constructing surrogates that

are local to specific parameter subspaces (87).
5.3 Calibration

Prior to scenario analyses or predictions,ABMsneed to be calibrated

to ensure that the outputs from the model are consistent with empirical

data targets. Calibration involves running themodelwith different sets of
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parameters and comparing the output to empirical data with the goal of

minimizingmodel error (88). Calibration targets can be evaluated based

on point estimates or ranges, but the greater the uncertainty in the

calibration targets the more challenging and computationally

expensive the calibration becomes.

Uncertainty in calibration targets is an important issue in HIV

modeling, particularly when modeling sub-populations in which

the denominators defining the population size estimates used in

incidence and prevalence calculations have to be estimated from

multiple sources (89–91). This results in additional uncertainty

in surveillance estimates above the standard limitations of

surveillance data which typically suffer from some degree of

under reporting and other reporting biases. Thus, calibration

approaches that address uncertainty in both the input parameters

and the calibration targets are needed.

5.3.1 Approaches to calibration
History matching History matching is a common calibration

technique which works by systematically ruling out parameter

values that are inconsistent with the observed data. Unlike other

calibration methods that seek to optimize parameters directly,

history matching iteratively eliminates implausible regions of the

parameter space, zooming in on parameter combinations that yield

predictions aligned with empirical data (92, 93). History matching

has seen its use in healthcare applications, particularly for

calibrating high-dimensional models. For computationally expensive

models such ABMs, it can be paired with surrogate models,

enabling efficient exploration of the parameter space without

exhaustive simulations (94). The iterative refinement process is

especially applicable to healthcare applications, where robust model

calibration is necessary for forecasting and evaluating interventions

under uncertainty. By focusing computational resources on the

most plausible parameter sets, history matching provides a rigorous

yet computationally feasible approach to calibration, enhancing

model reliability in critical healthcare applications (95).

Approximate Bayesian computation Approximate Bayesian

computation involves sampling a set of parameters from a prior

distribution and testing if simulated model outputs (simulated

targets) are within pre-specified thresholds of empirical values

(empirical targets). A parameter set is accepted if the error is

smaller than the threshold and otherwise rejected. Testing a large

number and range of parameters can be used to approximate the

posterior distribution, i.e., the probability of the parameters given

the data. Sampling the parameter space and evaluating model

outputs can become computationally expensive so efficient

sampling methods are needed. Different ABC algorithms have

been applied in the literature, ranging from simple rejection

sampling to sequential Monte Carlo approaches (96, 97).

Bayesian Calibration Bayesian calibration using GPs has

become a widely adopted approach in various modeling domains,

providing a principled way to calibrate complex models by

accounting for both parameter uncertainty and model

discrepancy. This method combines Bayesian inference with a

GP-based surrogate model approximating the computationally

expensive model across the input space, enabling efficient

estimation of posterior distributions for model parameters (98).
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The Bayesian approach allows for incorporating prior knowledge

and updating beliefs about model parameters based on observed

data, yielding a posterior distribution that represents uncertainty

about parameter values and the empirical data. This is particularly

relevant in healthcare applications, such as modeling disease

progression or patient outcomes, where data is often limited,

error-prone, and computational resources are constrained (99).

Bayesian GP calibration also facilitates robust UQ by capturing

both aleatoric and epistemic uncertainty. As a result, the model

predictions are accompanied by realistic uncertainty estimates,

(100), which, as discussed in the following section, is important in

the context of decision-making in critical healthcare scenarios.

Optimization Optimization-based calibration with active learning

builds upon GPs to efficiently refine parameter estimates in complex

simulation models. In this approach, the GP surrogate enables rapid

evaluations of an otherwise computationally expensive objective

function (i.e., the expensive simulation), guiding the search for

optimal parameter values. Active learning further aids in this

process by adaptively selecting data points in regions of high model

uncertainty or near potential optima, thus prioritizing areas where

new information would most improve model fidelity (101). The

combination of GPs and adaptive sampling reduces the need for

exhaustive simulations, focusing computational resources on the

most informative parts of the parameter space (102).

The INFORM-HIV ABM contains complexities that require

further considerations for applying the calibration approaches

presented above. These include the need to address potential

issues of non-identifiability (103). To improve feasibility there is

also the need for dimension reduction techniques such as active

subspaces (104) and variational autoencoders (105). These

methods aim to capture lower-dimensional representations of the

input data, facilitating more efficient exploration of the parameter

space while accounting for the complex interdependent

relationships represented in INFORM-HIV. Another challenge is

addressing multiple (potentially dependent) calibration targets.

A GP can be extended to a multi-output framework, where a

single set of input parameters affects several outputs, and the

correlation between these outputs is modeled via a covariance

function (106). Alternatively, multi-objective optimization provides

a method for optimizing multiple, often conflicting, outputs. This

approach aims to identify a set of optimal solutions, known as the

Pareto front, where improving one objective would degrade

another. GP surrogates can be integrated into this optimization

framework to enable efficient solution exploration (107).
6 From models to decision making

Despite the uncertainties described above, public health

stakeholders must make decisions in the presence of limited

information. Developing solutions to complex public health

problems like HIV involves collaboration among many

stakeholders from different sectors, with different and often

competing priorities, and differences in focus in terms of policies,

intervention levers, and measures of success. Incorporation of the

extensive knowledge and applied public health experience among
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stakeholders is essential for developing meaningful models for

public health decision making. However, there is a challenge in

translating this knowledge into models that can inform decision

making in contexts where there is a high degree of uncertainty

from a data perspective as discussed in Section 5, but also

characterized by deep uncertainty. In other words, in addition to

uncertainties in the data used to parameterize models, there are

aspects of the current and future states of the world that are

unknowable. Tools to help stakeholders make informed decisions

in the presence of uncertainties in data, causal structures,

transmission networks, and future states are needed to develop

effective tools for modeling interventions to address SDOH in

complex systems such as HIV.

Robust Decision Making (RDM) is a multi-scenario, multi-

objective decision-analytic approach designed to inform policy

decisions when decision-makers and scientists lack confidence or

agreement in either (i) the appropriate models to describe

interactions among a system’s variables, (ii) the probability

distributions to represent uncertainty about key parameters in a

model, or (iii) how to value the desirability of alternative outcomes

(108). Under these conditions, often labeled as deep uncertainty

(109), traditional decision-analytical approaches can lead to gridlock

over contested assumptions or unwarranted overconfidence in

model predictions, both of which can prove counterproductive (108).

RDM offers a rigorous approach to address the deep

uncertainties inherent in modeling SDOH and their impacts on

HIV transmission described in this paper. The RDM process

typically begins with stakeholder engagement to develop a

conceptual framework, identify potential interventions, set policy

objectives, and recognize key uncertainties. These elements are

then programmed into a simulation model, such as an agent-

based model. Experiments are conducted to test how different

interventions perform across a wide range of future scenarios

and assumptions. RDM studies then focus on assessing the

robustness of policy decisions to uncertainty and on clarifying

the conditions under which policies fail to meet policymakers’

goals. Analysis of the results focuses on identifying robust

strategies that perform well across many plausible futures rather

than optimizing for a single set of assumptions (110, 111).

RDM’s focus on clarifying the conditions under which

policymakers’ goals can be achieved is particularly relevant for

HIV elimination efforts as policymakers seek combinations of

policy interventions that can achieve HIV elimination goals.

Existing RDM applications in the life sciences provide

examples of how RDM can help address deep uncertainty in

HIV modeling. For instance, (112) used a scenario discovery

approach to identify conditions under which blood-based tests

could be superior to established tests for colorectal cancer

screening. This approach identified regions in the parameter

space where blood tests could be more cost-effective than

existing tests. Similarly, RDM was used to inform the decision to

reopen the economy following the vaccination campaigns in the

COVID-19 pandemic, addressing uncertainties about the

transmissibility of future variant strains and the population’s

willingness to accept a new vaccine (113, 114). Following the

COVID-19 pandemic, RDM was also used to demonstrate how
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public health decision-makers can weigh health and economic

outcomes while accounting for uncertainty when introducing

nonpharmaceutical interventions (115).

RDM can support HIV elimination decision-making in multiple

ways. First, RDM can be used to stress-test the pathway to HIV

elimination that current HIV elimination plans aim to achieve.

Such stress-tests can be helpful to increase the confidence that

existing HIV elimination plans can achieve HIV elimination goals,

or may reveal that current levels of funding and effort are not

sufficient to achieve aspirational goals. Although advocates and

policymakers have set goals to mobilize resources, it is unclear

whether those goals are either overambitious or are not sufficient

to achieve HIV elimination. Second, RDM can be used to stress-

test the robustness of multiple alternative policy portfolios to help

decision-makers understand how to “dose” different policy

interventions. Finally, in an environment where funding for HIV

elimination interventions cannot be taken for granted, RDM can

help decision-makers understand the critical policies without

which HIV elimination cannot be achieved.

INFORM-HIV could be further extended to include endogenous

adaptation in agent behaviors in response to epidemic trends.

Currently, rules by which agent characteristics and interactions

impact epidemic dynamics are specified as exogenous inputs.

However, in the context of HIV and other infectious diseases,

people often adapt their behavior in response to changes in the

epidemiology of the disease, in addition to factors such as the

availability of effective treatments or vaccines and perceived risk

(22–24). Adaptive responses could also be modified by SDOH.

RDM tools could play a critical role given the additional deep

uncertainties associated with modeling adaptive behavioral responses.
7 Conclusions and future directions

When addressing complex public health issues such as HIV,

policymakers are often required to make decisions in the

presence of deep uncertainty in multiple domains. ABMs can

help to understand and quantify the population-level impacts of

combinations of biomedical, psychosocial, and structural

interventions. However, to quantify the impact of these

interventions, ABMs require parameter estimates that reflect

causal relationships and structures among many interconnected

factors, which are hard to quantify using standard statistical

techniques. There is a need for further development of

computational methods to address uncertainty in highly complex

ABMs, as well as tools to aid in public health decision making in

order to translate ABM results into actionable interventions.

Integrating methods from statistics, agent-based modeling, and

robust decision-making could offer new tools for understanding

and addressing complex public health issues.
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