
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
SYSTEMATIC REVIEW article
Front. Epidemiol.
Sec. Infectious Disease Epidemiology
Volume 5 - 2025 | doi: 10.3389/fepid.2025.1475141
This article is part of the Research Topic Women in Epidemiology: 2024 View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
This systematic review and meta-analysis investigate the relationship between PM2.5 exposure and increased influenza risk (e.g. increased hospital admissions, confirmed influenza cases), synthesizing previous findings related to pollutant effects and exposure durations. We searched PubMed, Web of Science, and Scopus for relevant studies up to 1 January 2010, following Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines for selection and analysis. Our review included 16 studies and found that a 10-μg/m³ increase in daily PM2.5 levels was associated with an increase of 1.5% rise in influenza risk (95% CI: 0.08%, 2.2%), with significant variations across different temperatures and lag times post-exposure. The analysis revealed heightened risks, with the most significant increases observed under extreme temperature conditions. Specifically, colder conditions were associated with a 14.2% increase in risk (RR = 14.2%, 95% CI: 3.5%, 24.9%), while warmer conditions showed the highest increase, with a 29.4% rise in risk (RR = 29.4%, 95% CI: 7.8%, 50.9%). Additionally, adults aged 18-64 were notably affected (RR = 4%, 95% CI: 2.9%, 5.1%). These results highlight PM2.5's potential to impair immune responses, increasing flu susceptibility. Despite clear evidence of PM2.5's impact on flu risk, gaps remain concerning exposure timing and climate effects. Future research should broaden to diverse regions and populations to deepen understanding and inform public health strategies.
Keywords: Environmental public health, Fine particulate matter air pollution, respiratory viral fine particulate matter, Lag effects, Respiratory viral, Infections, influenza
Received: 02 Aug 2024; Accepted: 27 Mar 2025.
Copyright: © 2025 Orr, Kendall, Jaffar, Graham, Migliaccio, Knudson, Noonan and Landguth. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Ava Orr, University of Montana, Missoula, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.