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Introduction: Seasonal influenza poses significant societal costs, including
illness, mortality, and reduced work productivity. Vaccination remains the most
effective strategy for preventing the disease, yet vaccination rates in the United
States fall below 50% for adults. Understanding the factors influencing
vaccination decisions is crucial for designing interventions to improve uptake.
This study investigates how personal experiences and the experiences of
social contacts affect individual decisions to get vaccinated against influenza.
Methods: A multi-year longitudinal survey study was conducted to examine the
impact of personal and social network experiences on vaccination decisions.
Participants’ vaccination behaviors and experiences with influenza were
tracked over time. To model these influences, we developed a memory-based
vaccination decision model using the Adaptive Control of Thought – Rational
(ACT-R) integrated cognitive architecture, which incorporates cognitive
processes associated with memory and decision-making.
Results: The survey results demonstrated that both personal experiences
with influenza and the experiences of close social contacts significantly
influenced vaccination decisions. The memory-based model, built
within the ACT-R framework, effectively captured these effects, providing a
computational representation of how personal and social factors contribute to
vaccination behaviors.
Discussion: The findings suggest that personal and social experiences play a
critical role in shaping vaccination decisions, which can inform the
development of targeted interventions to increase vaccination uptake. By
incorporating cognitive processes into the model, we identified potential
strategies to enhance vaccine promotion efforts, such as recalling past
experiences with illness to motivate individuals to get vaccinated.
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Introduction

Seasonal influenza accounted for an average of 29 million cases, 440 thousand

hospitalizations, and 36 thousand deaths in the U.S. each year from 2011 to 2020 (1).

The economic burden of influenza has been estimated at $11.2 billion dollars annually

(2). Influenza vaccination is the most effective means of preventing the illness and
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averting its most severe outcomes (3). Yet despite the relative

efficacy and availability of the influenza vaccination, fewer than

half of adults in United States are vaccinated each year (4).

Given the significance of this issue in terms of loss of lives and

loss of productivity, it is essential to understand how people

decide about vaccination to design interventions to increase

vaccination uptake.

One of the strongest predictors of future health behavior,

including vaccination, is past behavior (5). Past vaccination

decisions are highly predictive of perceived risk of illness,

intention to vaccinate, and future vaccination decisions (6–8).

Other factors like knowledge about influenza and vaccination,

provider recommendation, personal experiences, social influences,

and other sociocognitive variables are predictive of vaccination

decisions as well (9–11).

Research on health decision making has given rise to

psychological theories such as the health-belief model, the theory

of planned behavior, the theory of reasoned action, and the

protection-motivation theory (12–14).

These theories propose that people appraise the probability

and severity of health risks, the efficacy of recommended

health behaviors, the barriers toward enacting those

behaviors, and possibly the subjective norms surrounding them.

Appraisals shape motivation, which in turn shapes behavior.

Psychological theories of health behavior have been applied to

vaccination decisions [for a review, see (9)]. Because these

theories are broad, they account for many of the factors shown

to be related to vaccination. But because these theories are also

abstract, they do not address finer-grained, dynamical changes in

individuals’ behavior.

Computational models of vaccination behavior have also

been developed [for a review, see (15)]. These models can be

divided among three categories. First, phenomenological

models describe observed behavior effects mathematically

without positing underlying mechanisms [i.e., (16)]. Although

these models may be inspired by psychological factors, the

mathematical equations describe outcomes rather than the

specific psychological processes that give rise to them. Second,

game theory models treat vaccination as a strategic interaction

in which individuals seek to anticipate how others will behave

and to make decisions that maximize their own outcomes (17).

Although game theory provides a useful framing for social

aspects of vaccination, it makes the strong assumptions that

individuals are driven by selfish motives and that they are

rational decision makers. Third, psychological models invoke

psychological theory to formulate mechanisms underlying

vaccination decisions. For example, these mechanisms include

learning, subjective expected utility estimation, and estimating

the likelihood of infrequent events (18). Despite their

psychological origins, these models vary in terms of

psychological fidelity and they are only indirectly linked to

other established computational models from the fields of

experimental and cognitive psychology.

In parallel and independently, research in cognitive science has

sought to develop computational cognitive models that simulate

cognitive processes (19). Many of these models have been
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developed and validated using data gathered in carefully

controlled laboratory experiments. Yet the cognitive processes

they represent are general. This raises the possibility that

computational cognitive models can be used to understand and

improve human behavior in real-world contexts (20). Human

behavior in real world contexts, in turn, can provide new tests of

computational cognitive models. The implications of these

models with respect to vaccination decision making have not yet

been explored, and is the focus of this paper.

Adaptive Control of Thought – Rational (ACT-R) is an

integrated cognitive architecture that represents the cumulation

of psychological theories encompassing human perception,

memory, learning, judgement and decision making, and motor

control (21). ACT-R has a long history in educational

psychology. By simulating student learning processes, ACT-R can

be used to assess mastery and to tailor materials delivered to

students by intelligent tutoring systems (22). More recently,

ACT-R has been used to develop interventions to increase uptake

of health behaviors. For example, Pirolli et al. (23) related

components of ACT-R to the theory of planned behavior (2018).

They then embedded ACT-R in a collection of mobile health

applications, and used ACT-R to facilitate goal setting, to

improve the timing of health behavior reminders, and to

engender habit formation.
Overview of the current study

The goal of this paper is to use a computational cognitive

model developed in ACT-R to understand how personal

experiences and the experiences of others in one’s social network

influence seasonal influenza vaccination decisions. We conducted

a multi-year longitudinal study during which individuals self-

reported whether they vaccinated, and whether they contracted

influenza during each season. Individuals also reported the

vaccination behaviors and illness outcomes of their close

social contacts—other people who they interact with on a

daily or weekly basis. We used data from this study to address

four questions:

1. How do recent personal experiences (i.e., experiences from the

previous season) influence vaccination decisions?

2. How do recent experiences of close social contacts influence

vaccination decisions?

3. How do the influences of past personal and social network

experiences on vaccination decisions change over time?

4. Can ACT-R account for the longitudinal effects of personal and

social network experiences on vaccination decisions?

Next, we describe a memory-based model of vaccination

decisions implemented in ACT-R. We then report the results of

the longitudinal survey study. Finally, we evaluate the model

using data from the study. If ACT-R provides a valid account of

vaccination decision making, then it could be used to

prospectively explore the effectiveness of different interventions,

and to select the ones that are most promising.
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TABLE 1 Instances contained in model.

Source Behavior Outcome Evidence
Ego Vaccinate Influenza Not vaccinate

Ego Vaccinate Not influenza Vaccinate

Ego Not vaccinate Influenza Vaccinate

Ego Not vaccinate Not influenza Not vaccinate

Alter Vaccinate Influenza Not vaccinate

Alter Vaccinate Not influenza Vaccinate

Alter Not vaccinate Influenza Vaccinate

Alter Not vaccinate Not influenza Not vaccinate

Walsh et al. 10.3389/fepid.2024.1467301
A memory-based model of
vaccination decisions

At the core of ACT-R is an activation-based theory of declarative

memory that accounts for the acquisition and retention of factual

knowledge and experiences (21). Information stored in declarative

memory can be used to make decisions. For example, instance-

based learning theory (IBLT), which uses ACT-R’s theory of

declarative memory, proposes that when faced with a decision,

people recognize the situation based on its similarity to past

instances stored in memory (24). They then use information stored

in those instances to make decisions. The memory-based model of

vaccination decision making that we propose directly follows ACT-

R’s theory of declarative memory, and it uses declarative memory

to enable decision making in the manner described by IBLT.

In ACT-R, information is stored in declarative memory as

instances (or chunks). For example, an instance can include

information about personal experiences, such as whether one

vaccinated in the previous season and whether one contracted

influenza. Instances are added to memory during different

seasons and accumulated over time. An instance can also include

information about observed experiences, such as whether a

partner, friend, or co- worker vaccinated in the previous season

and whether they contracted influenza.1 Once again, these

instances are added to memory during different seasons and for

multiple individuals in one’s social network.

Instances may be retrieved from declarative memory to enable

decision making. In the case of vaccination, an individual may

attempt to retrieve instances concerning past vaccination behaviors

and influenza outcomes to inform the current decision of whether

to vaccinate. These instances can be divided among eight classes

based on three factors: (1) Whether they reflect personal

experiences (ego) or social network experiences (alter); (2)

Whether they involve vaccinating or not; and (3) Whether they

involve contracting influenza or not (Table 1). The behaviors and

outcomes listed in Table 1 refer to those of the individual (ego) or

of others in their social network (alter). Each instance summarizes

the combined effects of the multitude of experiences making up

that class. Additionally, each instance provides evidence for or

against future vaccination. For example, if an individual did not

vaccinate and did not contract influenza in the previous season,

that experience would provide evidence in favor of vaccinating again.

Alternatively, if an individual vaccinated and did contract

influenza, that experience would provide evidence against

vaccinating again. In this instance-based model of vaccination

decision making, the individual retrieves an instance from

memory and decides based on the evidence that it contains.
1Our model does not distinguish between different types of “observed”

experiences, such as witnessing a social contact’s illness versus hearing

about their illness.
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Memory retrieval in ACT-R is competitive. The accessibility of

an instance from memory depends on its activation value relative

to the activation of the other instances stored in memory (25).

The activation value of an instance depends on three

components: base-level activation (Bi), spreading activation (Wi),

and mismatch penalty (MPi).

Ai ¼ Bi þWi �MPi (1)

Base-level activation is a function of how frequently and

recently an instance has been experienced,

Bi ¼ log
Xn
j¼1

t�d
j

 !
(2)

where tj is the elapsed time since the instance was experienced on

each of j occasions, and d is the decay rate. A particular instance,

such as vaccinating and not contracting influenza, can be

experienced multiple times (i.e., during each of multiple seasons,

or for multiple alters during one season). The base-level

activation of the instance reflects the summation across the

collection of all such experiences.

Figure 1 illustrates the dynamics of base-level activation for three

hypothetical scenarios. In the first scenario (top panel), an individual

experiences the same outcome during Seasons 1, 2, 3, and 4. The

activation of each experience decreases over time, but the

cumulative activation increases with each repetition (Equation 2).

In the second scenario (middle panel), an individual experiences

the same outcomes during Seasons 2, 3, and 4. As compared to the

first scenario, cumulative activation at the onset of Season 5 is

somewhat lower due to the decreased frequency of the experiences.

In the third scenario (bottom panel), the individual experiences the

same outcomes during Seasons 1, 2, and 3. As compared to the

second scenario, cumulative activation at the onset of Season 5 is

somewhat lower due to the decreased recency of the experiences.

The accessibility of an instance from memory also depends on

spreading activation, Wi (Equation 1). Spreading activation

describes how cues, present in the environment and associated

with instances stored in memory, increase the accessibility of

those instances from memory. Although cues can be directly

manipulated in laboratory studies, they are unknown in the

naturalistic context of our study. Consequently, rather than

computing Wi from ACT-R’s spreading activation equation, we

treated it as a free parameter that took separate values for the
frontiersin.org
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FIGURE 1

Activation as a function of frequency and recency of experiences.
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four types of instances formed by crossing vaccination decision

(yes or no) and influenza outcome (yes or no).

Finally, the accessibility of an instance from memory depends

on the mismatch penalty, MPi. An assumption in our model is

that individuals seek to retrieve personal experiences (i.e., ego),

but that they occasionally retrieve social network experiences

instead (i.e., alter). This is how social network experiences exert

an effect. However, because alters differ from the individual

making the decision, the activation of alter instances (Ai) are

offset by the mismatch penalty. For example, if the mismatch

penalties were set to zero for ego and alter instances, individual

and social network experiences would be equally accessible from

memory. However, if the mismatch penalty were set to zero and

one for ego and alter instances, respectively, social network

experiences would become somewhat less accessible from memory.

The activation values for instances are unbounded. The

probability of retrieving an instance depends on its activation

and is given by the Equation 3,

Pi ¼
exp

Aiffiffiffi
2

p �s

� �
P

n¼1:8 exp
Anffiffiffi
2

p �s

� � (3)
Frontiers in Epidemiology 04
where s is the activation noise parameter. This equation converts

unbounded activation values to retrieval probabilities for each of

the eight instances.

In this instance-based model of vaccination decision making,

retrieval probability is computed for each of the eight instances

formed by crossing the three factors (Table 1). The probability of

vaccinating equals the cumulative probability of retrieving one of

the four instances that provides evidence in favor of vaccinating

(and hence not one of the instances providing evidence against

vaccinating). The model contains seven free parameters (decay,

four unique spreading activation values, the mismatch penalty

applied to alter instances, and activation noise), which are shared

across individuals. These parameters are estimated from

empirical data. The model predicts different vaccination

probabilities for individuals based on their unique personal and

social network histories.
Methods

Materials

From 2016 to Spring 2020, eight online surveys were fielded

longitudinally to a random sample from a panel of U.S. adults
frontiersin.org
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TABLE 2 Sample size and self-reported vaccination and influenza rates for
each surveyed season.

Influenza season Sample size

Ego Alter
Fall 2015 to Spring 2016 2,173 2,102

Fall 2016 to Spring 2017 1,935 1,852

Fall 2017 to Spring 2018 1,888 1,749

Fall 2018 to Spring 2019 1,740 1,695

Fall 2019 to Spring 2020 1,642 1,643

Walsh et al. 10.3389/fepid.2024.1467301
aged 18 years and older participating in the RAND American Life

Panel (ALP), a nationally representative panel of U.S. adults. ALP

data collection follows strict ethical standards and is approved by

RAND’s Institutional Review Board (IRB), and the Human

Subjects Protection Committee (HSPC). The ALP involves over

5,000 panelists in web-based surveys. Internet access and

equipment are provided to panelists as needed. Identifying

information is securely stored separately, and data are de-

identified for public use. For more information about how ALP

surveys are designed and fielded, see Pollard and Baird (26).

The study used an egocentric social network interview protocol in

which participants answered questions about themselves (the “ego”).

They then provided a list of up to 15 network contacts (the “alters”)—

individuals such as family members, friends, and co-workers.

Participants answered questions about their perceptions of their

network contacts’ characteristics and behaviors (27). At the start of

the study, participants answered a question to generate a list of

network contacts. Two surveys were then fielded during each

influenza season, one in the fall and one in the spring. All spring

surveys included a series of questions about whether the participant

received the influenza vaccination during the previous season, as

well as a question about whether they had an illness that they

thought was influenza during the previous season.

These questions were used to determine participants’ personal

—or ego—experiences pertaining to vaccination and illness. Each

spring survey asked participants to update their list of social

network contacts and indicate whether each person received the

influenza vaccination and contracted influenza during the

previous season. These questions were used to determine

participants’ social network—or alter—experiences pertaining to

vaccination and illness. The survey questions used in the

reported analyses are contained in the Supplementary Material.

Fall surveys gathered data on participants’ expectations and

attitudes toward vaccination and influenza, which are analyzed

elsewhere (28, 29). Participants who missed the previous spring

survey were also asked whether they had been vaccinated and if

they experienced an illness they believed to be influenza during the

prior season. Additionally, the first survey included retrospective

questions about the previous flu season, allowing the data collected

over the four-year study period to cover a total of five flu seasons.

3The number of ego responses is higher because participants were allowed

to retrospectively complete those questions during the fall survey if they had

missed the previous spring survey. Participants were not allowed to

retrospectively complete social network questions.
4We imputed missing values for whether or not a participant vaccinated,

whether or not they had an illness that they thought was influenza, and

whether or not their alters vaccinated and/or had influenza. The imputed

values were based on their averages from the K other instances (i.e.,

participant-by-year records) most similar to the instance with missing
Respondents

The first wave of the survey was administered to a total of 2,590

people, 2,173 of whom completed the survey (83.8% completion

rate).2 All subsequent waves were administered to the sample of

individuals who had completed the first wave (i.e., individuals

who missed a given wave were invited to return in subsequent
2Some individuals attrited during the first year of the study, and so all

subsequent waves were administered to the 2,168 individuals who

completed the first year of the study.

Frontiers in Epidemiology 05
waves). Table 2 shows the number of participants contributing

responses about personal experiences (ego) and about social

network experiences (alter) by influenza season.3 Of the

individuals who completed the social network survey, more than

85% reported perceptions for 15 social contacts, the maximum

number permitted by the survey. The rest reported perceptions

for 14 social contacts or fewer.

Of the participants, mean age in 2020 (the final year included

in our analyses) was 60.1 years, 43% were male, 82% were white,

and 47% had a bachelor’s degree or higher. A total of 1,486

provided complete personal and social network data from all five

seasons, and 1,686 provided data from at least four of the five

seasons. We retained participants with complete data from at

least four seasons, and we used a K-Nearest neighbors approach

to impute values from missing seasons.4
Analyses

We begin by analyzing survey results to establish reported

vaccination and influenza rates. We then examine the contributions

of three sets of factors to individuals’ vaccination decisions: (1)

Personal experiences from the previous season; (2) Social network

experiences from the previous season; and (3) Personal and social

network experiences from more distant seasons.5 Finally, we
values (K= 5). Similarity was based on demographic variables (age, gender,

education, and race) along with ego and alter data from all completed

surveys. We used the caret package in R to perform the imputation.
5Different individuals reported different numbers of close social contacts. To

give equal weight to each individual, we converted social network reports

into the percentages of an individual’s close social contacts who

vaccinated and who contracted influenza.
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describe the computational implementation of the ACT-R model of

vaccination and we apply the same analyses to the simulated data.
Survey results

Reported vaccination and influenza rates

The overall vaccination rate that participants reported for

themselves was 54.4% and increased across survey seasons (Ego,

Table 3), paralleling national increases in vaccination during that

time (4). Previous studies have revealed significant effects of

demographics on vaccination behavior. To examine whether

these effects replicated in our study, we analyzed individuals’

vaccination decisions during each season (yes or no) using a

mixed effects logistic regression with gender, age, race (white vs.

non-white), education (bachelor’s degree or higher vs. not) and

survey year as fixed factors, and respondent as a random factor.

Vaccination rate was higher in college educated individuals

(b = 1.16, z = 4.69, p < .0001) and in white individuals (b = 1.27,

z = 3.81, p < .0001), and it increased with age (b = 1.49,

z = 10.940, p < .0001) and across survey year (b = 0.21, z = 7.37,
FIGURE 2

Probability of vaccinating in current season conditioned on personal experi

TABLE 3 Vaccination rates and influenza rates reported for self (ego) and
social network (alter) by influenza season.

Season end Percentage
vaccinate

Percentage
influenza

Ego Alter Ego Alter
2016 48.2% 64.0% 14.7% 33.5%

2017 52.4% 59.1% 7.3% 19.3%

2018 55.5% 64.8% 9.4% 20.8%

2019 56.7% 67.5% 5.8% 19.8%

2020 59.3% 68.3% 7.4% 17.9%

Frontiers in Epidemiology 06
p < .0001). Women vaccinated only slightly more frequently than

men (b = 0.10, z = 0.42, n.s.).

For each participant, we calculated the percentage of network

contacts who they reported as vaccinating. The average of these

vaccination percentages across participants was 64.7% and tended

to increase across survey seasons (Alter, Table 3). The overall

influenza rate that participants reported for themselves was 8.9%

(Ego, Table 3). This decreased with age (b =−0.28, z = 4.80,

p < .0001) and season (b =−0.22, z = 7.10, p < .0001), but did not

vary by gender, ethnicity, or education. The average of the

influenza percentages that participants reported for their social

networks was 22.2% and tended to decrease across survey

seasons (Alter, Table 3).
Vaccination determinants

To determine the contributions of recent personal

experiences to vaccination decisions, we computed the

probability of vaccinating in the current season conditioned on

an individual’s experience from the previous season. Figure 2

shows vaccination rates reported by respondents during final

season of the study (labeled Observed). The figure also shows

simulated vaccination rates (labeled Simulated), which we

return to. Individuals overwhelmingly repeated the previous

season’s behavior. However, contracting influenza increased the

probability of vaccinating for individuals who had not

vaccinated in the previous season by about 18.3 percentage

points, whereas it decreased the probability of vaccinating for

individuals who had vaccinated in the previous season by about

4.9 percentage points.

We used mixed effects logistic regression to analyze

vaccination decisions in the current season, treating the

previous season’s vaccination decision (vaccinate or not),

influenza outcome (flu or not), and their interaction as
ences from the previous season.
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FIGURE 3

Probability of vaccinating in current season conditioned on evidence from social network from the previous season.

Walsh et al. 10.3389/fepid.2024.1467301
predictors along with participant’s age and gender. The analysis

included data from all seasons in the study. Vaccination rates

were higher for individuals who vaccinated during the previous

season (b = 3.82 z = 48.87, p < .001), and for individuals who

reported contracting the flu during the previous season

(b = 0.40, z = 1.91, p < .1). The main effects were qualified by a

significant interaction (b = −0.75, z = 2.88, p < .01). Contracting

influenza increased propensity to vaccinate among individuals

who previously did not, whereas it decreased propensity to

vaccinate among those who previously did.

To determine the contributions of recent social network

experiences to vaccination decisions, we computed the

probability of vaccinating in the current season conditioned on

the vaccination behaviors and influenza outcomes of alters from

the previous season. Specifically, we computed the cumulative

percentage of alters providing evidence that supported

vaccinating (i.e., alters who vaccinated and did not contract

influenza, along with alters who did not vaccinate and did

contract influenza) and the cumulative percentage providing

evidence that did not support vaccinating (alters who

vaccinated and did contract influenza, along with alters who did

not vaccinate and did not contract influenza). Figure 3 (red

line) shows vaccination rates of participants from the final

season of the study as a function of the percentage of their

alters who provided evidence that supporting vaccinating

during the previous season. Based on data from all seasons in

the study, the probability of vaccinating increased with the

strength of evidence from the social network component

(b = 0.53, z = 3.74, p < .001).6
6Each point in the figure reflects a mixture of individuals, some of whom

vaccinated and some of whom did not. The individual differences that

Frontiers in Epidemiology 07
Finally, to determine the contributions of more distant

personal and social network experiences to vaccination decisions,

we conducted a logistic regression treating individuals’

vaccination decisions in the final season of the study as the

outcome, and their personal and social network experiences from

each of the previous four seasons as the predictors. Figure 4

shows regression coefficients for personal and social network

components as a function of elapsed time (years) since those

experiences occurred (red curves).7 Coefficients were larger for

personal experiences (red dotted line) than for social network

experiences (red solid line), and coefficients decreased with

elapsed time since those experiences occurred.
Modeling and simulation

Model fitting

We implemented the ACT-R memory-based model as a

Bayesian hierarchical model and fitted it using fully Bayesian

inference. Figure 5 expresses the model in graphical notation. We

gave the model each respondent’s exact personal and social

network experiences from the first four seasons of the study,

corresponding to the period from Spring 2015 to Spring 2019.

This is represented in the alter and ego nodes in Figure 5, which

are shaded to denote that the values are observable. The

dependent variable was the individual’s vaccination decision in the

final season. This is represented by the y node in Figure 5, which
remain after controlling for social network experiences reflect, in part,

differences in personal experiences.
7Personal experiences were coded as supporting or not supporting

vaccination (1 or 0), and social network experiences were coded as the

percentage of alters providing vaccine supportive experiences.
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FIGURE 4

Regression coefficients for personal (ego) and social network (alter) experiences as a function of elapsed time (years) since those experiences
occurred.

FIGURE 5

Graphical model for inferring vaccination decisions using instance-
based model. Shaded boxes indicate the observable values.

TABLE 4 Parameter estimates.

Parameter Name Mean SD
MP Mismatch penalty −3.21 0.22

d Decay 1.16 0.19

s Retrieval noise 0.90 0.06

Wvacc, infl Spreading activation: vaccinate/influenza 0.21 0.18

Wvacc, no infl Spreading activation: vaccinate/no influenza 2.67 0.35

Wno vacc, infl Spreading activation: no vaccinate/influenza 0.40 0.30

Wno vacc, no infl Spreading activation: no vaccinate/no
influenza

2.08 0.34

Walsh et al. 10.3389/fepid.2024.1467301
is also shaded to denote that the values are observable. The model

contains seven free parameters (Wi, d, MP, and s).8 These appear

as unshaded nodes in Figure 5 to denote that the values are not

observable. A single set of values for the free parameters are

estimated for and applied to data from all participants. The

parameters are estimated to maximize the correspondence between

the predicted probability of vaccinating and the observed

outcomes given each participants’ history of personal and social

network experiences. The model was implemented and fitted using

the R interface to the Stan probabilistic programming language (30).
8The spreading activation parameter, Wi, takes four values (i= 4)

corresponding to the four outcomes formed by crossing vaccination

decision (yes or no) and influenza outcome (yes or no).
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Table 4 shows the means and standard deviations of parameter

estimates. Given the high value of the mismatch penalty

(MP =−3.21), an individual’s personal experience contributed far

more to their behavior than the experience of any single alter.

For example, the experience of personally vaccinating and not

contracting influenza during the previous season produced an

activation value that was slightly greater than 24 alters in one’s

social network experiencing the same outcome.9 This means that

individuals’ behavior was influenced far more by their own

experiences than by the experiences of their social network. Yet

given the probabilistic nature of memory retrievals, instances

corresponding to alters could nonetheless be retrieved. Further,

given the non-linear relationship between the number of alters

experiencing an outcome and the instance’s activation value,
9For example, based on Equation 1, the activation of the instance resulting

from personally vaccinating and not contracting influenza is 2.67. The

activation of the instance resulting from 24 alters vaccinating and not

contracting influenza is 2.64.
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TABLE 5 Observed and model vaccination rates.

Behavior Outcome Observed Original simulation Counterfactual simulation
Vaccinate Influenza 88.4% 66.8% 70.9%

Vaccinate Not influenza 92.1% 90.6% 90.9%

Not vaccinate Influenza 34.5% 45.4% 67.6%

Not vaccinate Not influenza 16.0% 20.4% 24.0%

Walsh et al. 10.3389/fepid.2024.1467301
instances supported by a small number of alters still had a non-

trivial probability of being retrieved.

Given the moderate value of the decay parameter (d = 1.16), the

strength of activation for instances that were one to two seasons old

decreased from 1.00 to 0.45, and the strength of activation for

instances that were three and four seasons old decreased further

to 0.28 and 0.20. This means that the activation of an experience

from the previous season was 2.2, 3.6 and 5.0 times greater than

experiences from two, three and four seasons ago, respectively.

Finally, spreading activation varied by type of experience.

Spreading activation was greater for experiences that did not

involve contracting influenza (Wvacc, no infl = 2.67 and W no vacc,

no infl = 2.08). Surprisingly, spreading activation was near zero for

experiences that did involve contracting influenza (W vacc, infl =

0.21 and W no vacc, infl = 0.40). Mechanistically, this means that

outcomes that reinforced earlier behaviors (e.g., not contracting

influenza) would be more retrievable from memory, and so

would lead individuals to repeat those behaviors.
Vaccination determinants

We placed four seasons’ worth of historical data in the model’s

memory and used it to generate vaccination probabilities for the

final season. The mean of the model’s vaccination probability for

the final season was similar to the observed vaccination rate

(60.1% vs. 59.3%). In terms of sensitivity, the mean of the

model’s simulated vaccination probability for individuals who did

vaccinate equaled 83.4%, and the mean for individuals who did

not vaccinate equaled 25.1%.

The model produced different vaccination probabilities for

individuals based on their personal experiences from the

previous season (i.e., whether or not they had vaccinated, and

whether or not they had contracted influenza). As shown in

Figure 2 (red and blue circles), the model predicted that

contracting influenza would increase propensity to vaccinate

among individuals who previously did not, and it would decrease

propensity to vaccinate among those who previously did.

The model also produced different vaccination probabilities for

individuals based on their social network experiences from the

previous season (i.e., whether or not an individual’s alters had

vaccinated, and whether or not they had contracted influenza).

As shown in Figure 3 (blue line), the model predicted that

propensity to vaccinate would increase with the percentage of an

individual’s alters providing vaccine supportive experiences

during the previous season.

Finally, the model produced diminishing effects of personal

and social network experiences with the elapsed time since they
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had occurred. To evaluate this, we conducted a logistic regression

treating the model’s predicted vaccination probabilities in the

final season of the study as the outcome, and personal and social

network experiences from each of the previous four seasons as

the predictors. As shown in Figure 4, regression coefficients were

larger for personal experiences (blue dotted line) than for social

network experiences (blue solid line), and coefficients decreased

with elapsed time since those experiences occurred.

To summarize, the ACT-R model corresponded reasonably

well individuals’ vaccination decisions. In addition, it accounted

for the effects of recent personnel experiences, recent social

network experiences, and more distant personnel and social

network experiences.
Counterfactual simulation

One surprising finding was the high values of spreading

activation for experiences that involved not contracting

influenza—that is, confirmatory outcomes (Table 4). As a result,

personal and social network experiences involving not

contracting influenza contributed disproportionately to

decisions in the model. This raises the possibility that an

intervention designed to increase retrievability of negative

outcomes (i.e., contracting influenza) during seasons when an

individual did not vaccinate may increase future vaccination

uptake. To demonstrate the maximum potential of such an

intervention, we conducted a counterfactual simulation in

which spreading activation for personal and social network

experiences that involved not vaccinating and contracting

influenza was set to 2.08 (i.e., the same value as for not

vaccinating and not contracting influenza). The simulated

intervention increased the probability of vaccinating from 45.4%

to 67.6% after seasons in which an individual did not vaccinate

and they contracted influenza, (Table 5).
Discussion

The goal of this study was to understand how personal

experiences and the experiences of close social contacts

contribute to vaccination decisions, and to test whether an ACT-

R memory- based model could account for vaccination decisions.

The results of this study support three conclusions, which we

discuss in turn.

First, personal experiences strongly contributed to vaccination

decisions. In line with earlier findings, people who previously

vaccinated tended to do so again, and people who did not
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previously vaccinate tended not to in the future (8). Survey

responses and model estimates for the spreading activation

parameters converged on the idea that propensity to repeat the

previous behavior was strongest after experiencing the desired

outcome (i.e., not contracting influenza). Yet there was some

evidence that people learned from negative experiences as well

(8, 31). After contracting influenza, individuals who had not

vaccinated were slightly more likely to do so in the future,

whereas individuals who had vaccinated were slightly less likely

to do so again.

The finding that model-based estimates for spreading

activation were so much greater for experiences that involved not

contracting influenza vs. ones that did was notable. Practically,

this is because individuals were only somewhat less likely to

repeat their prior decision after contracting influenza (c.f.,

Figure 2). As shown in the counterfactual simulation, increasing

spreading activation for one negative outcome (contracting

influenza after not vaccinating) did produce a stronger behavioral

reversal. This finding is consistent with research showing that

unpleasant personal experiences are recalled less well over time

than pleasant ones (32). This finding is also consistent with

research on the confirmation bias, which describes the tendency

for people to seek evidence that confirms their prior beliefs (33).

With respect to vaccination decisions, individuals searching for

online health information select sources consistent with their

prior beliefs and they rate belief- consistent information as being

more credible and useful (34). Our finding suggest that

individuals may also recall personal experiences that are

consistent with their prior vaccination beliefs, as revealed by

their past vaccination decisions.

Second, the experiences of close social contacts contributed to

vaccination decisions. Once again, individuals were sensitive to the

combination of behaviors and outcomes rather than the simple

base rates of vaccination and illness. As the percentage of social

contacts providing supportive vaccine experiences increased, so

too did the probability that the individual would vaccinate.

Notwithstanding the statistical and practical significance of this

effect, the regression analysis and the model estimate for the

mismatch penalty converged on the idea that individuals were

influenced more strongly by personal experiences than by social

network experiences.

Earlier studies that examined the social nature of vaccination

decisions have established the tendencies for people to choose to

associate with similar individuals (homophily) and for trends to

travel across social networks (contagion). Because of these

processes, people tend to share characteristics with other close

social contacts (35). Indeed, participants in our study who

vaccinated also reported higher vaccination rates among close

social contacts than participants who did not vaccinate.

However, the base rate of vaccination among close social

contacts alone did not strongly predict people’s decisions in

our study. Rather, the health outcomes of close social contacts,

conditional on their health behaviors, were far stronger

predictors of vaccination decisions. This suggests that the
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social network effects arose from social contacts’ experiences

and not just from their shared characteristics.

Third, the regression analysis and the model estimate for the

decay parameter converged on the idea that the most recent

personal and social network experiences exerted the strongest

influence on decisions. However, more distant experiences

continue to exert a weak but persistent effect. This helps to

explain why individuals’ behavior do not change more

dramatically after they experience a single negative outcome (i.e.,

contracting influenza). The recent experience is partially offset by

the weight of past experiences.

Traditional theories of health behavior, though conceptually

grounded, are too abstract to account for fine-grained, dynamically

changes in individuals’ behavior. Computational models of

vaccination behavior on the other hand are mathematically precise,

but they are only indirectly linked to theories of psychological

processes. Cognitive architectures like ACT-R offer alternative

models based on a realistic characterization of human cognition.

As shown in this study, the outputs of the ACT-R memory-based

model closely matched the empirical results. This supports its

potential as an alternate to other theoretical and computational

models of vaccination behavior. There are several benefits to using

such a model. For example, ACT-R is a general theory of cognition

that has been extensively validated in laboratory experiments and,

increasingly, in real-world settings. Leveraging pre-existing

components of ACT-R places vaccination within a set of general

cognitive processes and bypasses the need to specify new

mechanisms to account for vaccination behavior. Additionally,

ACT-R offers the opportunity to situate a computational model of

vaccination behavior alongside computational models of other

health behaviors created using the same integrated cognitive

architecture (23). Finally, the mechanistic nature of the ACT-R

model allows it to account for existing data and to prospectively

simulate outcomes of different interventions and policy options. As

seen in our counterfactual simulation, an intervention that

increases retrievability of negative outcomes that occur after failing

to vaccinate may be effective. Other interventions suggested by the

model, like reminding individuals about personal and social

network experiences that support vaccinating, may increase

vaccination rates as well.

Although the ACT-R memory-based model closely matched

the empirical results, it is not a complete model. It does not

represent certain factors known to influence vaccination; for

example, provider recommendation and mass media [for a

review, see (9)].

Additionally, the model treats all social contacts equally, whereas

the influence of especially close social contacts (e.g., a spouse or family

member) might be expected to be greater than the influence of a more

distant ones (e.g., a co-worker or friend). This could be addressed by

varying the mismatch penalty for different contacts depending on

relationships. Finally, the model does not directly account for

decisions made in the absence of personnel experience. This may

be the case for illnesses that have been largely eradicated such as

diphtheria and polio, which people nonetheless receive vaccinations
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for. This may also be the case for novel viruses. For example, when

viruses like H1N1, Ebola, and COVID-19 emerge, new vaccines are

developed and offered to the public. Because the viruses and

vaccines are novel, individuals do not yet have a history of

experiences with them. In these cases, individuals may generalize

from related experiences (i.e., influenza vaccination), or they may

rely on other sources of information to make decisions from

descriptions rather than from experiences.

The results of this study must be considered in light of the fact

that vaccination behavior and influenza outcomes were measured

using self-report rather than actual medical records, and so may

be susceptible to self-report biases. Self-reports of vaccination

behavior have high agreement with medical records (36, 37).

However, self-reports of contracting influenza, and reports of

vaccination behavior and influenza outcomes of close social

contacts are likely less accurate. This may underlie the different

vaccination and influenza rates that individuals reported for

themselves vs. for their social contacts (Table 3). Nonetheless, in

terms of a memory-based model, it makes sense that if people’s

perceptions are inaccurate, their decisions will be based on those

inaccuracies rather than on ground truth.

Other limitations of our study relate to vaccination accessibility

among respondents and the influence of co-occurring diseases on

vaccination decisions. While our survey was designed to capture

various aspects of vaccination accessibility, the study did not adjust

for differences in access. We asked participants about barriers to

receiving the flu vaccine, such as cost, time constraints,

convenience, and access to healthcare providers. For instance,

questions addressed whether financial difficulties, lack of nearby

clinics, or work-related scheduling conflicts made it harder to get

vaccinated. However, although this data was collected, we did not

incorporate it into the model. Our primary goal was to develop a

simple yet accurate cognitive-behavioral model that explains how

individuals adapt their vaccination behavior over time based on

personal and social experiences with the flu and the flu vaccine.

While unequal access may influence decisions, this factor was not

included in the model, as the focus was on validating its predictive

accuracy through behavioral adaptation.

In terms of co-occurring diseases, our study specifically

addresses the yearly nature of influenza vaccination decisions.

Although the survey primarily targeted flu vaccination, it also

included broader questions about flu-like symptoms.

Respondents were asked to consider both doctor-confirmed

influenza and influenza-like illnesses (ILI), along with their

perceptions of contracting such illnesses, including whether they

believed they had the flu. Thus, the effect of co-occurring

diseases on vaccination decisions should be limited to ILIs,

which were explicitly included in the survey. While we captured

general vaccination attitudes, the focus on the annual flu vaccine,

which differs from vaccines requiring only one or a few lifetime

doses, means our findings may not generalize to other

vaccination decisions that do not involve periodic considerations.
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Computational cognitive architectures are intended to represent

general theories of cognition. The results of our study provide

support for one computational cognitive architecture, ACT-R, in

the novel context of vaccination decision making. In addition, these

results demonstrate the potential for using ACT-R to understand

vaccination decision making and to increase vaccination uptake.
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