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The disutility of compartmental
model forecasts during the
COVID-19 pandemic
Tarini Sudhakar, Ashna Bhansali, John Walkington and
David Puelz*

Salem Center for Policy, Department of Finance, & Department of Information, Risk, and Operations
Management, Austin, TX, United States
During the COVID-19 pandemic, several forecasting models were released to
predict the spread of the virus along variables vital for public health
policymaking. Of these, the susceptible–infected–recovered (SIR) compartmental
model was the most common. In this paper, we investigated the forecasting
performance of The University of Texas COVID-19 Modeling Consortium SIR
model. We considered the following daily outcomes: hospitalizations, ICU
patients, and deaths. We evaluated the overall forecasting performance,
highlighted some stark forecast biases, and considered forecast errors conditional
on different pandemic regimes. We found that this model tends to overforecast
over the longer horizons and when there is a surge in viral spread. We bolstered
these findings by linking them to faults with the SIR framework itself.
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1 Introduction

Forecasts of the spread of COVID-19 in the United States and across the world have

played a significant role in informing policymakers. Employing different mathematical

approaches, these forecasting models provide predictions that inform critical decisions

such as healthcare administration, allocation of medical supplies, and business and

school closures. Some models even attempted to estimate the impact of current and

future policies on human behavior, COVID-19 transmission, and vaccinations (1–3). As

the COVID-19 pandemic recedes, there is a significant opportunity to take stake of the

predictions compartmental models generated. Indeed, this was the first major pandemic

in the modern “computational era,” where simulations were cheap and accessible to

scientists. Researchers quickly fit these models and advised world leaders on pandemic

surveillance and decision-making. This paper presents a rigorous study of these

compartmental model predictions, including the magnitude of forecasting mistakes and

a novel investigation of the systematic bias induced by this technology.

For the Austin-Round Rock metropolitan statistical area, forecasts given by the

University of Texas (UT) COVID-19 Modeling Consortium shaped COVID-19 policies

to a significant extent such as the introduction of staged lockdowns (4). These had

serious repercussions on the overall economy, spanning the closure of small businesses

to setbacks in K-12 students due to hybrid or online education. Statewide, Texas is

estimated to have suffered a GDP loss of $106 million and job losses of 1.2 million (5).

Texas also suffered unprecedented setbacks in student achievement in reading and

mathematics due to the mass transition to remote learning. The Texas Education

Agency cites a roughly 3-month setback in educational attainment relative to a
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pre-COVID baseline. From 2019 to 2021, the percentage of Texas

students performing at or above their grade level in math decreased

from 50% to 35% (6). While we have moved on from such strict

measures for now, some questions remain unanswered. Did we

base these policies on well-sourced data? In the future, can we

still rely on these forecasting models to aid our decision-making?

Research from the US COVID-19 Forecast Hub (1) demonstrated

that standalone models tend to generate large prediction errors,

especially when forecasting over a long time horizon. A main

contribution of this paper is to utilize a rich set of predictions

coupled with realized data to investigate the bias of these errors.

The current state of literature reports error summary statistics, like

mean absolute or squared deviation, as well as coverage of

prediction intervals, as in Fox et al. (7). A related approach relies

on visualizing the prediction errors (residuals), as in Kumar Ghosh

et al. (8), where they assert that “residuals of the fit are randomly

distributed, which imply that the fitness of the data with the model

is overall good.” The lack of rigorous focus on forecast errors is a

major gap in the epidemiological literature, especially since the sole

task of these models is prediction. What remains understudied and

obfuscated in these statistics and visualizations are the time

dependency and systematic biases in these errors. Specifically, this

paper probes the following set of questions: Are prediction errors

from compartmental models systematically biased in positive or

negative directions? If so, to what degree, why, and are these errors

related to time? We analyzed an informative dataset of realized

hospitalizations, deaths, and ICU patients coupled with forecasts of

these three outcomes from the UT COVID-19 Modeling

Consortium. The UT Austin model is an advanced compartmental

model with frequent, long-horizon forecasts, making it an

important one to study. Given its impact on COVID-19

policymaking, we investigate the UT model’s forecasting

performance in light of realized data; discover that forecast errors

are biased, predictable, and dependent on the pandemic regime;

and propose paths forward and alternative approaches.
2 Overview of compartmental models

Most researchers adopted the susceptible–infected–recovered

(SIR) model and its modifications to forecast COVID-19 metrics

due to its simplicity and prevalence among academics and

training of epidemiologists (9). The SIR modeling framework

falls under the category of compartmental models that date back

to the seminal work of Ross (10).

In these models, individuals within a closed population are

separated into mutually exclusive groups, or compartments, based on

their disease status. At any given time, each individual is considered

to be in one compartment but can move to another compartment

based on the model parameters. As per the model’s assumptions, a

susceptible individual will become infected by coming into contact

with an infected individual. The individual during the infected

period is assumed to be contagious. After this, the individual

advances to a non-contagious state, known as recovery. Recovery

may also be death or effective isolation (11). The subgroups modeled

by this framework are given by the following notation:
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• S is the fraction of susceptible individuals who are able to

contract the disease,

• I is the fraction of infectious individuals who can transmit the

disease, and

• R is the fraction of recovered individuals who have

become immune.

Once these groups are defined, the trajectory of this system,

known as the classical SIR model where the subgroups are the

state variables, is given by the following set of differential equations:

@S
@t

¼ �bIS,

@I
@t

¼ bIS� gI,

@R
@t

¼ gI:

(1)

State variables S, I, and R are all functions of time. Model parameters

b and g are the rate of transmission and recovery, respectively. The

first equation in Equation 1 models the fraction of people susceptible

to the virus at a certain point, given the transmission rate and the

fraction of infected individuals. The second equation in Equation 1

models the instantaneous fraction of infected individuals using

susceptible individuals and the rate of recovery. The third equation

in Equation 1 models the instantaneous fraction of recovered

individuals using the rate of recovery.

Modified SIR models, such as susceptible–exposed–infected–

recovered (SEIR), require a more complex set of equations and

parameters. Due to the presence of little information and lack of

reliable data at the beginning of the COVID-19 pandemic, many

researchers relied on the classical SIR implementation (12).

Nonetheless, the setup for this modified model formulation is an

extension by the SIR framework by one additional compartment,

denoted “exposed.” The state variable for this new compartment

is E (13). Here, we assume that there are equal birth and death

rates m, a is the mean latency period for the virus, g is the mean

infectious period, the rate of transmission as before is b, and

recovered individuals do not contract the disease again. This

admits the following set of equations:

@S
@t

¼ m� bIS� mS,

@E
@t

¼ bIS� (mþ a)E,

@I
@t

¼ aE � (mþ g)I:

Since each variable is defined as a fraction of the entire population,

we calculate R from the equation Sþ E þ I þ R ¼ 1.

Similar to the SIR model, this system describes the population

evolution of the virus in terms of intuitive parameters that

summarize its interaction with humans, like ease of transmission,

incubation period, and length of recovery. Conveniently, it is

easy to extend this framework to higher-dimensional systems.
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The number of compartments can be extended, new parameters

can be added, and time variation in parameters can be

incorporated, as shown in Girardi and Gaetan (14) and

Spannaus et al. (15).

As a final practical note, a useful metric derived from this

system is called the basic reproduction number R0, which

represents the average number of infections generated from an

infected individual within a susceptible population. During the

COVID-19 outbreak, this was a closely watched and debated

number since it describes the evolution of the virus itself.

R0 ¼ ba

(mþ a)(mþ g)
:

The reproduction number (also called effective reproductive

number) is a time-varying version of the basic reproduction

number and denotes the evolving transmissibility of the disease.

See Dharmaratne et al. (16) for a detailed discussion of these two

important epidemiological concepts.

In the following subsections, we provide two examples of

compartmental model use during the COVID-19 pandemic. The

examples build on each other and demonstrate the flexibility of

compartmental modeling. First, we summarize the work done by

the Institute for Health Metrics. Second, we describe the

additional features incorporated into the model developed by the

UT COVID-19 Modeling Consortium. UT’s model forecasts are

the focus of this paper.
1The data are available on the UT team’s GitHub directory. These forecasts

are also visually available to the public on their website.
2More information on SafeGraph can be found here.
2.1 Example 1: Institute for Health Metrics
and Evaluation

The Institute for Health Metrics and Evaluation (IHME)

COVID-19 Forecasting Team located at the University of

Washington created multiple models over the course of the

pandemic. The initial model garnered much press and attention

and used statistical curve-fitting to estimate hospital bed

utilization, ICU admissions, ventilator use, and deaths from 25

March 2020 to 29 April 2020 (17).

In this model, the IHME team took a different approach to

model death rates compared with the classical compartmental

framework. They critiqued SEIR models for their assumption of

random mixing between all individuals in the population

because, under that assumption, millions of COVID-19-related

deaths were predicted very early in the United States. Random

mixing does not account for behavioral changes and

government-mandated social distancing measures. Instead, the

IHME team modeled actual COVID-19 death rates since they

would indicate virus transmission and fatality rates. According to

the authors, deaths were also more accurately reported than

cases, especially in limited testing areas as those would allocate

tests for severely ill patients first. They also assumed

hospitalization and related services to be highly correlated

with deaths.
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Their next model took on a hybrid approach, estimating

revised death rates and then fitting an SEIR model until 26 May

2020 (18, 19). The third model replaced curve-fitting with spline-

fitting for the relationship between log cumulative deaths and log

cumulative cases while retaining the SEIR model estimation

(18, 20). When tested against other forecasting models for

predictive accuracy, this third IHME model exhibited the best

performance (out of seven models) (18).
2.2 Example 2: the UT COVID-19 Modeling
Consortium

The UT COVID-19 Modeling Consortium developed a highly

publicized and widely used model to predict trends in key

pandemic variables, including hospitalizations, deaths, and ICU

patients, in the Austin-Round Rock metropolitan statistical area

(21).1 Motivated by the IHME approach, the UT team developed

an alternative curve-fitting method for forecasting COVID-19

outcome variables. While the underlying technology remained a

compartmental model, the team layered in other sources of

hierarchical information and complexity.
1. Mobile phone data to capture social distancing measures: To

capture the effect of changing social distancing measures for

each US state on individual-level mobility, the model used

local data from mobile phone GPS traces from SafeGraph.2

2. A correction for the underestimation of uncertainty in the

IHME forecasts: Using deaths as an example outcome, the

IHME model estimated cumulative death rates using a least-

squares-like procedure on the log scale and calculated

confidence intervals based on large-sample statistical theory.

For this method to produce valid uncertainty measures,

consecutive model errors should be independent of each

other. However, this assumption is violated in the IHME

fitting procedure since today’s cumulative death rate includes

yesterday’s death rate and an increment. This implies that

these two death rates must be correlated. The UT model

corrected this by fitting daily death rates using a mixed-

effects negative-binomial generalized linear model, accounting

for heteroskedasticity and correlation.
In the following sections, we investigate the forecasts generated

from the UT model and describe telling features of the forecast

errors.
frontiersin.org
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3 Methodology

We now focus exclusively on the forecasts generated

from the UT COVID-19 Modeling Consortium. We first

describe our methodology for analyzing the errors and then

turn to our results. Our analysis began with forecast error

computation and visualization. We then constructed a

new variable defining “pandemic regime,” which describes

whether viral spread is surging or waning. This allowed us to

condition data on regime status and fit regression models

that describe prediction error as a function of the regime

status. In detail, our analysis of the UT forecasting model

for hospitalizations, ICU patients, and deaths followed

these steps:

1. Visualizing forecasts against realized data: We plotted realized

data with forecasts generated by the UT model. While we

have daily realized data on hospitalizations, ICU patients, and

deaths, we did not have the same for forecasts as the model

was not updated daily and had a different schedule for each

outcome variable.

2. Mapping forecasting errors from 1 to 20 days ahead: We

computed the forecasting errors out to 20 days ahead,

showing the median forecasting error and interquartile range

(IQR) of the error distribution. The forecast error for a given

number of days out (denoted d) at a particular time point t

is calculated as follows:

Etþd,t ¼ Ftþd,t � Atþd , (2)

where

• Etþd,t is the forecast error for the forecast made at time t

for time t þ d,

• Atþd is the actual (realized) value at time t þ d, and

• Ftþd,t is the predicted value at time t for time t þ d.

3. Mapping forecasting errors, conditional on whether the virus is

spreading or waning: We computed the forecasting errors from

1 to 20 days out, conditional on whether there is a surge in the

viral spread.

For each outcome of interest, we defined rising

hospitalizations/ICU patients/deaths as surging and falling

hospitalizations/ICU patients/deaths as waning. We

constructed this new variable in two steps. First, we

computed the daily percent change in the outcome of

interest. Second, to smooth out noise in the realized data, we

took a 14-day moving average of the realized outcome’s

percent change. Our final definition of a rising (falling) point

in time t is a day that has a 14-day average percent change of

greater (less) than zero.

Using the realized data for a given outcome At , the percent

change is given by

_At ¼ At � At�1

At�1
� 100:
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The smoothed data (over a 14-day rolling window) is then

defined in the following way:

_At ¼ 1
14

Xt

k¼t�14þ1

_Ak:

With _At in hand, we can now define a new indicator variable

that summarizes the state of the pandemic according to the

smoothed growth or abatement of the outcome of interest.

The new variable I
rising
t describes whether or not time t is a

“rising” or “falling” regime in the following way:

I
rising
t ¼ 1( _At . 0) ¼ 1 if _At . 0,

0 if _At � 0,

�
(3)

where 1(�) is the indicator function.
Our final methodological step was to empirically investigate the

forecast errors through a regression model. We were interested in

testing whether the errors are related to the pandemic regime, so

we specified the following Gaussian linear regression model:

Etþd,t ¼ hþ u� I
rising
t þ et , et � N(0, s2) (4)

where h is the intercept, u is the slope of the regression model, and

d ¼ {1, 5, 10, 20} denotes the forward time horizons we

considered. Moreover, we fitted 12 models, 4 forward time

horizons for each of hospitalizations, deaths, and ICU capacity.

The slope u has an intuitive interpretation as the difference in

average prediction error between rising and falling pandemic

regimes. Therefore, the results of u’s inference are crucial to

understanding the relationship between forecast mistakes and the

“state of the pandemic.” The model is fit using ordinary least

squares (OLS), and we report point estimates and standard errors

to gauge statistical significance in the next section.
4 Results

Following the methodological steps outlined in the previous

section, we now investigate each of the three outcomes forecasted

by the UT model. In the data visualizations, each figure panel

corresponds to one of hospitalizations, deaths, or ICU patients.

Figure 1 displays the raw data. The realized data, in black, are

daily and starts on 19 February 2020 and ends on 1 April 2022.

The forecasts, in red, start on 1 August 2020 and end on 1 April

2022. Although we have daily realized data, the model was not

updated daily. Instead, there are 246 forecast dates, denoted

“commit dates” in the plot and shown in blue. These are the

dates when the entire model with new forecasts is updated, i.e.,

when each of the red forecasts begin.

As a first step, we computed the forecasting errors out to

20 days ahead, as displayed in Figure 2. The median forecasting

error is shown in black, and the IQR of the error distribution is

the shaded region. An immediately visible feature is the upward
frontiersin.org
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FIGURE 1

Visualizations of the raw data for hospitalizations (panel A), ICU patients (panel B), and deaths (panel C). The realized data are displayed in black, the
forecasts are given in red, and the commit dates (the points at which the forecasts are created) are given in blue along the realized path.

FIGURE 2

Forecasting errors from 1 to 20 days ahead for hospitalizations (panel A), ICU patients (panel B), and deaths (panel C). The median forecast error for
each period ahead is displayed by the black line, and 25th to 75th quantiles of the error distribution are represented by the gray region.

Sudhakar et al. 10.3389/fepid.2024.1389617
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bias of the error distribution, even via the median error, which is

robust to egregiously large forecasts. This implies that the model

systematically overforecasts hospitalizations.

We next considered visualizing the errors conditional on

different stages of the pandemic. Our goal was to answer the

question: Does the model systematically over- or underforecast

when the virus is spreading more rapidly or is receding? In other

words, is the model more likely to make forecasting errors

during variant surges or when the viral spread is waning? To

answer this question, we defined rising hospitalizations as

surging and falling hospitalizations as waning. To smooth out

noise in the realized data, we computed the percent change in

the realized hospitalizations and smoothed with a 14-day rolling

window. Our final definition of a rising (falling) regime is a day

that has a 14-day average percent change of greater (less) than zero.

The regimes as defined above are displayed in Figure 3. The

forecast errors conditional on these regimes (analogous to

Figure 2) are displayed in Figures 4 (rising) and 5 (falling).

When looking at these figures, an interesting feature emerges.

The model makes large positive mistakes during surges (and with

larger variance, Figure 4) compared to when the viral spread is

waning (Figure 5) and hospitalizations are falling.

We then investigate the number of ICU patients and its

corresponding forecasts. Figure 1 displays the raw data vs. the

forecasts at each commit date. Similar to our work on

hospitalizations, we calculated the forecasting error up to 20 days
FIGURE 3

Realized data with “rising” and “falling” regimes overlayed in green and blu
deaths (panel C). “Rising” is defined as a day when the 14-day moving aver
as a day when the 14-day moving average percent change in hospitalizatio
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ahead, as shown in Figure 2. There is a clear upward bias,

especially for predictions generated 15–20 days ahead. This

implies again that the model systematically overforecasts the

number of ICU patients.

We mapped the errors to the rising and falling regimes defined

by the realized ICU admission data. As defined in Section 2.2,

rising ICU admissions correspond to a surge in the viral spread,

and falling ICU admissions denote waning viral spread. Figure 3

visualizes these rising and falling regimes. We see a distinct trend

emerge in the rising regime. Errors in the model are larger and

more positive when ICU admissions are surging compared to

when the ICU admissions are falling.

Finally, we looked at the daily COVID-19 deaths. Figure 1

shows the model’s forecasts (in red), along with the actual values

(in black). This is similar to the plots shown above for

hospitalizations and ICU admissions, where the realized values

are daily but aperiodic, and the forecasts lines begin on their

respective commit dates.

Figure 2 shows the forecasting errors of the model computed

with forecasts up to 20 days ahead. Similar to the previous error

plots, the black line shows the median forecasting error, while

the IQR is shaded in gray. Interestingly, deaths exhibit a weaker

upward bias compared to ICU and hospitalization errors.

Once again, we display the realized data during the “rising” and

“falling” regimes in Figure 3. To assess whether the model has

different forecasting errors during a “rising” regime or a “falling”
e, respectively for hospitalizations (panel A), ICU patients (panel B), and
age percent change in hospitalizations exceeds zero. “Falling” is defined
ns is below zero.
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FIGURE 4

Forecasting errors from 1 to 20 days ahead, conditional on forecasting in a rising regime for hospitalizations (panel A), ICU patients (panel B), and
deaths (panel C). The median forecast error for each period ahead is displayed by the bold line, and 25th to 75th quantiles of the error distribution
are represented by the shaded region.

FIGURE 5

Forecasting errors from 1 to 20 days ahead, conditional on forecasting in a falling regime for hospitalizations (panel A), ICU patients (panel B), and
deaths (panel C). The median forecast error for each period ahead is displayed by the bold line, and 25th to 75th quantiles of the error distribution
are represented by the shaded region.

Sudhakar et al. 10.3389/fepid.2024.1389617
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TABLE 3 Death forecast errors regressed on rising regime indicators.

Outcome 1 day ahead 5 days ahead 10 days ahead 20 days ahead

Intercept 0.95 (0.42)* 0.77 (0.51) 1.50 (0.46)** 1.73 (0.71)*

I (rising regime) 1.82 (0.59)** 1.03 (0.72) 1.26 (0.64) 2.22 (0.98)*

R2 0.10 0.02 0.04 0.06

Adj. R2 0.09 0.01 0.03 0.05

Sudhakar et al. 10.3389/fepid.2024.1389617
one, we plotted the errors conditioned on the regime when these

values were forecast.

Figure 4 shows the model’s errors during a “rising” regime,

whereas Figure 5 shows the model’s errors during a “falling”

regime. Unlike with hospitalization and ICU forecasts, the errors

are similar and more attenuated in both regimes.

***p < 0.001; **P < 0.01; *P < 0.05.
4.1 Empirical analysis of model errors: are
the errors predictable?

We conclude our analysis of the SIR model errors by fitting

several regression models relating the forecast error to the viral

regime. Specifically, we regressed the forecast error at 1, 5, 10,

and 20 days ahead on the indicator variable of whether or not

the forecast date was a “rising regime,” as defined in Equation 3.

The unit of analysis for these regressions is the commit date for

each outcome since this is when the forecasts were generated; the

outcome is the forecasting error d days ahead, as given by

Equation 2. The regression model Equation 4 was fitted using

OLS for 12 outcomes: 4 forward time horizons for each of

hospitalization, deaths, and ICU patients.

Tables 1–3 correspond to the regression fits for hospitalization,

ICU, and death forecast errors, respectively. Each table shows the

intercept and coefficient estimates for each regression in a

column, as well as standard errors in parentheses and p-values

noted in asterisks. Each coefficient on the indicator variable

represents the average difference in error between rising and

falling regime forecasts.

Across all outcomes, there are strongly significant differences in

forecast errors depending on the viral regime, especially for

forecasts 10 and 20 days ahead. All estimated indicator

coefficients are positive. For example, the hospitalization model

errors are 125.99 (Table 1) greater in rising regimes than in

falling regimes. This predictability of errors is shocking since

forecast errors should be random.
TABLE 1 Hospitalization forecast errors regressed on rising regime
indicators.

Outcome 1 day ahead 5 days ahead 10 days ahead 20 days ahead

Intercept 20.24 (3.29)*** 20.64 (4.47)*** 24.96 (7.18)*** 42.72 (14.99)**

I (rising regime) 8.80 (4.87) 18.75 (6.61)** 37.58 (10.62)*** 125.99 (22.12)***

R2 0.01 0.03 0.05 0.12

Adj. R2 0.01 0.03 0.05 0.11

***p < 0.001; **P < 0.01; *P < 0.05.

TABLE 2 ICU forecast errors regressed on rising regime indicators.

Outcome 1 day ahead 5 days ahead 10 days ahead 20 days ahead

Intercept 11.97 (2.08)*** 10.89 (2.47)*** 11.04 (3.31)** 15.29 (6.70)*

I (rising regime) 4.55 (3.09) 10.91 (3.67)** 18.82 (4.92)*** 58.50 (9.93)***

R2 0.01 0.05 0.09 0.18

Adj. R2 0.01 0.05 0.08 0.18

***p < 0.001; **P < 0.01; *P < 0.05.

Frontiers in Epidemiology 08
5 Discussion: modeling challenges

The SIR model fails to properly model certain aspects of

disease spread. Melikechi et al. (22) pointed out that over the

last century, many have modified the SIR model to incorporate

different compartments for various subpopulations or added

new terms that identify unique pathogen transmissions.

However, adding too many features may lead to overfitting

when making inferences of parameters early on in an epidemic

(23). At the beginning of an epidemic or pandemic, there is a

risk of noisy observations. Melikechi et al. (22) raised the

concept of practical identifiability, which refers to the ability to

“discern different parameter values based on noisy

observations.” Most SIR models employ Monte Carlo

simulations, where the model is simulated with predetermined

parameters. Noise is added to the simulated data, and then, a

fitting procedure is used on the noisy data. With increase in the

magnitude of noise, Monte Carlo parameter estimates often

display large difference in values, leading to huge uncertainty in

the parameters and unreliable inferences.

Lemoine (24) dissected missteps of a popular SEIR model

built by Flaxman et al. (25), in which they analyzed the

effect of non-pharmaceutical interventions on deaths due to

the virus. Flaxman et al. (25) used partial pooling of

information between countries, with both individual and

shared effects on the time-varying reproduction number.

According to them, pooling allowed for more information to

be used and helped overcome country-specific idiosyncrasies

in the data to enable more timely estimates. The authors

argued that government lockdowns were the interventions

that made a bulk of the impact on controlling the viral

spread. Lemoine, however, pointed out that the overall effect

of government interventions on deaths in Sweden was

similar to that in other countries. Why is this important?

Sweden was the one country in the analysis that did not

have a full lockdown. When he reproduced their analysis,

Lemoine found that the country-specific effect for Sweden

that the model ignored was almost as large as the effect of a

full lockdown, a feature that the authors failed to present in

their findings. Based on this, Lemoine argued that such SIR

models have been unable to deliver useful inputs for

policymakers. However, more importantly, epidemiologists

have failed to acknowledge this fact, by not ascribing the

failure of their models to the right causes.

There are three major critiques for the SIR models: assumption

of homogeneous mixing, assumption of closed population, and

latency period of infection.
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5.1 Homogeneous mixing

SIR models assume random mixing between all individuals in a

given population. Based on this assumption, each individual has

the same amount of contact as everyone else. Such a model

would not be able to account for a higher contact rate at

hospitals or a lower contact rate for quarantined individuals (26).

There is a lack of adequate inclusion of individual behavioral and

social influence in SIR models. Infectious disease epidemics have

a substantial social aspect and public health implication.

Homogeneous mixing assumes an equal probability of

transmission between two people regardless of their age or

location (27). This can fail to take into account age-dependent or

location-dependent risks. We need to include varying degrees of

interventions such as social distancing, stay-at-home, and shelter-

in-place orders at different times and across different regions.

The assumption of homogeneous mixing of S with I state

individuals in the SIR model is therefore invalid during COVID-19.

This flaw of SIR models may explain why the errors tend to be

so high with the UT Austin model. While homogeneous mixing

can be helpful for projecting the number of cases, it can lead to

large errors both in the early stages of the epidemic and in

calculating the final epidemic size (27). Homogeneous mixing

often overestimates the epidemic’s size, and can lead to more

interventions than needed. While the UT model accounts for

different age groups and risk factors, it still models disease

transmission through an SIR framework where the base

assumption remains homogeneous mixing. That is, all individuals

within each group would have the same susceptibility to

infection, and all individuals within each infection status

compartment would have the same infectiousness.

Even with more spatially explicit metapopulation models,

homogeneous mixing at smaller scales, such as within a state,

county, or city, is still questionable, as some people can stay

home and some are essential. In addition, the regional variability

of individual sentiment and behavior, for example, whether to

obey or enforce these orders, is essential to determine to predict

the trajectory of the COVID-19 pandemic, but it is generally not

included in the SIR models (28).

Assumption of homogeneous mixing can lead to

overestimating health service needs by not accounting for

behavioral changes and government-mandated actions. In

Wuhan, strict social distancing was instituted on 23 January

2020, and by the time new infections reached 1 or fewer a day

(15 March 2020), less than 0.5% of the population was infected.

At the time, SIR models generally suggested that 25%–70% of the

population to be infected (17).

Since most SIR models consider a single R0 value, they miss

unexpected social behavior changes and are unable to follow the

alterations. For instance, social gatherings have a great impact on

disease spread. A religious event in Malaysia, held from 27

February to 3 March, was supposed to be the source of viral

spread in India and Pakistan (12, 29).

Chen et al. (28) argued that since SIR models are formulated at

the population level, we face an important discrepancy between

patient-level data and population-level modeling. Exposed (E) and
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infectious (I) compartments characterize the disease spread at the

population level, ignoring individual clinical variations in patients.

Due to its broadness, the E compartment assumes that everyone

exposed is unable to infect others and the I compartment does

not account for varying levels of severity among patients such as

asymptomatic, mild, and severe stages. Given these assumptions,

SIR models cannot pin down and quantify the impact of

superspreaders who can lead to a disproportionately large number

of new cases. Superspreading can be due to individual clinical

characteristics such as supershedding of virus or behavioral aspects

like supercontacting. Neither are addressed well by SIR models

built at a population level. This flaw in the SIR models may also

explain some of the inaccuracy in the UT model, as not

accounting for patient-level differences may cause them to

overlook individual behaviors and overforecast.
5.2 Closed population

The focus of SIR models is often placed on the estimation of

the basic reproduction number R0 (30). However, what should be

addressed is the assumption of a closed population in SIR

models. Most regions do not follow complete isolation, making

them vulnerable to changes in the neighboring communities. SIR

models also consider recovered individuals to be immunized.

This assumption contrasts with the possibility of the reactivation

of the virus or reinfection of previously infected individuals (12).

Similarly, it does not account for asymptomatic individuals. With

the closed population assumption, Ding et al. (31) argued that

standard SIR models miss out on the fact that presymptomatic

and asymptomatic cases can spread the disease between

populations through travel. Researchers have addressed this at

multiple levels: within state, country, and even globally.

Studies such as those by Kucharski et al. and Wu et al. (32, 33)

estimated cases in Wuhan, China, by considering the movement

people in and out of the city. Kucharski et al. (32) did so by

assuming that once exposed, a part of the population would

travel internationally. To account for international travelers, they

used the number of outbound travelers (assuming 3,300 per day

before travel restrictions were imposed on 23 January 2023, and

zero afterward), relative connectivity of different countries, and

relative probability of reporting a case outside Wuhan vs. within

Wuhan and internationally.

Wu et al. (33) first inferred the R0, the basic reproduction rate

of the virus, of COVID-19 and the outbreak size in Wuhan from 1

December 2019 to 25 January 2020, on the basis of confirmed cases

exported from Wuhan to cities outside of mainland China, where

symptom onset date was reported to range from 25 December 2019

to 19 January 2020. They also forecasted the spread of COVID-19

within and outside Mainland China, taking into account public

health interventions and outbound travelers by air, train, and

road during the Spring Festival. While they assumed that travel

behavior was not affected by the disease and, therefore,

international case exportation occurred according to a non-

homogeneous process, their work still addresses mobility across

cities and countries for modeling COVID-19.
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Chinazzi et al. (34) used a global epidemic and mobility model

(GLEAM) to model the international spread of COVID-19,

considering varying transmissibility and air traffic reductions.

The model uses a metapopulation network approach with real-

world data, where the world is divided into subpopulations

centered around major transportation hubs such as airports. The

subpopulations are connected to each other by individuals

traveling daily through them. COVID-19 transmission within

each subpopulation is modeled through a susceptible–latent–

infectious–recovered compartmental framework.

Ding et al. (31) differentiated their study by incorporating

granular changes in air traffic and simulate varying travel

restrictions. They focused on data from Canada, which showed a

large number of flights going to and fro the country despite travel

restrictions and reduced air traffic. They proposed a modified SIR

model that considers a dynamic flight network, by estimating

imported cases using air traffic volume and positive testing rates.

Their model operates in an “open population setting,” where

people are free to travel in and out of the population.

Not accounting for a lack of closed population leads to poor

estimation of forecasts. Depending on the assumptions and

circumstances of the model, this assumption can lead to both

underestimation and overestimation. For instance, Chowell and

Nishiura (35) revealed that in the case of the Ebola virus,

variations in the R0 number in an SEIR model were due to

different assumptions regarding the international or domestic

spread of the virus and the lack of high-quality data.

In our analysis of the UT Austin model, we captured the model’s

systematic tendency to overforecast. UT’s initial R0 values in 2020

were “best guesses,” as seen in the study by Wand et al. (36).

They assumed R0 to be 2.2 but did not provide a clear source for

how they arrived at this number.3 Tec et al. (37) estimated R0

using the basic infectiousness of the disease, the number of people

susceptible to infection, and the impact of social distancing, mask

wearing, and other measures to slow transmission. One potential

reason why the UT model overforecasts could be due to their

social distancing data. They used mobility trends from SafeGraph

data and regressed the transmission rate of the virus on the first

two principal components derived from a principal component

analysis (PCA) on eight independent mobility variables, such as

home dwell time and visits to universities, bars, grocery stores,

museums and parks, medical facilities, schools, and restaurants. If

the PCA components did not appropriately capture the variation

in the mobility, such as inter-Austin movement, then the

transmission rate would lead to a poor estimation of the viral spread.
5.3 Latency period of infection

The SIR model also does not incorporate the latent period

between when an individual is exposed to a disease and when
3The authors linked a source, but it is not open access.
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that individual becomes infected and contagious. This is because

the only categories in the model are susceptible, infectious, and

recovered. The S(E)IR model tries to account for this parameter

by creating a category for people who are exposed but not yet

contagious. However, even S(E)IR models are oversimplified, and

they will need to model other time-dependent factors, such as

the introduction of community mitigation strategies (11).

Changes in model parameters E, I, or R at time t is dependent

on a fraction of E and I at time t. As per Liu (38), this means that

after being exposed to the virus on a particular day, an individual

may become contagious or recover on that same day. However, in

reality, an exposed individual will become infectious only after a

latent period and recover after an infectious period (38). This

timing issue with the compartmental models can cause the

forecasts to be inaccurate, especially for further days out.

SEIR models account for this latency period using an “exposed”

compartment, but even this model feature is too structured and

simplistic. If the latency period is not calibrated precisely, the

mode may over/underforecast. A study using COVID-19 data in

Tennessee found that the “optimal” latency period is 2.40 days,

which is close to the mean latency period of 2.52 days, which

was estimated from the data of seven countries (39). If UT

Austin’s SEIR model did not correctly model this latency period,

this could explain some of the model’s errors.
6 Conclusion

Given the wide use of compartmental models to describe the

transmission dynamics of COVID-19 and other diseases, we

must carefully consider their limitations when using them to

inform public health interventions. In particular, homogeneity

assumptions underlying these models do not accurately reflect

heterogeneity of the population, and estimates of key parameters

such as R0 are often noisy and unreliable. In addition, these

models do not account for the impact of non-pharmaceutical

interventions on disease transmission or capture the complex

interactions between the virus, people, and the environment.

Historically, compartmental models were used as descriptive tools

instead of real-time models for prediction and decision-making. This

change in “use-case” partially explains their significant failure. Chen

et al. (28) pointed out that in the initial papers describing the SIR

approach, the model was applied after the epidemic had ended.

However, SIR models have little room for new evidence without

modifying the model structure and estimation of R0. In addition, it

was difficult to model the initial part of COVID-19 spread using

SIR models, compared to other models, since we had limited or no

information on aspects such as asymptomatic transmission,

superspreaders, and unreported cases. Moreover, constructing a

long-term forecasting model is a major challenge because of the

lack of data. The SIR model has a tendency to underestimate peak

infection rates and substantially overestimate the persistence of the

epidemic after the peak has passed (40).

Intuitively, prediction accuracy can be increased by

synthesizing the forecasts of many unique models. This

represents one important area of future research to improve the
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usefulness of compartmental models. Cramer et al. (1) found that

an ensemble model provides more accurate short-term forecasts of

hospital and ICU admissions than the individual models alone. The

ensemble model also has a lower prediction error and better

calibration than the individual models, suggesting that it could

be more effective in real-time decision-making for

healthcare systems.

In this paper, we investigated predictive failures of the

compartmental model framework and its derivative models.

While our empirical analysis utilized forecasts from the model

constructed at UT Austin, our conclusions apply to all

compartmental models generated from sets of differential

equations. The epidemiological community should scrutinize this

framework and promote new and innovative techniques that go

beyond differential equations and adopt solutions from

economics, statistics, machine learning, and beyond. A pandemic

forecasting model can always be marketed as unique, but if it

relies on differential equations and compartmental modeling, this

structural bias will outweigh most novel modifications. We hope

this manuscript contributes to a rebirth of research in

epidemiological modeling so the best techniques can be elevated

and utilized in future pandemics.
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