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all payer claims dataset
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Introduction: Emerging risk factors for atrial fibrillation (AF) incidence and
episodes (exacerbation), the most common and clinically significant cardiac
arrhythmia, include air and noise pollution, both of which are emitted during
oil and natural gas (O&G) well site development.
Methods: We evaluated AF exacerbation risk and proximity to O&G well site
development by employing a novel data source and interrupted time-series
design. We retrospectively followed 1,197 AF patients living within 1-mile of an
O&G well site (at-risk of exposure) and 9,764 patients living >2 miles from any
O&G well site (unexposed) for AF claims in Colorado’s All Payer Claims Dataset
before, during, and after O&G well site development. We calculated AF
exacerbation risk with multi-failure survival analysis.
Results: The analysis of the total study population does not provide strong
evidence of an association between AF exacerbation and proximity to O&G
wells sites during (HR= 1.07, 95% CI: 0.94, 1.22) or after (HR= 1.01, 95% CI:
0.88, 1.16) development. However, AF exacerbation risk differed by patient age
and sex. In patients >80 years living within 0.39 miles (2,059 feet) of O&G well
site development, AF exacerbation risk increased by 83% (HR= 1.83, 95% CI:
1.25, 2.66) and emergency room visits for an AF event doubled (HR= 2.55, 95%
CI: 1.50, 4.36) during development, with risk increasing with proximity. In female
patients living within 0.39 miles of O&G well site development, AF exacerbation
risk increased by 56% percent (95% CI: 1.13, 2.15) during development. AF
exacerbation risk did not persist past the well development period. We did not
observe increased AF exacerbation risk in younger or male patients.
Discussion: The prospect that proximity to O&G well site development, a significant
noise and air pollution source, may increase AF exacerbation risk in older and female
AF patients requires attention. These findings support appropriate patient education
to help mitigate risk and development of mitigation strategies and regulations to
protect the health of populations in O&G development regions.
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Introduction

Atrial fibrillation (AF), the most common and clinically

significant cardiac arrhythmia, impairs quality of life and

substantially elevates stroke, systemic thromboembolism and

heart failure risk (1, 2). The incidence and prevalence of AF are

increasing (1–5). Adults aged >40 years of age have a 25%

lifetime risk of developing AF (1). There are 9.3 million

American’s living with this chronic, dangerous, and costly

condition contributing to an estimated 130,000 deaths and $6

billion in health care costs per year (6).

While knowledge on AF etiology is sparse, there are several

known AF risk factors, including biological sex, advancing age,

and co-morbidities (1), as well as emerging environmental risk

factors including air and noise pollution (7–11). Several

epidemiological studies have indicated that the risk of AF

incidence increases with increasing levels of air pollutants,

including particulate matter ≤2.5 micrometers, (PM2.5), nitrogen

oxides (NOx), and ozone (8, 12–18), as well as higher exposure

to traffic and railway noise (9, 19, 20). Additionally, studies have

observed the risk of AF episodes (exascerbation) increases with

increasing levels of air pollutants and noise (13, 14, 21, 22). In

general, adverse cardiovascular effects are observed when audible

noise levels exceed 50 A-weighted decibels (dBA) (23). Studies

also suggest that nocturnal noise, which disrupts the normal

sleep cycle, may be associated with greater health consequences

than daytime noise (24–26). Clinically, chronic sleep deprivation

is associated hypertension (27) and cardiovascular disease (28)

which are firmly established and modifiable risk factors for AF (1).

One significant source of both air and noise pollution is the

development of oil and natural gas (O&G) well sites. Between

2011 and 2014, 25,000–35,000 O&G well sites were developed

annually in the United States (US) exceeding 150,000 total new

well sites as of 2019 (29). This resulted in an extensive dispersion

of O&G well sites across populated areas, with over 17 million

people living within one mile of an O&G well (30). In Colorado,

more than 378,000 people live within 1-mile of an O&G well

site, with the densest development northeast of Denver (31). Air

and noise pollution emitted during development of O&G well

sites potentially impact all individuals residing near the sites (32).

As described elsewhere, modern O&G well site development is

a complex, industrial process (33). Diesel-powered equipment,

trucks, and generators continuously emit air pollutants and

noise; on-site storage tanks, valves and pipes also emit air

pollutants (34–36). Audible noise levels of 69 dBA and low

frequency noise of 80 C-weighted decibels (dBC) have been

reported during O&G well site development (35, 37). During

development of 22-well O&G site in Colorado, 1–16 diesel trucks

per hour travelled to and from the site, concentrations of PM2.5

more than doubled, and noise measurements exceeded 50 dBA

day and night, within1,288 feet of the site (36).

It is not known if noise and air pollution emitted from O&G

well site development exacerbates AF in the large and growing

population living near these sites. We are not aware of any

studies on this topic. However, studies indicate that living near

O&G well sites may impact cardiac conditions associated with
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AF. Proximity to O&G well sites may affect in-utero heart

development (38–42), increase hospitalizations for heart failure

(43) in acute myocardial infarction patients (44), and increase

augmentation index and blood pressure (45). Our objective is to

determine if the burden of AF increases in AF patients living

near O&G well site development and identify susceptible

subpopulations by employing a novel time-series design and data

source in a large population of AF patients using specific O&G

metrics. Because air pollution and noise emissions persist in the

production period following well site development, we also

determine AF exacerbation increases (or persists) after the well

site is developed.
Methods

We retrospectively followed 10,961 AF patients in Colorado’s

All Payer Claims Dataset (COAPCD) before, during, and after

development of O&G well sites. Using both an interrupted time

series (ITS) and controlled interrupted time series (CTIS) design

(Figure 1) (46, 47), we evaluated if living near O&G well site

during development exacerbates AF and if AF exacerbation

persists after development of the site. We selected an ITS design

because of the limited co-variate information available in

Colorado’s All Payer Claims Dataset (APCD). Because ITS is

based on observation of a single population over time, it

accounts for between group differences, such as unmeasured

confounding, as well as within group characteristics that change

slowly over time, secular changes, random fluctuations from one

point to the next and regression to mean (46). To control for

time-varying trends which do not form part of the underlying

trend (e.g., seasonal, regional scale environmental events, and

natural progression of AF), we also performed a CITS by adding

an unexposed group as recommended by Bernal et al. (47) Per

these recommendations, we included and reported results from

both the ITS and CITS to provide a greater degree of confidence

that an observed association between proximity to development

of an O&G well site and AF exacerbation is causal (47). For

example, if the CITS analysis indicates an association, but the

ITS does not, then there may have been an event affecting AF in

the control population that did not affect the population living

within one mile. The Colorado Multiple Institutional Review

Board approved our study (IRB Protocol Number 17–0692).
Study population

We selected our cohort from the COAPCD, administered by

The Center for Improving Value in Health Care. The COAPCD

represents approximately 65% of Colorado’s fully insured

population including claims data from commercial health plans

(large group, small group, and individual), Medicare, and

Colorado’s Medicaid Program beginning in 2009. We included

patients in the COAPCD aged 18–100 years with a complete

street address that we could geocode, living in a Colorado county

with at least one O&G well site developed between 2010 and
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FIGURE 1

Interrupted time-series study design and assignment of before, during, and after oil and gas well site development period. AF, atrial fibrillation [adapted
from Bernal et al. (47)].
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2017, and at least one principal diagnosis code for AF or atrial

flutter (AFl) between January 1, 2009 and December 31, 2017.

From this population, we a priori selected patients at- risk of

exposure to air and noise pollution emitted during development

of an O&G site (herein referred to as exposed patients) and an

unexposed population as follows.

We calculated the distance between each patient’s geocoded

address and the nearest O&G well site developed between 2010

and 2017 using ArcGIS Desktop 10 as described in the exposure

section. We defined patients at-risk of exposure (here to in

referred to as at-risk patients) as living within one mile of an

O&G site based on documented noise and odor complaints,

recent risk assessments, and monitoring studies indicating the

potential for air and noise pollution associated with O&G well

sites to impact people living within one mile (36, 48–50), as well

as a robust literature supporting the use of proximity to O&G

well sites as a proxy for exposure (51). Because weather, major

air pollution events, and other temporal events that could

exacerbate AF vary by region and AF severity may worsen over

time, analysis of an location control population was necessary

(47). The location control population (here to in referred to as

unexposed patients) should be a population not a risk for

exposure to air and noise pollution emitted from an O&G site.

We selected our unexposed population from AF patients that

had no O&G well sites within two miles of their home by

frequency matching each at-risk patient to 13 unexposed patients

by geographical region to control for regional temporal events

(Supplementary Material Table S1) and year of first AF claim in

the COAPCD to control for progression of AF severity. Because

the spatial extent of stressors from O&G site development is not
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well understood and may extend beyond 1-mile, we excluded

patients living 1–2 miles from an O&G site to clearly distinguish

the possibility of exposure to O&G well site development

stressors in at-risk patients from unexposed patients.
Exposure

We geocoded street addresses in ArcGIS Desktop 10 using

Census TIGER Address Range files from 2019 to create an

address locator. For patients that could not be geocoded with

ArcGIS Desktop 10, we completed a second geocoding pass with

the Google Geocoding API. We obtained geocoded O&G well

site locations for all O&G wells developed between 2010 and

2017, the number of wells at each well site, and the dates those

wells were developed (spud date, first production date) from the

Colorado Oil and Gas Information System (52).

Assuming the street address in the COAPCD is also the

residential address, we temporally aligned each matched control

set (up to 13 patients) to the development of the O&G well site

within one mile of their matched at-risk patient’s street address.

We defined before, during, and after development periods as

follows (Figure 1). The during development period begins on the

drilling date (the spud date) of the first well on the site and ends

on the first production date of the last well on the site. We then

added a one-month buffer to the beginning and end of the

during development period to account for well site construction

activities prior to drilling and higher potential activities at the

beginning of production. The before and after development

periods each are equal to the length of the during development
frontiersin.org
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period. The before period ends at the beginning of the one-month

buffer period preceding the development period. The after period

begins at the end of the one-month buffer following the

development period.
Exclusions

We excluded patients living 1–2 miles from an O&G site

(Figure 2). We next excluded 2,353 patients if the date of their

first AF claim occurred later than the end of the after period

because there was no evidence that the patient had AF during

the follow up period. To reduce errors from unknown losses to

follow up, we also excluded 5,626 patients without a claim (of

any type) preceding the before period and succeeding the after

period as defined in the exposure section. Our final population

of 10,961 AF patients includes 1,197 at-risk and 9,764 control

patients. A blinded review of claims for 1% of randomly selected
FIGURE 2

Selection of atrial fibrillation patients from Colorado all payers claim databa
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at-risk and control patients confirmed 91% (90% at-risk and 94%

control) patients were correctly identified as having a primary

diagnosis of AF. Insufficient information was available in the

remaining 9% of these patients to confirm a primary AF diagnosis.
Outcomes
We followed each patient from the beginning of their specific

before period through the end of the after period (here to within

referred as follow up) for incidence of an AF episode. We

defined an AF episode as any claim, inpatient, outpatient, and

emergency room, with a principal diagnostic code for AF or AFI

(ICD-9-CM 427.3, or 427.31–2; ICD-10-CM I48.0–4, I48.9,

I48.91, or I48.92), excluding AF diagnostic codes associated with

an internal normalized ratio procedure (CPT4 85610, 93792, or

R79.1). We considered occurrence of multiple AF diagnostic

codes in one day or over consecutive days as one event. We also

separately evaluated AF episodes associated with an emergency
se.
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TABLE 1 Study population characteristics for All payer claims database
patients aged 18–100 years living within one mile of an oil and gas well
developed in Colorado between 2010 and 2017 or two or more miles
from any Colorado oil and natural gas well site.

At-risk: nearest
well within
one mile

Control: nearest
well two or
more miles

Total N 1,197 9,764

Age at first AF event in
COAPCD (%)

Greater than 80 years 27.6 28.2

74–80 years 23.5 23.8

66–73 years 30.1 27.2

<66 years 18.8 20.9

Sex (%)

Male 53.0 50.7

Female 46.7 48.3

Missing <1 <1

Diabetic (%) 34.9 30.5

Hypertensive (%) 83.1 77.8

Confirmed address over follow
up (%)

73.2 72.2

Region

East 89.9 89.5

Southwest 4.4 4.8

Northwest 5.7 5.6

Elevation of residence
<6,500 feet

97.3 94.2

Emergency room visits (%) 30.2 30.1

Duration in COAPCD (days)

Mean 3,023 2,983

Maximum 3,651 3,651

Minimum 605 317

Number of AF events

Mean 14.2 13.8

Maximum 161 373

Minimum 0 0

Miles from O&G well site (n)

0–0.39 299 –

>0.39–0.59 302 –

0.59–0.80 303 –

>0.8–1 293 –

Duration of O&G well site
development (days)

Mean 165 –

Maximum 844 –

Minimum 3 –

AF, atrial fibrillation; COAPCD, Colorado all payer claims dataset; O&G, oil and gas.
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room visit (Supplementary Material Table S2). AF episodes that

occurred in the buffer months were not counted.

Statistical analyses
We tested the hypothesis that there is a larger increase in

incidence of AF claims during or after development of an O&G

site, compared to before development, for at-risk AF patients as

follows. We analyzed AF exacerbation risk with a multi-failure

survival analysis by applying a Cox proportional hazard model

with a robust variance estimator and clustering at the individual

patient level (53, 54), using an Efron method for ties (55). We

retrospectively followed each patient through their specific follow

up period. We first analyzed AF exacerbation risk for only the

at-risk patients (ITS) (46, 47). We then analyzed AF exacerbation

risk with both the at-risk and unexposed patients (CTIS) (47), by

adding an interaction term between exposure (at-risk to control

referent) and period (during and after, to before referent) to our

model. Parallel trend analysis indicates no difference between the

exposed and unexposed populations in the before period,

indicating support for the parallel assumption in CITS analysis

(Supplementary Material Table S3) (56). Strong evidence of an

association between proximity to development of an O&G well

site and AF exacerbation is indicated if the ITS and CITS

analysis yield hazard ratios (HR) of similar size (Figure 1) (47).

We adjusted our model for co-variates associated with AF

(biological sex, age at first AF claim in COAPCD, elevation of

residence, hypertension, and diabetes) (1), and exposure

(duration of well development and geographical region). We

considered the direction and magnitude of individual HRs and

overarching trends, based on American Statistical Association

guidance (57), in both analyses.

We then stratified our population by sex, age quartiles,

presence of a co-morbidity (diabetes, hypertension) and

geographical region to assess whether the results between groups

(e.g., male vs. female) were systematically different. Additionally,

we stratified our at-risk patients into distance quartiles to assess

the effect of distance from the O&G site on AF exacerbation.

We performed several sensitivity analyses. We evaluated the

effect of short and long periods of well development by

excluding patients with well duration periods outside the 25th—

75th percentile range (75–184 days). To evaluate the impact of

potential change of residence over time, we performed an

analysis on patients for whom we could confirm that the street

address did not change through the follow up period. Because

high altitude can exacerbate AF, we performed an analysis on

patients living ≤6,000 feet above sea level.

Given the small sample sizes and exploratory nature of the

stratified and sensitivity analyses, no adjustments were made for

multiple comparisons. All analyses were carried out using SAS

9.4 (SAS Institute, Cary, NC).
Results

Our study population included 1,197 at-risk patients and 9,764

unexposed patients l (Table 1). At-risk patients were more likely to
Frontiers in Epidemiology 05
be male, diabetic, and hypertensive than unexposed patients.

At-risk patients also had a longer duration in the COAPCD.

However, the highest number of total AF claims was observed in

the unexposed patients.

Table 2 presents the multi-failure survival analysis results for

AF exacerbation. The analysis of the study population as a whole

does not provide strong evidence of an association between AF

exacerbation and proximity to O&G well site development.

The ITS analysis indicates that AF exacerbation increases

during (HR = 1.13, 95% CI: 0.99, 1.30) and after (HR = 1.19, 95%

CI = 1.02, 1.39) well site development, compared to before well

development in our total population of at-risk AF patients. With
frontiersin.org
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TABLE 2 Results from multi-failure survival analysis for AF events: hazard
ratios for an AF event during and after well development periods
compared to before well development.

Analysis Interrupted time series
analysisa

Controlled interrupted
time series

HR duringb

(95% CI)
HR afterb

(95% CI)
HR duringc

(95% CI)
HR afterc

(95% CI)
Total population
(Main analysis)

1.13 (0.99,
1.30)

1.19 (1.02,
1.39)

1.07 (0.94,
1.22)

1.01 (0.88,
1.16)

>80 years 1.41 (1.09,
1.83)

1.19 (0.93,
1.52)

1.43 (1.13,
1.81)

0.99 (0.79,
1.23

74–80 years 1.09 (0.84,
1.42)

1.16 (0.84,
1.61)

1.11 (0.86,
1.44)

1.06 (0.79,
1.40)

66–73 years 1.08 (0.84,
1.40)

1.43 (1.02,
2.0)

0.88 (0.69,
1.12)

1.10 (0.82,
1.47

<66 years 0.83 (0.61,
1.17)

0.87 (0.65,
1.17)

0.84 (0.61,
1.17)

0.87 (0.65,
1.17)

Females 1.17 (0.97,
1.42)

1.14 (0.91,
1.44)

1.21 (1.00,
1.47)

1.02 (0.82,
1.27)

Males 1.09 (0.90,
1.31)

1.25 (1.02,
1.55)

0.94 (0.79,
1.11)

1.01 (0.86,
1.20)

AF, atrial fibrillation; CI, confidence interval; HR, hazard ratio.
aDoes not include control patients.
bAdjusted for sex, age at first AF event, elevation of residence, duration of well

development, hypertension, diabetes, and region, and exposure status.
cAdjusted for sex, age at first AF event, elevation of residence, duration of well

development, hypertension, diabetes, and region, interaction between period

(before, during, after development) and exposure status.
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inclusion of unexposed patients in the CITS analyses this

association attenuates towards the null during (HR = 1.07,

95% CI: 0.94, 1.22) and after (HR = 1.01, 95% CI: 0.88, 1.16)

site development.

Stratified analyses indicates that age and possibly biological sex

modify the risk of an AF event during O&G well site development

(Table 2). In AF patients aged >80 years, ITS and CITS results for

the during well development period are similar and indicate that

risk for an AF event increases during well development, but not

after development. In the during O&G development period, risk

of an AF event increased by 43% (HR = 1.43, 95% CI: 1.13, 1.81)

in at-risk patients aged >80 years. In younger patients, results

attenuated towards the null. In female AF patients, ITS and CITS

results for the during well development period are similar and

indicate that risk for an AF event increases during well

development, but not after development. The risk for an AF

event in the during O&G development period increased by 21%

(HR = 1.21, 95% CI: 1.00, 1.47) in at-risk female patients. No

association was observed for male patients. Stratified analysis

indicated that co-morbidities and region of residence did not

modify risk (Supplementary Material Table S4).

In stratified analysis by distance quartile, ITS and CTIS results

for the total population are similar and indicate increased risk of

AF exacerbation during well site development in at-risk patients

living within 0.39 miles (2,059 feet) and the increased risk does

not persist after development of the well site. We observed a 35%

increase in risk for AF events in at-risk patients living within

0.39 miles (2,059 feet) in the during well development period

(HR = 1.35, 95% CI: 1.08, 1.69) (Figure 3, Supplementary

Material Table S5). We did not observe associations at distances
Frontiers in Epidemiology 06
>0.39 miles for the total population. As in the main analysis,

both age and sex modified the results. In patients aged >80 years

living within 0.39 miles of an O&G development site, the risk of

AF event increased by 83% during well development (HR = 1.83,

95% CI: 1.25, 2.66). Additionally, the results for patients aged

>80 years indicate a trend of increasing risk of an AF event

during well development as distance from the well site decreases

and suggest the possibility of increased AF exacerbation risk up

to 4,224 feet from the site. In female patients living within 0.39

miles of an oil and gas well development site, risk of AF event

increased by 56% (95% CI: 1.13, 2.15) and 36% (95% CI: 0.89,

2.03) during and possibly after well development, respectively.

Table 3 presents the multi-failure survival analysis results for

AF exacerbation with an emergency room visit. The analysis of

the study population as a whole does not provide strong

evidence of an association between AF exacerbation with an

emergency room visit and proximity to O&G well site

development. The ITS analysis indicates that AF exacerbation

with an emergency room visit increases during (HR = 1.57, 95%

CI: 0.99, 2.47) and after (HR = 1.80, 95% CI = 1.13, 2.87) well

development, compared to before well development. With

inclusion of unexposed control patients in the CITS analyses this

association attenuates towards the null (HR = 1.11, 95% CI: 0.79,

1.56) or after (HR = 1.24, 95% CI: 0.90, 1.70) O&G well

site development.

Stratified analyses indicates that age modifies the risk of an AF

event with an emergency room visits during O&G well

development (Table 3). In at risk patients aged >80 years, ITS

and CITS results for the during well development period are

similar and indicate that risk of an AF event increases during

well development. In the during well development period, risk of

an AF event with an emergency room visit doubled (HR = 2.55,

95% CI: 1.50, 4.36) in at-risk patients aged >80 years. The results

indicate that the risk does not persist past the well development

period and show no increased risk in younger patients. Stratified

analysis did not indicate biological sex, co-morbidities, or

geographical region as effect modifiers (results not shown).

Sensitivity analyses excluding patients: for whom we could not

confirm that the street address did not change over our follow-up

period (Supplementary Material Table S6), with well development

durations within the 25th to 75th percentile range (Supplementary

Material Table S7); and living at an elevation less than 6,000 feet

(Supplementary Material Table S8) did not inferentially change

our results.
Discussion

Our results provide strong evidence (47) that older AF patients

living within 0.39 miles (2,059 feet) of an O&G well site may

experience increased AF exacerbation during site development

with the possibility of increased AF exacerbation risk up to at

least 0.8 miles (4,224) feet from the site, which does not persist

past the well development period. Our results also suggest that

AF patients identified as female living within 0.39 miles (2,059

feet) of an O&G site may experience increased AF exacerbation
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TABLE 3 Results from multi-failure survival analysis for AF event with an emergency room visit: hazard ratios for an AF event during and after well
development periods compared to before well development.

Analysis Interrupted time series analysisa Parallel analysis (exposed vs. unexposed in
before period)b

Controlled interrupted time
series

HR duringb

(95% CI)
HR aftera

(95% CI)
HR (95% CI) HR duringc

(95% CI)
HR afterc

(95% CI)
Total population (main
analysis)

1.57 (0.99, 2.47) 1.80 (1.13, 2.87) 0.81 (0.56, 1.19) 1.11 (0.79, 1.56) 1.24 (0.90, 1.70)

>80 years 2.67 (1.26, 5.64) 1.1 (0.60, 2.01) 0.95 (0.47, 1.92) 2.55 (1.50, 4.36) 1.10 (0.60, 2.01)

74–80 years 1.20 (0.37, 3.93) 2.40 (0.82, 6.99) 0.56 (0.23, 1.40) 0.58 (0.25, 1.32) 1.34 (0.71, 2.53)

66–73 years 1.43 (0.54, 3.75) 2.71 (1.09, 6.78) 0.58 (0.27, 1.26) 0.76 (0.39, 1.47) 1.48 (0.82, 2.67)

<66 years 0.78 (0.31, 1.96) 1.11 (0.43, 2.85) 1.36 (0.66, 2.78) 0.77 (0.36, 1.64) 1.04 (0.52, 2.09)

Females 1.93 (1.0, 3.74) 1.64 (0.80, 3.37) 0.68 (0.40, 1.17) 1.30 (0.83, 2.03) 0.97 (0.59, 1.61)

Males 1.25 (0.67, 2.35) 1.94 (1.05, 3.59) 0.98 (0.58, 1.68) 0.97 (0.58, 1.61) 1.57 (1.04, 2.36)

AF, atrial fibrillation; CI, confidence interval; HR, hazard ratio.
aDoes not include control patients.
bAdjusted for sex, age at first AF event, elevation of residence, duration of well development, hypertension, diabetes, and region, and exposure status.
cAdjusted for sex, age at first AF event, elevation of residence, duration of well development, hypertension, diabetes, and region, interaction between period (before, during,

after development) and exposure status.

FIGURE 3

Hazard ratios with 95% confidence intervals from multi-failure survival analysis with control for total population, patients aged >80 years, and patients
identified as female by distance quartile from oil and gas well development site: HRs of at-risk to controls for an atrial fibrillation event during O&G well
site development compared to before development. HR, hazard ratio; CI, confidence interval.
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during site development, which does not appear to persist past the

well development period. We did not observe increases in AF

exacerbation in younger AF or male patients. Previous studies

indicating that people living near O&G well sites may experience

alterations in vascular function associated with AF (45), heart

failure exacerbation (43), and increased hospitalization for acute

MI (44), as well as exposures to noise and air pollution levels

known to affect cardiovascular health (36) support these results.

These important and biologically plausible findings contribute
Frontiers in Epidemiology 07
further epidemiological evidence that environmental stressors

exacerbate AF.

Air and noise pollution emitted during the development of

O&G well sites potentially impact all individuals residing in the

vicinity of the sites (32). Exposure to noise elicits an acute stress

reaction characterized by autonomic nervous system response,

specifically, increased sympathetic activity (58), which plays an

important role in the initiation and maintenance of AF (59). On

the molecular level, beta adrenergic stimulation triggers an
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intracellular signaling cascade that can lead to intracellular calcium

overload creating a particularly arrhythmogenic environment that

promotes triggered activity. Resulting depolarizations generate

spontaneous ectopy. Simultaneously, enhanced automaticity,

promoted by increased circulating catecholamines, also leads to

focal ectopic atrial activity. Both triggered activity and enhanced

automaticity are believed to be the primary drivers for AF

initiation. This stress reaction has been observed in response to

road traffic noise (60); thus, it is plausible that exposure to

stressful noise levels may induce AF in susceptible individuals.

Additionally, alterations in autonomic tone, inflammation,

oxidative stress, and changes in intracardiac filling pressures are

known triggers for AF (58, 61–68) and are reported in response

to PM2.5 exposure (15, 18, 69–75). Exposure to PM2.5 has been

associated with increased blood pressure and acute alteration in

vascular function, which may contribute to hypertension, an AF

risk factor (1, 73, 76–79).

Interestingly, our results indicate that living near development

of an O&G well site has a greater impact on older and female AF

patients. Other studies also have observed that older adults living in

close proximity to O&G well sites may bear greater health and

mortality risks than younger adults (43, 80). Additionally, prior

studies report that both women and the elderly are at higher risk

of mortality and CV mortality when exposed to elevated PM2.5

levels (81). Our findings may be explained by age- and gender-

related changes in response to physiologic stressors. Significantly

higher levels of cortisol have been observed in women compared

to age-matched men and older vs. younger subjects when

exposed to psychological or cognitive challenges (82). It is

plausible that older subjects spend more time at home, increasing

the duration of exposure (83).

Our observation that AF exacerbation risk does not to persist

past the well development period indicates that the increased risk

is transitory in nature. A transitory increase in AF exacerbation

risk could worsen AF patient acute outcomes, as evidenced by

the increased risk for AF claims associated with an emergency

room visit.

Our study benefited from an efficient design that accounts for

unmeasured confounding, accurate definition of before, during,

and after O&G well site development periods, and the availability

of sequential measures of AF diagnoses and related morbidities in

the COAPCD. Additionally, our temporal control design features

allowed us to account for risk factors that drive AF development

in an accumulating manner and time-varying variables such as

season and regional air pollution events (e.g., wildfires).

Nonetheless, our study had some limitations. While our CITS

design allowed us to account static environmental stressors and

time varying environmental stressors a the regional level, it did

not account for changing environmental stressors a the local level

that may have occurred during the follow up period,, such as

construction activities and development of other O&G well sites

further than the closet site,. This may have biased result towards

or away from the null. Assuming the street address in the

COAPCD is the residential address and the possibility for change

of residence in our study cohort may introduce exposure

misclassification. However, our sensitivity analysis on patients for
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whom we could confirm the street address over the follow up

period indicates that exposure misclassification from change in

residential address had little effect on our results (Supplementary

Material Table S6). It also is possible that some AF and co-

morbidity claims were misdiagnosed. Our claim review

confirmed that most (91%) patients had plausible AF diagnoses,

with similar results for at-risk and control patients. Thus, this is

mostly a concern for null results. Not all AF incidents may result

in an COAPCD claim and not all AF patients are included in

the COAPCD. Therefore, our results, may underrepresent the

true incidence of AF. This too is mostly a concern for null

results. It is important to appreciate that our outcome is an AF

claim in the COAPCD and not new onset AF. Therefore, our

results apply to the prevalence of AF. Because we did not include

AF patients with addresses that could not be geocoded, our

results may not be generalizable to the whole Colorado AF

patient population. Because noise and air pollution measures

were not available for this retrospective study, we could not

elucidate specific associations between noise or air pollution and

AF. Because the COAPCD includes only 65% of Colorado’s

population, our results may not represent the 35% of Coloradans

that are uninsured or privately insured.

The prospect that proximity to O&G well site development, a

significant noise and air pollution source, increases AF exacerbation

risk requires attention. Health care providers should be aware of

the increased risk for AF during O&G well site development for

their older and female patients and provide appropriate patient

education to help mitigate risk. Additionally, these findings support

development of mitigation strategies and regulations to protect the

health of populations living near O&G well sites. While this study

advances understanding on relationships between residential

proximity to development of O&G well sites and AF exacerbation,

a future prospective cohort study that can follow populations for

AF over the course of O&G well site development will be necessary

to understand the etiological relationships between specific

environmental stressors, such as noise and air pollution, and

incidence and severity of AF events.
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